summaryrefslogtreecommitdiff
path: root/AK/CircularBuffer.cpp
blob: 8c6034ccbc01fcbf9f19c4da9c92a6934dffa4f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * Copyright (c) 2022, Lucas Chollet <lucas.chollet@free.fr>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/CircularBuffer.h>
#include <AK/MemMem.h>

namespace AK {

CircularBuffer::CircularBuffer(ByteBuffer buffer)
    : m_buffer(move(buffer))
{
}

ErrorOr<CircularBuffer> CircularBuffer::create_empty(size_t size)
{
    auto temporary_buffer = TRY(ByteBuffer::create_uninitialized(size));

    CircularBuffer circular_buffer { move(temporary_buffer) };

    return circular_buffer;
}

ErrorOr<CircularBuffer> CircularBuffer::create_initialized(ByteBuffer buffer)
{
    CircularBuffer circular_buffer { move(buffer) };

    circular_buffer.m_used_space = circular_buffer.m_buffer.size();

    return circular_buffer;
}

size_t CircularBuffer::empty_space() const
{
    return capacity() - m_used_space;
}

size_t CircularBuffer::used_space() const
{
    return m_used_space;
}

size_t CircularBuffer::capacity() const
{
    return m_buffer.size();
}

bool CircularBuffer::is_wrapping_around() const
{
    return capacity() <= m_reading_head + m_used_space;
}

Optional<size_t> CircularBuffer::offset_of(StringView needle, Optional<size_t> from, Optional<size_t> until) const
{
    auto const read_from = from.value_or(0);
    auto const read_until = until.value_or(m_used_space);
    VERIFY(read_from <= read_until);

    Array<ReadonlyBytes, 2> spans {};
    spans[0] = next_read_span();
    auto const original_span_0_size = spans[0].size();

    if (read_from > 0)
        spans[0] = spans[0].slice(min(spans[0].size(), read_from));

    if (spans[0].size() + read_from > read_until)
        spans[0] = spans[0].trim(read_until - read_from);
    else if (is_wrapping_around())
        spans[1] = m_buffer.span().slice(max(original_span_0_size, read_from) - original_span_0_size, min(read_until, m_used_space) - original_span_0_size);

    auto maybe_found = AK::memmem(spans.begin(), spans.end(), needle.bytes());
    if (maybe_found.has_value())
        *maybe_found += read_from;

    return maybe_found;
}

void CircularBuffer::clear()
{
    m_reading_head = 0;
    m_used_space = 0;
    m_seekback_limit = 0;
}

Bytes CircularBuffer::next_write_span()
{
    if (is_wrapping_around())
        return m_buffer.span().slice(m_reading_head + m_used_space - capacity(), capacity() - m_used_space);
    return m_buffer.span().slice(m_reading_head + m_used_space, capacity() - (m_reading_head + m_used_space));
}

ReadonlyBytes CircularBuffer::next_read_span() const
{
    return m_buffer.span().slice(m_reading_head, min(capacity() - m_reading_head, m_used_space));
}

ReadonlyBytes CircularBuffer::next_read_span_with_seekback(size_t distance) const
{
    VERIFY(m_seekback_limit <= capacity());
    VERIFY(distance <= m_seekback_limit);

    // Note: We are adding the capacity once here to ensure that we can wrap around the negative space by using modulo.
    auto read_offset = (capacity() + m_reading_head + m_used_space - distance) % capacity();

    return m_buffer.span().slice(read_offset, min(capacity() - read_offset, m_seekback_limit));
}

size_t CircularBuffer::write(ReadonlyBytes bytes)
{
    auto remaining = bytes.size();

    while (remaining > 0) {
        auto const next_span = next_write_span();
        if (next_span.size() == 0)
            break;

        auto const written_bytes = bytes.slice(bytes.size() - remaining).copy_trimmed_to(next_span);

        m_used_space += written_bytes;

        m_seekback_limit += written_bytes;
        if (m_seekback_limit > capacity())
            m_seekback_limit = capacity();

        remaining -= written_bytes;
    }

    return bytes.size() - remaining;
}

Bytes CircularBuffer::read(Bytes bytes)
{
    auto remaining = bytes.size();

    while (remaining > 0) {
        auto const next_span = next_read_span();
        if (next_span.size() == 0)
            break;

        auto written_bytes = next_span.copy_trimmed_to(bytes.slice(bytes.size() - remaining));

        m_used_space -= written_bytes;
        m_reading_head += written_bytes;

        if (m_reading_head >= capacity())
            m_reading_head -= capacity();

        remaining -= written_bytes;
    }

    return bytes.trim(bytes.size() - remaining);
}

ErrorOr<Bytes> CircularBuffer::read_with_seekback(Bytes bytes, size_t distance)
{
    if (distance > m_seekback_limit)
        return Error::from_string_literal("Tried a seekback read beyond the seekback limit");

    auto remaining = bytes.size();

    while (remaining > 0) {
        auto const next_span = next_read_span_with_seekback(distance);
        if (next_span.size() == 0)
            break;

        auto written_bytes = next_span.copy_trimmed_to(bytes.slice(bytes.size() - remaining));

        distance -= written_bytes;
        remaining -= written_bytes;
    }

    return bytes.trim(bytes.size() - remaining);
}

ErrorOr<void> CircularBuffer::discard(size_t discarding_size)
{
    if (m_used_space < discarding_size)
        return Error::from_string_literal("Can not discard more data than what the buffer contains");
    m_used_space -= discarding_size;
    m_reading_head = (m_reading_head + discarding_size) % capacity();

    return {};
}

}