summaryrefslogtreecommitdiff
path: root/AK/BitStream.h
blob: 7bdd646918be2e6a90bbf8c2646daf4db49fde2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*
 * Copyright (c) 2020, the SerenityOS developers.
 * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Optional.h>
#include <AK/Stream.h>

namespace AK {

class InputBitStream final : public InputStream {
public:
    explicit InputBitStream(InputStream& stream)
        : m_stream(stream)
    {
    }

    size_t read(Bytes bytes) override
    {
        if (has_any_error())
            return 0;

        size_t nread = 0;
        if (bytes.size() >= 1) {
            if (m_next_byte.has_value()) {
                bytes[0] = m_next_byte.value();
                m_next_byte.clear();

                ++nread;
            }
        }

        return nread + m_stream.read(bytes.slice(nread));
    }

    bool read_or_error(Bytes bytes) override
    {
        if (read(bytes) != bytes.size()) {
            set_fatal_error();
            return false;
        }

        return true;
    }

    bool unreliable_eof() const override { return !m_next_byte.has_value() && m_stream.unreliable_eof(); }

    bool discard_or_error(size_t count) override
    {
        if (count >= 1) {
            if (m_next_byte.has_value()) {
                m_next_byte.clear();
                --count;
            }
        }

        return m_stream.discard_or_error(count);
    }

    u64 read_bits(size_t count)
    {
        u64 result = 0;

        size_t nread = 0;
        while (nread < count) {
            if (m_stream.has_any_error()) {
                set_fatal_error();
                return 0;
            }

            if (m_next_byte.has_value()) {
                const auto bit = (m_next_byte.value() >> m_bit_offset) & 1;
                result |= bit << nread;
                ++nread;

                if (m_bit_offset++ == 7)
                    m_next_byte.clear();
            } else {
                m_stream >> m_next_byte;
                m_bit_offset = 0;
            }
        }

        return result;
    }

    u64 read_bits_big_endian(size_t count)
    {
        u64 result = 0;

        size_t nread = 0;
        while (nread < count) {
            if (m_stream.has_any_error()) {
                set_fatal_error();
                return 0;
            }

            if (m_next_byte.has_value()) {
                // read an entire byte
                if (((count - nread) >= 8) && m_bit_offset == 0) {
                    // shift existing bytes over
                    result <<= 8;
                    result |= m_next_byte.value();
                    nread += 8;
                    m_next_byte.clear();
                } else {
                    const auto bit = (m_next_byte.value() >> (7 - m_bit_offset)) & 1;
                    result <<= 1;
                    result |= bit;
                    ++nread;
                    if (m_bit_offset++ == 7)
                        m_next_byte.clear();
                }
            } else {
                m_stream >> m_next_byte;
                m_bit_offset = 0;
            }
        }

        return result;
    }

    bool read_bit() { return static_cast<bool>(read_bits(1)); }

    bool read_bit_big_endian() { return static_cast<bool>(read_bits_big_endian(1)); }

    void align_to_byte_boundary()
    {
        if (m_next_byte.has_value())
            m_next_byte.clear();
    }

    bool handle_any_error() override
    {
        bool handled_errors = m_stream.handle_any_error();
        return Stream::handle_any_error() || handled_errors;
    }

private:
    Optional<u8> m_next_byte;
    size_t m_bit_offset { 0 };
    InputStream& m_stream;
};

class OutputBitStream final : public OutputStream {
public:
    explicit OutputBitStream(OutputStream& stream)
        : m_stream(stream)
    {
    }

    // WARNING: write aligns to the next byte boundary before writing, if unaligned writes are needed this should be rewritten
    size_t write(ReadonlyBytes bytes) override
    {
        if (has_any_error())
            return 0;
        align_to_byte_boundary();
        if (has_fatal_error()) // if align_to_byte_boundary failed
            return 0;
        return m_stream.write(bytes);
    }

    bool write_or_error(ReadonlyBytes bytes) override
    {
        if (write(bytes) < bytes.size()) {
            set_fatal_error();
            return false;
        }
        return true;
    }

    void write_bits(u32 bits, size_t count)
    {
        VERIFY(count <= 32);

        if (count == 32 && !m_next_byte.has_value()) { // fast path for aligned 32 bit writes
            m_stream << bits;
            return;
        }

        size_t n_written = 0;
        while (n_written < count) {
            if (m_stream.has_any_error()) {
                set_fatal_error();
                return;
            }

            if (m_next_byte.has_value()) {
                m_next_byte.value() |= ((bits >> n_written) & 1) << m_bit_offset;
                ++n_written;

                if (m_bit_offset++ == 7) {
                    m_stream << m_next_byte.value();
                    m_next_byte.clear();
                }
            } else if (count - n_written >= 16) { // fast path for aligned 16 bit writes
                m_stream << (u16)((bits >> n_written) & 0xFFFF);
                n_written += 16;
            } else if (count - n_written >= 8) { // fast path for aligned 8 bit writes
                m_stream << (u8)((bits >> n_written) & 0xFF);
                n_written += 8;
            } else {
                m_bit_offset = 0;
                m_next_byte = 0;
            }
        }
    }

    void write_bit(bool bit)
    {
        write_bits(bit, 1);
    }

    void align_to_byte_boundary()
    {
        if (m_next_byte.has_value()) {
            if (!m_stream.write_or_error(ReadonlyBytes { &m_next_byte.value(), 1 })) {
                set_fatal_error();
            }
            m_next_byte.clear();
        }
    }

    size_t bit_offset() const
    {
        return m_bit_offset;
    }

private:
    Optional<u8> m_next_byte;
    size_t m_bit_offset { 0 };
    OutputStream& m_stream;
};

}

using AK::InputBitStream;
using AK::OutputBitStream;