summaryrefslogtreecommitdiff
path: root/AK/BitmapView.h
blob: 6117f02d15ed391efda85f6d2e102055a4115b85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Array.h>
#include <AK/Optional.h>
#include <AK/Platform.h>
#include <AK/StdLibExtras.h>
#include <AK/Types.h>

namespace AK {

static constexpr Array bitmask_first_byte = { 0xFF, 0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80 };
static constexpr Array bitmask_last_byte = { 0x00, 0x1, 0x3, 0x7, 0xF, 0x1F, 0x3F, 0x7F };

class BitmapView {
public:
    BitmapView(u8* data, size_t size)
        : m_data(data)
        , m_size(size)
    {
    }

    size_t size() const { return m_size; }
    size_t size_in_bytes() const { return ceil_div(m_size, static_cast<size_t>(8)); }
    bool get(size_t index) const
    {
        VERIFY(index < m_size);
        return 0 != (m_data[index / 8] & (1u << (index % 8)));
    }
    void set(size_t index, bool value) const
    {
        VERIFY(index < m_size);
        if (value)
            m_data[index / 8] |= static_cast<u8>((1u << (index % 8)));
        else
            m_data[index / 8] &= static_cast<u8>(~(1u << (index % 8)));
    }

    size_t count_slow(bool value) const
    {
        return count_in_range(0, m_size, value);
    }

    size_t count_in_range(size_t start, size_t len, bool value) const
    {
        VERIFY(start < m_size);
        VERIFY(start + len <= m_size);
        if (len == 0)
            return 0;

        size_t count;
        const u8* first = &m_data[start / 8];
        const u8* last = &m_data[(start + len) / 8];
        u8 byte = *first;
        byte &= bitmask_first_byte[start % 8];
        if (first == last) {
            byte &= bitmask_last_byte[(start + len) % 8];
            count = __builtin_popcount(byte);
        } else {
            count = __builtin_popcount(byte);
            // Don't access *last if it's out of bounds
            if (last < &m_data[size_in_bytes()]) {
                byte = *last;
                byte &= bitmask_last_byte[(start + len) % 8];
                count += __builtin_popcount(byte);
            }
            if (++first < last) {
                const u32* ptr32 = (const u32*)(((FlatPtr)first + sizeof(u32) - 1) & ~(sizeof(u32) - 1));
                if ((const u8*)ptr32 > last)
                    ptr32 = (const u32*)last;
                while (first < (const u8*)ptr32) {
                    count += __builtin_popcount(*first);
                    first++;
                }
                const u32* last32 = (const u32*)((FlatPtr)last & ~(sizeof(u32) - 1));
                while (ptr32 < last32) {
                    count += __builtin_popcountl(*ptr32);
                    ptr32++;
                }
                for (first = (const u8*)ptr32; first < last; first++)
                    count += __builtin_popcount(*first);
            }
        }

        if (!value)
            count = len - count;
        return count;
    }

    bool is_null() const { return !m_data; }

    const u8* data() const { return m_data; }

    template<bool VALUE>
    Optional<size_t> find_one_anywhere(size_t hint = 0) const
    {
        VERIFY(hint < m_size);
        const u8* end = &m_data[m_size / 8];

        for (;;) {
            // We will use hint as what it is: a hint. Because we try to
            // scan over entire 32 bit words, we may start searching before
            // the hint!
            const u32* ptr32 = (const u32*)((FlatPtr)&m_data[hint / 8] & ~(sizeof(u32) - 1));
            if ((const u8*)ptr32 < &m_data[0]) {
                ptr32++;

                // m_data isn't aligned, check first bytes
                size_t start_ptr32 = (const u8*)ptr32 - &m_data[0];
                size_t i = 0;
                u8 byte = VALUE ? 0x00 : 0xff;
                while (i < start_ptr32 && m_data[i] == byte)
                    i++;
                if (i < start_ptr32) {
                    byte = m_data[i];
                    if constexpr (!VALUE)
                        byte = ~byte;
                    VERIFY(byte != 0);
                    return i * 8 + __builtin_ffs(byte) - 1;
                }
            }

            u32 val32 = VALUE ? 0x0 : 0xffffffff;
            const u32* end32 = (const u32*)((FlatPtr)end & ~(sizeof(u32) - 1));
            while (ptr32 < end32 && *ptr32 == val32)
                ptr32++;

            if (ptr32 == end32) {
                // We didn't find anything, check the remaining few bytes (if any)
                u8 byte = VALUE ? 0x00 : 0xff;
                size_t i = (const u8*)ptr32 - &m_data[0];
                size_t byte_count = m_size / 8;
                VERIFY(i <= byte_count);
                while (i < byte_count && m_data[i] == byte)
                    i++;
                if (i == byte_count) {
                    if (hint <= 8)
                        return {}; // We already checked from the beginning

                    // Try scanning before the hint
                    end = (const u8*)((FlatPtr)&m_data[hint / 8] & ~(sizeof(u32) - 1));
                    hint = 0;
                    continue;
                }
                byte = m_data[i];
                if constexpr (!VALUE)
                    byte = ~byte;
                VERIFY(byte != 0);
                return i * 8 + __builtin_ffs(byte) - 1;
            }

            // NOTE: We don't really care about byte ordering. We found *one*
            // free bit, just calculate the position and return it
            val32 = *ptr32;
            if constexpr (!VALUE)
                val32 = ~val32;
            VERIFY(val32 != 0);
            return ((const u8*)ptr32 - &m_data[0]) * 8 + __builtin_ffsl(val32) - 1;
        }
    }

    Optional<size_t> find_one_anywhere_set(size_t hint = 0) const
    {
        return find_one_anywhere<true>(hint);
    }

    Optional<size_t> find_one_anywhere_unset(size_t hint = 0) const
    {
        return find_one_anywhere<false>(hint);
    }

    template<bool VALUE>
    Optional<size_t> find_first() const
    {
        size_t byte_count = m_size / 8;
        size_t i = 0;

        u8 byte = VALUE ? 0x00 : 0xff;
        while (i < byte_count && m_data[i] == byte)
            i++;
        if (i == byte_count)
            return {};

        byte = m_data[i];
        if constexpr (!VALUE)
            byte = ~byte;
        VERIFY(byte != 0);
        return i * 8 + __builtin_ffs(byte) - 1;
    }

    Optional<size_t> find_first_set() const { return find_first<true>(); }
    Optional<size_t> find_first_unset() const { return find_first<false>(); }

    // The function will return the next range of unset bits starting from the
    // @from value.
    // @from: the position from which the search starts. The var will be
    //        changed and new value is the offset of the found block.
    // @min_length: minimum size of the range which will be returned.
    // @max_length: maximum size of the range which will be returned.
    //              This is used to increase performance, since the range of
    //              unset bits can be long, and we don't need the while range,
    //              so we can stop when we've reached @max_length.
    inline Optional<size_t> find_next_range_of_unset_bits(size_t& from, size_t min_length = 1, size_t max_length = max_size) const
    {
        if (min_length > max_length) {
            return {};
        }

        u32* bitmap32 = (u32*)m_data;

        // Calculating the start offset.
        size_t start_bucket_index = from / 32;
        size_t start_bucket_bit = from % 32;

        size_t* start_of_free_chunks = &from;
        size_t free_chunks = 0;

        for (size_t bucket_index = start_bucket_index; bucket_index < m_size / 32; ++bucket_index) {
            if (bitmap32[bucket_index] == 0xffffffff) {
                // Skip over completely full bucket of size 32.
                if (free_chunks >= min_length) {
                    return min(free_chunks, max_length);
                }
                free_chunks = 0;
                start_bucket_bit = 0;
                continue;
            }
            if (bitmap32[bucket_index] == 0x0) {
                // Skip over completely empty bucket of size 32.
                if (free_chunks == 0) {
                    *start_of_free_chunks = bucket_index * 32;
                }
                free_chunks += 32;
                if (free_chunks >= max_length) {
                    return max_length;
                }
                start_bucket_bit = 0;
                continue;
            }

            u32 bucket = bitmap32[bucket_index];
            u8 viewed_bits = start_bucket_bit;
            u32 trailing_zeroes = 0;

            bucket >>= viewed_bits;
            start_bucket_bit = 0;

            while (viewed_bits < 32) {
                if (bucket == 0) {
                    if (free_chunks == 0) {
                        *start_of_free_chunks = bucket_index * 32 + viewed_bits;
                    }
                    free_chunks += 32 - viewed_bits;
                    viewed_bits = 32;
                } else {
                    trailing_zeroes = count_trailing_zeroes_32(bucket);
                    bucket >>= trailing_zeroes;

                    if (free_chunks == 0) {
                        *start_of_free_chunks = bucket_index * 32 + viewed_bits;
                    }
                    free_chunks += trailing_zeroes;
                    viewed_bits += trailing_zeroes;

                    if (free_chunks >= min_length) {
                        return min(free_chunks, max_length);
                    }

                    // Deleting trailing ones.
                    u32 trailing_ones = count_trailing_zeroes_32(~bucket);
                    bucket >>= trailing_ones;
                    viewed_bits += trailing_ones;
                    free_chunks = 0;
                }
            }
        }

        if (free_chunks < min_length) {
            size_t first_trailing_bit = (m_size / 32) * 32;
            size_t trailing_bits = size() % 32;
            for (size_t i = 0; i < trailing_bits; ++i) {
                if (!get(first_trailing_bit + i)) {
                    if (!free_chunks)
                        *start_of_free_chunks = first_trailing_bit + i;
                    if (++free_chunks >= min_length)
                        return min(free_chunks, max_length);
                } else {
                    free_chunks = 0;
                }
            }
            return {};
        }

        return min(free_chunks, max_length);
    }

    Optional<size_t> find_longest_range_of_unset_bits(size_t max_length, size_t& found_range_size) const
    {
        size_t start = 0;
        size_t max_region_start = 0;
        size_t max_region_size = 0;

        while (true) {
            // Look for the next block which is bigger than currunt.
            auto length_of_found_range = find_next_range_of_unset_bits(start, max_region_size + 1, max_length);
            if (length_of_found_range.has_value()) {
                max_region_start = start;
                max_region_size = length_of_found_range.value();
                start += max_region_size;
            } else {
                // No ranges which are bigger than current were found.
                break;
            }
        }

        found_range_size = max_region_size;
        if (max_region_size) {
            return max_region_start;
        }
        return {};
    }

    Optional<size_t> find_first_fit(size_t minimum_length) const
    {
        size_t start = 0;
        auto length_of_found_range = find_next_range_of_unset_bits(start, minimum_length, minimum_length);
        if (length_of_found_range.has_value()) {
            return start;
        }
        return {};
    }

    Optional<size_t> find_best_fit(size_t minimum_length) const
    {
        size_t start = 0;
        size_t best_region_start = 0;
        size_t best_region_size = max_size;
        bool found = false;

        while (true) {
            // Look for the next block which is bigger than requested length.
            auto length_of_found_range = find_next_range_of_unset_bits(start, minimum_length, best_region_size);
            if (length_of_found_range.has_value()) {
                if (best_region_size > length_of_found_range.value() || !found) {
                    best_region_start = start;
                    best_region_size = length_of_found_range.value();
                    found = true;
                }
                start += length_of_found_range.value();
            } else {
                // There are no ranges which can fit requested length.
                break;
            }
        }

        if (found) {
            return best_region_start;
        }
        return {};
    }

    static constexpr size_t max_size = 0xffffffff;

private:
    u8* m_data { nullptr };
    size_t m_size { 0 };
};

}

using AK::BitmapView;