/* * Copyright (c) 2022-2023, Nico Weber * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include template static ErrorOr hyperlink(URL const& target, T const& label) { return String::formatted("\033]8;;{}\033\\{}\033]8;;\033\\", target, label); } template static void out_optional(char const* label, Optional const& optional) { out("{}: ", label); if (optional.has_value()) outln("{}", *optional); else outln("(not set)"); } static void out_curve(Gfx::ICC::CurveTagData const& curve, int indent_amount) { if (curve.values().is_empty()) { outln("{: >{}}identity curve", "", indent_amount); } else if (curve.values().size() == 1) { outln("{: >{}}gamma: {}", "", indent_amount, FixedPoint<8, u16>::create_raw(curve.values()[0])); } else { // FIXME: Maybe print the actual points if -v is passed? outln("{: >{}}curve with {} points", "", indent_amount, curve.values().size()); } } static void out_parametric_curve(Gfx::ICC::ParametricCurveTagData const& parametric_curve, int indent_amount) { switch (parametric_curve.function_type()) { case Gfx::ICC::ParametricCurveTagData::FunctionType::Type0: outln("{: >{}}Y = X**{}", "", indent_amount, parametric_curve.g()); break; case Gfx::ICC::ParametricCurveTagData::FunctionType::Type1: outln("{: >{}}Y = ({}*X + {})**{} if X >= -{}/{}", "", indent_amount, parametric_curve.a(), parametric_curve.b(), parametric_curve.g(), parametric_curve.b(), parametric_curve.a()); outln("{: >{}}Y = 0 else", "", indent_amount); break; case Gfx::ICC::ParametricCurveTagData::FunctionType::Type2: outln("{: >{}}Y = ({}*X + {})**{} + {} if X >= -{}/{}", "", indent_amount, parametric_curve.a(), parametric_curve.b(), parametric_curve.g(), parametric_curve.c(), parametric_curve.b(), parametric_curve.a()); outln("{: >{}}Y = {} else", "", indent_amount, parametric_curve.c()); break; case Gfx::ICC::ParametricCurveTagData::FunctionType::Type3: outln("{: >{}}Y = ({}*X + {})**{} if X >= {}", "", indent_amount, parametric_curve.a(), parametric_curve.b(), parametric_curve.g(), parametric_curve.d()); outln("{: >{}}Y = {}*X else", "", indent_amount, parametric_curve.c()); break; case Gfx::ICC::ParametricCurveTagData::FunctionType::Type4: outln("{: >{}}Y = ({}*X + {})**{} + {} if X >= {}", "", indent_amount, parametric_curve.a(), parametric_curve.b(), parametric_curve.g(), parametric_curve.e(), parametric_curve.d()); outln("{: >{}}Y = {}*X + {} else", "", indent_amount, parametric_curve.c(), parametric_curve.f()); break; } } static float curve_distance_u8(Gfx::ICC::TagData const& tag1, Gfx::ICC::TagData const& tag2) { VERIFY(tag1.type() == Gfx::ICC::CurveTagData::Type || tag1.type() == Gfx::ICC::ParametricCurveTagData::Type); VERIFY(tag2.type() == Gfx::ICC::CurveTagData::Type || tag2.type() == Gfx::ICC::ParametricCurveTagData::Type); float curve1_data[256]; if (tag1.type() == Gfx::ICC::CurveTagData::Type) { auto& curve1 = static_cast(tag1); for (int i = 0; i < 256; ++i) curve1_data[i] = curve1.evaluate(i / 255.f); } else { auto& parametric_curve1 = static_cast(tag1); for (int i = 0; i < 256; ++i) curve1_data[i] = parametric_curve1.evaluate(i / 255.f); } float curve2_data[256]; if (tag2.type() == Gfx::ICC::CurveTagData::Type) { auto& curve2 = static_cast(tag2); for (int i = 0; i < 256; ++i) curve2_data[i] = curve2.evaluate(i / 255.f); } else { auto& parametric_curve2 = static_cast(tag2); for (int i = 0; i < 256; ++i) curve2_data[i] = parametric_curve2.evaluate(i / 255.f); } float distance = 0; for (int i = 0; i < 256; ++i) distance += fabsf(curve1_data[i] - curve2_data[i]); return distance; } static ErrorOr out_curve_tag(Gfx::ICC::TagData const& tag, int indent_amount) { VERIFY(tag.type() == Gfx::ICC::CurveTagData::Type || tag.type() == Gfx::ICC::ParametricCurveTagData::Type); if (tag.type() == Gfx::ICC::CurveTagData::Type) out_curve(static_cast(tag), indent_amount); if (tag.type() == Gfx::ICC::ParametricCurveTagData::Type) out_parametric_curve(static_cast(tag), indent_amount); auto sRGB_curve = TRY(Gfx::ICC::sRGB_curve()); // Some example values (for abs distance summed over the 256 values of an u8): // In Compact-ICC-Profiles/profiles: // AdobeCompat-v2.icc: 1.14 (this is a gamma 2.2 curve, so not really sRGB but close) // AdobeCompat-v4.icc: 1.13 // AppleCompat-v2.icc: 11.94 (gamma 1.8 curve) // DCI-P3-v4.icc: 8.29 (gamma 2.6 curve) // DisplayP3-v2-magic.icc: 0.000912 (looks sRGB-ish) // DisplayP3-v2-micro.icc: 0.010819 // DisplayP3-v4.icc: 0.001062 (yes, definitely sRGB) // Rec2020-g24-v4.icc: 4.119216 (gamma 2.4 curve) // Rec2020-v4.icc: 7.805417 (custom non-sRGB curve) // Rec709-v4.icc: 7.783267 (same custom non-sRGB curve as Rec2020) // sRGB-v2-magic.icc: 0.000912 // sRGB-v2-micro.icc: 0.010819 // sRGB-v2-nano.icc: 0.052516 // sRGB-v4.icc: 0.001062 // scRGB-v2.icc: 48.379859 (linear identity curve) // Google sRGB IEC61966-2.1 (from a Pixel jpeg, parametric): 0 // Google sRGB IEC61966-2.1 (from a Pixel jpeg, LUT curve): 0.00096 // Apple 2015 Display P3 (from iPhone 7, parametric): 0.011427 (has the old, left intersection for switching from linear to exponent) // HP sRGB: 0.00096 // color.org sRGB2014.icc: 0.00096 // color.org sRGB_ICC_v4_Appearance.icc, AToB1Tag, a curves: 0.441926 -- but this is not _really_ sRGB // color.org sRGB_v4_ICC_preference.icc, AToB1Tag, a curves: 2.205453 -- not really sRGB either // So `< 0.06` identifies sRGB in practice (for u8 values). float u8_distance_to_sRGB = curve_distance_u8(*sRGB_curve, tag); if (u8_distance_to_sRGB < 0.06f) outln("{: >{}}Looks like sRGB's curve (distance {})", "", indent_amount, u8_distance_to_sRGB); else outln("{: >{}}Does not look like sRGB's curve (distance: {})", "", indent_amount, u8_distance_to_sRGB); return {}; } static ErrorOr out_curves(Vector const& curves) { for (auto const& curve : curves) { VERIFY(curve->type() == Gfx::ICC::CurveTagData::Type || curve->type() == Gfx::ICC::ParametricCurveTagData::Type); outln(" type {}, relative offset {}, size {}", curve->type(), curve->offset(), curve->size()); TRY(out_curve_tag(*curve, /*indent=*/12)); } return {}; } ErrorOr serenity_main(Main::Arguments arguments) { Core::ArgsParser args_parser; StringView path; args_parser.add_positional_argument(path, "Path to ICC profile or to image containing ICC profile", "FILE", Core::ArgsParser::Required::No); StringView name; args_parser.add_option(name, "Name of a built-in profile, such as 'sRGB'", "name", 'n', "NAME"); StringView dump_out_path; args_parser.add_option(dump_out_path, "Dump unmodified ICC profile bytes to this path", "dump-to", 0, "FILE"); StringView reencode_out_path; args_parser.add_option(reencode_out_path, "Reencode ICC profile to this path", "reencode-to", 0, "FILE"); bool force_print = false; args_parser.add_option(force_print, "Print profile even when writing ICC files", "print", 0); args_parser.parse(arguments); if (path.is_empty() && name.is_empty()) { warnln("need either a path or a profile name"); return 1; } if (!path.is_empty() && !name.is_empty()) { warnln("can't have both a path and a profile name"); return 1; } if (path.is_empty() && !dump_out_path.is_empty()) { warnln("--dump-to only valid with path, not with profile name; use --reencode-to instead"); return 1; } ReadonlyBytes icc_bytes; NonnullRefPtr profile = TRY([&]() -> ErrorOr> { if (!name.is_empty()) { if (name == "sRGB") return Gfx::ICC::sRGB(); return Error::from_string_literal("unknown profile name"); } auto file = TRY(Core::MappedFile::map(path)); auto decoder = Gfx::ImageDecoder::try_create_for_raw_bytes(file->bytes()); if (decoder) { if (auto embedded_icc_bytes = TRY(decoder->icc_data()); embedded_icc_bytes.has_value()) { icc_bytes = *embedded_icc_bytes; } else { outln("image contains no embedded ICC profile"); exit(1); } } else { icc_bytes = file->bytes(); } if (!dump_out_path.is_empty()) { auto output_stream = TRY(Core::File::open(dump_out_path, Core::File::OpenMode::Write)); TRY(output_stream->write_until_depleted(icc_bytes)); } return Gfx::ICC::Profile::try_load_from_externally_owned_memory(icc_bytes); }()); if (!reencode_out_path.is_empty()) { auto reencoded_bytes = TRY(Gfx::ICC::encode(profile)); auto output_stream = TRY(Core::File::open(reencode_out_path, Core::File::OpenMode::Write)); TRY(output_stream->write_until_depleted(reencoded_bytes)); } bool do_print = (dump_out_path.is_empty() && reencode_out_path.is_empty()) || force_print; if (!do_print) return 0; outln(" size: {} bytes", profile->on_disk_size()); out_optional(" preferred CMM type", profile->preferred_cmm_type()); outln(" version: {}", profile->version()); outln(" device class: {}", Gfx::ICC::device_class_name(profile->device_class())); outln(" data color space: {}", Gfx::ICC::data_color_space_name(profile->data_color_space())); outln(" connection space: {}", Gfx::ICC::profile_connection_space_name(profile->connection_space())); outln("creation date and time: {}", Core::DateTime::from_timestamp(profile->creation_timestamp())); out_optional(" primary platform", profile->primary_platform().map([](auto platform) { return primary_platform_name(platform); })); auto flags = profile->flags(); outln(" flags: 0x{:08x}", flags.bits()); outln(" - {}embedded in file", flags.is_embedded_in_file() ? "" : "not "); outln(" - can{} be used independently of embedded color data", flags.can_be_used_independently_of_embedded_color_data() ? "" : "not"); if (auto unknown_icc_bits = flags.icc_bits() & ~Gfx::ICC::Flags::KnownBitsMask) outln(" other unknown ICC bits: 0x{:04x}", unknown_icc_bits); if (auto color_management_module_bits = flags.color_management_module_bits()) outln(" CMM bits: 0x{:04x}", color_management_module_bits); out_optional(" device manufacturer", TRY(profile->device_manufacturer().map([](auto device_manufacturer) { return hyperlink(device_manufacturer_url(device_manufacturer), device_manufacturer); }))); out_optional(" device model", TRY(profile->device_model().map([](auto device_model) { return hyperlink(device_model_url(device_model), device_model); }))); auto device_attributes = profile->device_attributes(); outln(" device attributes: 0x{:016x}", device_attributes.bits()); outln(" media is:"); outln(" - {}", device_attributes.media_reflectivity() == Gfx::ICC::DeviceAttributes::MediaReflectivity::Reflective ? "reflective" : "transparent"); outln(" - {}", device_attributes.media_glossiness() == Gfx::ICC::DeviceAttributes::MediaGlossiness::Glossy ? "glossy" : "matte"); outln(" - {}", device_attributes.media_polarity() == Gfx::ICC::DeviceAttributes::MediaPolarity::Positive ? "of positive polarity" : "of negative polarity"); outln(" - {}", device_attributes.media_color() == Gfx::ICC::DeviceAttributes::MediaColor::Colored ? "colored" : "black and white"); VERIFY((flags.icc_bits() & ~Gfx::ICC::DeviceAttributes::KnownBitsMask) == 0); if (auto vendor_bits = device_attributes.vendor_bits()) outln(" vendor bits: 0x{:08x}", vendor_bits); outln(" rendering intent: {}", Gfx::ICC::rendering_intent_name(profile->rendering_intent())); outln(" pcs illuminant: {}", profile->pcs_illuminant()); out_optional(" creator", profile->creator()); out_optional(" id", profile->id()); size_t profile_disk_size = icc_bytes.size(); if (profile_disk_size != profile->on_disk_size()) { VERIFY(profile_disk_size > profile->on_disk_size()); outln("{} trailing bytes after profile data", profile_disk_size - profile->on_disk_size()); } outln(""); outln("tags:"); HashMap tag_data_to_first_signature; TRY(profile->try_for_each_tag([&tag_data_to_first_signature](auto tag_signature, auto tag_data) -> ErrorOr { if (auto name = tag_signature_spec_name(tag_signature); name.has_value()) out("{} ({}): ", *name, tag_signature); else out("Unknown tag ({}): ", tag_signature); outln("type {}, offset {}, size {}", tag_data->type(), tag_data->offset(), tag_data->size()); // Print tag data only the first time it's seen. // (Different sigatures can refer to the same data.) auto it = tag_data_to_first_signature.find(tag_data); if (it != tag_data_to_first_signature.end()) { outln(" (see {} above)", it->value); return {}; } tag_data_to_first_signature.set(tag_data, tag_signature); if (tag_data->type() == Gfx::ICC::ChromaticityTagData::Type) { auto& chromaticity = static_cast(*tag_data); outln(" phosphor or colorant type: {}", Gfx::ICC::ChromaticityTagData::phosphor_or_colorant_type_name(chromaticity.phosphor_or_colorant_type())); for (auto const& xy : chromaticity.xy_coordinates()) outln(" x, y: {}, {}", xy.x, xy.y); } else if (tag_data->type() == Gfx::ICC::CicpTagData::Type) { auto& cicp = static_cast(*tag_data); outln(" color primaries: {} - {}", cicp.color_primaries(), Video::color_primaries_to_string((Video::ColorPrimaries)cicp.color_primaries())); outln(" transfer characteristics: {} - {}", cicp.transfer_characteristics(), Video::transfer_characteristics_to_string((Video::TransferCharacteristics)cicp.transfer_characteristics())); outln(" matrix coefficients: {} - {}", cicp.matrix_coefficients(), Video::matrix_coefficients_to_string((Video::MatrixCoefficients)cicp.matrix_coefficients())); outln(" video full range flag: {} - {}", cicp.video_full_range_flag(), Video::video_full_range_flag_to_string((Video::VideoFullRangeFlag)cicp.video_full_range_flag())); } else if (tag_data->type() == Gfx::ICC::CurveTagData::Type) { TRY(out_curve_tag(*tag_data, /*indent=*/4)); } else if (tag_data->type() == Gfx::ICC::Lut16TagData::Type) { auto& lut16 = static_cast(*tag_data); outln(" input table: {} channels x {} entries", lut16.number_of_input_channels(), lut16.number_of_input_table_entries()); outln(" output table: {} channels x {} entries", lut16.number_of_output_channels(), lut16.number_of_output_table_entries()); outln(" color lookup table: {} grid points, {} total entries", lut16.number_of_clut_grid_points(), lut16.clut_values().size()); auto const& e = lut16.e_matrix(); outln(" e = [ {}, {}, {},", e[0], e[1], e[2]); outln(" {}, {}, {},", e[3], e[4], e[5]); outln(" {}, {}, {} ]", e[6], e[7], e[8]); } else if (tag_data->type() == Gfx::ICC::Lut8TagData::Type) { auto& lut8 = static_cast(*tag_data); outln(" input table: {} channels x {} entries", lut8.number_of_input_channels(), lut8.number_of_input_table_entries()); outln(" output table: {} channels x {} entries", lut8.number_of_output_channels(), lut8.number_of_output_table_entries()); outln(" color lookup table: {} grid points, {} total entries", lut8.number_of_clut_grid_points(), lut8.clut_values().size()); auto const& e = lut8.e_matrix(); outln(" e = [ {}, {}, {},", e[0], e[1], e[2]); outln(" {}, {}, {},", e[3], e[4], e[5]); outln(" {}, {}, {} ]", e[6], e[7], e[8]); } else if (tag_data->type() == Gfx::ICC::LutAToBTagData::Type) { auto& a_to_b = static_cast(*tag_data); outln(" {} input channels, {} output channels", a_to_b.number_of_input_channels(), a_to_b.number_of_output_channels()); if (auto const& optional_a_curves = a_to_b.a_curves(); optional_a_curves.has_value()) { outln(" a curves: {} curves", optional_a_curves->size()); TRY(out_curves(optional_a_curves.value())); } else { outln(" a curves: (not set)"); } if (auto const& optional_clut = a_to_b.clut(); optional_clut.has_value()) { auto const& clut = optional_clut.value(); outln(" color lookup table: {} grid points, {}", TRY(String::join(" x "sv, clut.number_of_grid_points_in_dimension)), TRY(clut.values.visit( [](Vector const& v) { return String::formatted("{} u8 entries", v.size()); }, [](Vector const& v) { return String::formatted("{} u16 entries", v.size()); }))); } else { outln(" color lookup table: (not set)"); } if (auto const& optional_m_curves = a_to_b.m_curves(); optional_m_curves.has_value()) { outln(" m curves: {} curves", optional_m_curves->size()); TRY(out_curves(optional_m_curves.value())); } else { outln(" m curves: (not set)"); } if (auto const& optional_e = a_to_b.e_matrix(); optional_e.has_value()) { auto const& e = optional_e.value(); outln(" e = [ {}, {}, {}, {},", e[0], e[1], e[2], e[9]); outln(" {}, {}, {}, {},", e[3], e[4], e[5], e[10]); outln(" {}, {}, {}, {} ]", e[6], e[7], e[8], e[11]); } else { outln(" e = (not set)"); } outln(" b curves: {} curves", a_to_b.b_curves().size()); TRY(out_curves(a_to_b.b_curves())); } else if (tag_data->type() == Gfx::ICC::LutBToATagData::Type) { auto& b_to_a = static_cast(*tag_data); outln(" {} input channels, {} output channels", b_to_a.number_of_input_channels(), b_to_a.number_of_output_channels()); outln(" b curves: {} curves", b_to_a.b_curves().size()); TRY(out_curves(b_to_a.b_curves())); if (auto const& optional_e = b_to_a.e_matrix(); optional_e.has_value()) { auto const& e = optional_e.value(); outln(" e = [ {}, {}, {}, {},", e[0], e[1], e[2], e[9]); outln(" {}, {}, {}, {},", e[3], e[4], e[5], e[10]); outln(" {}, {}, {}, {} ]", e[6], e[7], e[8], e[11]); } else { outln(" e = (not set)"); } if (auto const& optional_m_curves = b_to_a.m_curves(); optional_m_curves.has_value()) { outln(" m curves: {} curves", optional_m_curves->size()); TRY(out_curves(optional_m_curves.value())); } else { outln(" m curves: (not set)"); } if (auto const& optional_clut = b_to_a.clut(); optional_clut.has_value()) { auto const& clut = optional_clut.value(); outln(" color lookup table: {} grid points, {}", TRY(String::join(" x "sv, clut.number_of_grid_points_in_dimension)), TRY(clut.values.visit( [](Vector const& v) { return String::formatted("{} u8 entries", v.size()); }, [](Vector const& v) { return String::formatted("{} u16 entries", v.size()); }))); } else { outln(" color lookup table: (not set)"); } if (auto const& optional_a_curves = b_to_a.a_curves(); optional_a_curves.has_value()) { outln(" a curves: {} curves", optional_a_curves->size()); TRY(out_curves(optional_a_curves.value())); } else { outln(" a curves: (not set)"); } } else if (tag_data->type() == Gfx::ICC::MeasurementTagData::Type) { auto& measurement = static_cast(*tag_data); outln(" standard observer: {}", Gfx::ICC::MeasurementTagData::standard_observer_name(measurement.standard_observer())); outln(" tristimulus value for measurement backing: {}", measurement.tristimulus_value_for_measurement_backing()); outln(" measurement geometry: {}", Gfx::ICC::MeasurementTagData::measurement_geometry_name(measurement.measurement_geometry())); outln(" measurement flare: {} %", measurement.measurement_flare() * 100); outln(" standard illuminant: {}", Gfx::ICC::MeasurementTagData::standard_illuminant_name(measurement.standard_illuminant())); } else if (tag_data->type() == Gfx::ICC::MultiLocalizedUnicodeTagData::Type) { auto& multi_localized_unicode = static_cast(*tag_data); for (auto& record : multi_localized_unicode.records()) { outln(" {:c}{:c}/{:c}{:c}: \"{}\"", record.iso_639_1_language_code >> 8, record.iso_639_1_language_code & 0xff, record.iso_3166_1_country_code >> 8, record.iso_3166_1_country_code & 0xff, record.text); } } else if (tag_data->type() == Gfx::ICC::NamedColor2TagData::Type) { auto& named_colors = static_cast(*tag_data); outln(" vendor specific flag: 0x{:08x}", named_colors.vendor_specific_flag()); outln(" common name prefix: \"{}\"", named_colors.prefix()); outln(" common name suffix: \"{}\"", named_colors.suffix()); outln(" {} colors:", named_colors.size()); for (size_t i = 0; i < min(named_colors.size(), 5u); ++i) { const auto& pcs = named_colors.pcs_coordinates(i); // FIXME: Display decoded values? (See ICC v4 6.3.4.2 and 10.8.) out(" \"{}\", PCS coordinates: 0x{:04x} 0x{:04x} 0x{:04x}", TRY(named_colors.color_name(i)), pcs.xyz.x, pcs.xyz.y, pcs.xyz.z); if (auto number_of_device_coordinates = named_colors.number_of_device_coordinates(); number_of_device_coordinates > 0) { out(", device coordinates:"); for (size_t j = 0; j < number_of_device_coordinates; ++j) out(" 0x{:04x}", named_colors.device_coordinates(i)[j]); } outln(); } if (named_colors.size() > 5u) outln(" ..."); } else if (tag_data->type() == Gfx::ICC::ParametricCurveTagData::Type) { TRY(out_curve_tag(*tag_data, /*indent=*/4)); } else if (tag_data->type() == Gfx::ICC::S15Fixed16ArrayTagData::Type) { // This tag can contain arbitrarily many fixed-point numbers, but in practice it's // exclusively used for the 'chad' tag, where it always contains 9 values that // represent a 3x3 matrix. So print the values in groups of 3. auto& fixed_array = static_cast(*tag_data); out(" ["); int i = 0; for (auto value : fixed_array.values()) { if (i > 0) { out(","); if (i % 3 == 0) { outln(); out(" "); } } out(" {}", value); i++; } outln(" ]"); } else if (tag_data->type() == Gfx::ICC::SignatureTagData::Type) { auto& signature = static_cast(*tag_data); if (auto name = signature.name_for_tag(tag_signature); name.has_value()) { outln(" signature: {}", name.value()); } else { outln(" signature: Unknown ('{:c}{:c}{:c}{:c}' / 0x{:08x})", signature.signature() >> 24, (signature.signature() >> 16) & 0xff, (signature.signature() >> 8) & 0xff, signature.signature() & 0xff, signature.signature()); } } else if (tag_data->type() == Gfx::ICC::TextDescriptionTagData::Type) { auto& text_description = static_cast(*tag_data); outln(" ascii: \"{}\"", text_description.ascii_description()); out_optional(" unicode", TRY(text_description.unicode_description().map([](auto description) { return String::formatted("\"{}\"", description); }))); outln(" unicode language code: 0x{}", text_description.unicode_language_code()); out_optional(" macintosh", TRY(text_description.macintosh_description().map([](auto description) { return String::formatted("\"{}\"", description); }))); } else if (tag_data->type() == Gfx::ICC::TextTagData::Type) { outln(" text: \"{}\"", static_cast(*tag_data).text()); } else if (tag_data->type() == Gfx::ICC::ViewingConditionsTagData::Type) { auto& viewing_conditions = static_cast(*tag_data); outln(" unnormalized CIEXYZ values for illuminant (in which Y is in cd/m²): {}", viewing_conditions.unnormalized_ciexyz_values_for_illuminant()); outln(" unnormalized CIEXYZ values for surround (in which Y is in cd/m²): {}", viewing_conditions.unnormalized_ciexyz_values_for_surround()); outln(" illuminant type: {}", Gfx::ICC::MeasurementTagData::standard_illuminant_name(viewing_conditions.illuminant_type())); } else if (tag_data->type() == Gfx::ICC::XYZTagData::Type) { for (auto& xyz : static_cast(*tag_data).xyzs()) outln(" {}", xyz); } return {}; })); return 0; }