/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include "Screen.h" #include "Compositor.h" #include "Event.h" #include "EventLoop.h" #include "WindowManager.h" #include #include #include #include #include #include #include namespace WindowServer { NonnullRefPtrVector Screen::s_screens; Screen* Screen::s_main_screen { nullptr }; Gfx::IntRect Screen::s_bounding_screens_rect {}; ScreenLayout Screen::s_layout; Vector Screen::s_scale_factors_in_use; struct ScreenFBData { Vector pending_flush_rects; bool too_many_pending_flush_rects { false }; }; ScreenInput& ScreenInput::the() { static ScreenInput s_the; return s_the; } Screen& ScreenInput::cursor_location_screen() { auto* screen = Screen::find_by_location(m_cursor_location); VERIFY(screen); return *screen; } const Screen& ScreenInput::cursor_location_screen() const { auto* screen = Screen::find_by_location(m_cursor_location); VERIFY(screen); return *screen; } bool Screen::apply_layout(ScreenLayout&& screen_layout, String& error_msg) { if (!screen_layout.is_valid(&error_msg)) return false; if (screen_layout == s_layout) return true; bool place_cursor_on_main_screen = find_by_location(ScreenInput::the().cursor_location()) == nullptr; HashMap current_to_new_indices_map; HashMap new_to_current_indices_map; HashMap> devices_no_longer_used; for (size_t i = 0; i < s_layout.screens.size(); i++) { auto& screen = s_layout.screens[i]; bool found = false; for (size_t j = 0; j < screen_layout.screens.size(); j++) { auto& new_screen = screen_layout.screens[j]; if (new_screen.device == screen.device) { current_to_new_indices_map.set(i, j); new_to_current_indices_map.set(j, i); found = true; break; } } if (!found) devices_no_longer_used.set(i, s_screens[i]); } HashMap screens_with_resolution_change; HashMap screens_with_scale_change; for (auto& it : current_to_new_indices_map) { auto& screen = s_layout.screens[it.key]; auto& new_screen = screen_layout.screens[it.value]; if (screen.resolution != new_screen.resolution) screens_with_resolution_change.set(&s_screens[it.key], it.value); if (screen.scale_factor != new_screen.scale_factor) screens_with_scale_change.set(&s_screens[it.key], it.value); } auto screens_backup = move(s_screens); auto layout_backup = move(s_layout); for (auto& it : screens_with_resolution_change) { auto& existing_screen = *it.key; dbgln("Closing device {} in preparation for resolution change", layout_backup.screens[existing_screen.index()].device); existing_screen.close_device(); } AK::ArmedScopeGuard rollback([&] { for (auto& screen : s_screens) screen.close_device(); s_screens = move(screens_backup); s_layout = move(layout_backup); for (size_t i = 0; i < s_screens.size(); i++) { auto& old_screen = s_screens[i]; // Restore the original screen index in case it changed old_screen.set_index(i); if (i == s_layout.main_screen_index) old_screen.make_main_screen(); bool changed_scale = screens_with_scale_change.contains(&old_screen); if (screens_with_resolution_change.contains(&old_screen)) { if (old_screen.open_device()) { // The resolution was changed, so we also implicitly applied the new scale factor changed_scale = false; } else { // Don't set error_msg here, it should already be set dbgln("Rolling back screen layout failed: could not open device"); } } old_screen.update_virtual_rect(); if (changed_scale) old_screen.scale_factor_changed(); } update_bounding_rect(); }); s_layout = move(screen_layout); for (size_t index = 0; index < s_layout.screens.size(); index++) { Screen* screen; bool need_to_open_device; if (auto it = new_to_current_indices_map.find(index); it != new_to_current_indices_map.end()) { // Re-use the existing screen instance screen = &screens_backup[it->value]; s_screens.append(*screen); screen->set_index(index); need_to_open_device = screens_with_resolution_change.contains(screen); } else { screen = WindowServer::Screen::create(index); if (!screen) { error_msg = String::formatted("Error creating screen #{}", index); return false; } need_to_open_device = true; } if (need_to_open_device && !screen->open_device()) { error_msg = String::formatted("Error opening device for screen #{}", index); return false; } screen->update_virtual_rect(); if (!need_to_open_device && screens_with_scale_change.contains(screen)) screen->scale_factor_changed(); VERIFY(screen); VERIFY(index == screen->index()); if (s_layout.main_screen_index == index) screen->make_main_screen(); } rollback.disarm(); if (place_cursor_on_main_screen) { ScreenInput::the().set_cursor_location(Screen::main().rect().center()); } else { auto cursor_location = ScreenInput::the().cursor_location(); if (!find_by_location(cursor_location)) { // Cursor is off screen, try to find the closest location on another screen float closest_distance = 0; Optional closest_point; for (auto& screen : s_screens) { auto closest_point_on_screen_rect = screen.rect().closest_to(cursor_location); auto distance = closest_point_on_screen_rect.distance_from(cursor_location); if (!closest_point.has_value() || distance < closest_distance) { closest_distance = distance; closest_point = closest_point_on_screen_rect; } } ScreenInput::the().set_cursor_location(closest_point.value()); // We should always have one } } update_bounding_rect(); update_scale_factors_in_use(); return true; } void Screen::update_scale_factors_in_use() { s_scale_factors_in_use.clear(); for_each([&](auto& screen) { auto scale_factor = screen.scale_factor(); // The This doesn't have to be extremely efficient as this // code is only run when we start up or the screen configuration // changes. But using a vector allows for efficient iteration, // which is the most common use case. if (!s_scale_factors_in_use.contains_slow(scale_factor)) s_scale_factors_in_use.append(scale_factor); return IterationDecision::Continue; }); } Screen::Screen(size_t screen_index) : m_index(screen_index) , m_framebuffer_data(adopt_own(*new ScreenFBData())) , m_compositor_screen_data(Compositor::create_screen_data({})) { update_virtual_rect(); open_device(); } Screen::~Screen() { close_device(); } bool Screen::open_device() { close_device(); auto& info = screen_layout_info(); m_framebuffer_fd = open(info.device.characters(), O_RDWR | O_CLOEXEC); if (m_framebuffer_fd < 0) { perror(String::formatted("failed to open {}", info.device).characters()); return false; } m_can_set_buffer = (fb_set_buffer(m_framebuffer_fd, 0) == 0); m_can_device_flush_buffers = true; // If the device can't do it we revert to false set_resolution(true); return true; } void Screen::close_device() { if (m_framebuffer_fd >= 0) { close(m_framebuffer_fd); m_framebuffer_fd = -1; } if (m_framebuffer) { int rc = munmap(m_framebuffer, m_size_in_bytes); VERIFY(rc == 0); m_framebuffer = nullptr; m_size_in_bytes = 0; } } void Screen::update_virtual_rect() { auto& screen_info = screen_layout_info(); m_virtual_rect = { screen_info.location, { screen_info.resolution.width() / screen_info.scale_factor, screen_info.resolution.height() / screen_info.scale_factor } }; dbgln("update_virtual_rect for screen #{}: {}", index(), m_virtual_rect); } void Screen::scale_factor_changed() { // Flush rects are affected by the screen factor constrain_pending_flush_rects(); } void Screen::init() { set_resolution(true); } Screen& Screen::closest_to_rect(const Gfx::IntRect& rect) { Screen* best_screen = nullptr; int best_area = 0; for (auto& screen : s_screens) { auto r = screen.rect().intersected(rect); int area = r.width() * r.height(); if (!best_screen || area > best_area) { best_screen = &screen; best_area = area; } } if (!best_screen) { // TODO: try to find the best screen in close proximity best_screen = &Screen::main(); } return *best_screen; } Screen& Screen::closest_to_location(const Gfx::IntPoint& point) { for (auto& screen : s_screens) { if (screen.rect().contains(point)) return screen; } // TODO: guess based on how close the point is to the next screen rectangle return Screen::main(); } void Screen::update_bounding_rect() { if (!s_screens.is_empty()) { s_bounding_screens_rect = s_screens[0].rect(); for (size_t i = 1; i < s_screens.size(); i++) s_bounding_screens_rect = s_bounding_screens_rect.united(s_screens[i].rect()); } else { s_bounding_screens_rect = {}; } } bool Screen::set_resolution(bool initial) { // Remember the screen that the cursor is on. Make sure it stays on the same screen if we change its resolution... Screen* screen_with_cursor = nullptr; if (!initial) screen_with_cursor = &ScreenInput::the().cursor_location_screen(); auto& info = screen_layout_info(); FBResolution physical_resolution { 0, (unsigned)info.resolution.width(), (unsigned)info.resolution.height() }; int rc = fb_set_resolution(m_framebuffer_fd, &physical_resolution); dbgln_if(WSSCREEN_DEBUG, "Screen #{}: fb_set_resolution() - return code {}", index(), rc); auto on_change_resolution = [&]() { if (initial || physical_resolution.width != (unsigned)info.resolution.width() || physical_resolution.height != (unsigned)info.resolution.height()) { if (m_framebuffer) { size_t previous_size_in_bytes = m_size_in_bytes; int rc = munmap(m_framebuffer, previous_size_in_bytes); VERIFY(rc == 0); } int rc = fb_get_size_in_bytes(m_framebuffer_fd, &m_size_in_bytes); VERIFY(rc == 0); m_framebuffer = (Gfx::RGBA32*)mmap(nullptr, m_size_in_bytes, PROT_READ | PROT_WRITE, MAP_SHARED, m_framebuffer_fd, 0); VERIFY(m_framebuffer && m_framebuffer != (void*)-1); if (m_can_set_buffer) { unsigned buffer_offset = 0; rc = fb_get_buffer_offset(m_framebuffer_fd, 1, &buffer_offset); if (rc == 0) { m_back_buffer_offset = buffer_offset; } else { // fall back to assuming the second buffer starts right after the last line of the first m_back_buffer_offset = physical_resolution.pitch * physical_resolution.height; } } else { m_back_buffer_offset = 0; } } info.resolution = { physical_resolution.width, physical_resolution.height }; m_pitch = physical_resolution.pitch; update_virtual_rect(); // Since pending flush rects are affected by the scale factor // update even if only the scale factor changed constrain_pending_flush_rects(); if (this == screen_with_cursor) { auto& screen_input = ScreenInput::the(); screen_input.set_cursor_location(screen_input.cursor_location().constrained(rect())); } }; if (rc == 0) { on_change_resolution(); return true; } if (rc == -1) { int err = errno; dbgln("Screen #{}: Failed to set resolution {}: {}", index(), info.resolution, strerror(err)); on_change_resolution(); return false; } VERIFY_NOT_REACHED(); } void Screen::set_buffer(int index) { VERIFY(m_can_set_buffer); int rc = fb_set_buffer(m_framebuffer_fd, index); VERIFY(rc == 0); } size_t Screen::buffer_offset(int index) const { if (index == 0) return 0; if (index == 1) return m_back_buffer_offset; VERIFY_NOT_REACHED(); } void ScreenInput::set_acceleration_factor(double factor) { VERIFY(factor >= mouse_accel_min && factor <= mouse_accel_max); m_acceleration_factor = factor; } void ScreenInput::set_scroll_step_size(unsigned step_size) { VERIFY(step_size >= scroll_step_size_min); m_scroll_step_size = step_size; } void ScreenInput::on_receive_mouse_data(const MousePacket& packet) { auto& current_screen = cursor_location_screen(); auto prev_location = m_cursor_location; if (packet.is_relative) { m_cursor_location.translate_by(packet.x * m_acceleration_factor, packet.y * m_acceleration_factor); dbgln_if(WSSCREEN_DEBUG, "Screen: New Relative mouse point @ {}", m_cursor_location); } else { m_cursor_location = { packet.x * current_screen.width() / 0xffff, packet.y * current_screen.height() / 0xffff }; dbgln_if(WSSCREEN_DEBUG, "Screen: New Absolute mouse point @ {}", m_cursor_location); } auto* moved_to_screen = Screen::find_by_location(m_cursor_location); if (!moved_to_screen) { m_cursor_location = m_cursor_location.constrained(current_screen.rect()); moved_to_screen = ¤t_screen; } unsigned buttons = packet.buttons; unsigned prev_buttons = m_mouse_button_state; m_mouse_button_state = buttons; unsigned changed_buttons = prev_buttons ^ buttons; auto post_mousedown_or_mouseup_if_needed = [&](MouseButton button) { if (!(changed_buttons & (unsigned)button)) return; auto message = make(buttons & (unsigned)button ? Event::MouseDown : Event::MouseUp, m_cursor_location, buttons, button, m_modifiers); Core::EventLoop::current().post_event(WindowManager::the(), move(message)); }; post_mousedown_or_mouseup_if_needed(MouseButton::Left); post_mousedown_or_mouseup_if_needed(MouseButton::Right); post_mousedown_or_mouseup_if_needed(MouseButton::Middle); post_mousedown_or_mouseup_if_needed(MouseButton::Back); post_mousedown_or_mouseup_if_needed(MouseButton::Forward); if (m_cursor_location != prev_location) { auto message = make(Event::MouseMove, m_cursor_location, buttons, MouseButton::None, m_modifiers); if (WindowManager::the().dnd_client()) message->set_mime_data(WindowManager::the().dnd_mime_data()); Core::EventLoop::current().post_event(WindowManager::the(), move(message)); } if (packet.z) { auto message = make(Event::MouseWheel, m_cursor_location, buttons, MouseButton::None, m_modifiers, packet.z * m_scroll_step_size); Core::EventLoop::current().post_event(WindowManager::the(), move(message)); } if (m_cursor_location != prev_location) Compositor::the().invalidate_cursor(); } void ScreenInput::on_receive_keyboard_data(::KeyEvent kernel_event) { m_modifiers = kernel_event.modifiers(); auto message = make(kernel_event.is_press() ? Event::KeyDown : Event::KeyUp, kernel_event.key, kernel_event.code_point, kernel_event.modifiers(), kernel_event.scancode); Core::EventLoop::current().post_event(WindowManager::the(), move(message)); } void Screen::constrain_pending_flush_rects() { auto& fb_data = *m_framebuffer_data; if (fb_data.pending_flush_rects.is_empty()) return; Gfx::IntRect screen_rect({}, rect().size()); Gfx::DisjointRectSet rects; for (auto& fb_rect : fb_data.pending_flush_rects) { Gfx::IntRect rect { (int)fb_rect.x, (int)fb_rect.y, (int)fb_rect.width, (int)fb_rect.height }; auto intersected_rect = rect.intersected(screen_rect); if (!intersected_rect.is_empty()) rects.add(intersected_rect); } fb_data.pending_flush_rects.clear_with_capacity(); for (auto const& rect : rects.rects()) { fb_data.pending_flush_rects.append({ .x = (unsigned)rect.x(), .y = (unsigned)rect.y(), .width = (unsigned)rect.width(), .height = (unsigned)rect.height(), }); } } void Screen::queue_flush_display_rect(Gfx::IntRect const& flush_region) { // NOTE: we don't scale until in Screen::flush_display so that when // there are too many rectangles that we end up throwing away, we didn't // waste accounting for scale factor! auto& fb_data = *m_framebuffer_data; if (fb_data.too_many_pending_flush_rects) { // We already have too many, just make sure we extend it if needed VERIFY(!fb_data.pending_flush_rects.is_empty()); if (fb_data.pending_flush_rects.size() == 1) { auto& union_rect = fb_data.pending_flush_rects[0]; auto new_union = flush_region.united(Gfx::IntRect((int)union_rect.x, (int)union_rect.y, (int)union_rect.width, (int)union_rect.height)); union_rect.x = new_union.left(); union_rect.y = new_union.top(); union_rect.width = new_union.width(); union_rect.height = new_union.height(); } else { // Convert all the rectangles into one union auto new_union = flush_region; for (auto& flush_rect : fb_data.pending_flush_rects) new_union = new_union.united(Gfx::IntRect((int)flush_rect.x, (int)flush_rect.y, (int)flush_rect.width, (int)flush_rect.height)); fb_data.pending_flush_rects.resize(1, true); auto& union_rect = fb_data.pending_flush_rects[0]; union_rect.x = new_union.left(); union_rect.y = new_union.top(); union_rect.width = new_union.width(); union_rect.height = new_union.height(); } return; } VERIFY(fb_data.pending_flush_rects.size() < fb_data.pending_flush_rects.capacity()); fb_data.pending_flush_rects.append({ (unsigned)flush_region.left(), (unsigned)flush_region.top(), (unsigned)flush_region.width(), (unsigned)flush_region.height() }); if (fb_data.pending_flush_rects.size() == fb_data.pending_flush_rects.capacity()) { // If we get one more rectangle then we need to convert it to a single union rectangle fb_data.too_many_pending_flush_rects = true; } } void Screen::flush_display(int buffer_index) { VERIFY(m_can_device_flush_buffers); auto& fb_data = *m_framebuffer_data; if (fb_data.pending_flush_rects.is_empty()) return; // Now that we have a final set of rects, apply the scale factor auto scale_factor = this->scale_factor(); for (auto& flush_rect : fb_data.pending_flush_rects) { VERIFY(Gfx::IntRect({}, m_virtual_rect.size()).contains({ (int)flush_rect.x, (int)flush_rect.y, (int)flush_rect.width, (int)flush_rect.height })); flush_rect.x *= scale_factor; flush_rect.y *= scale_factor; flush_rect.width *= scale_factor; flush_rect.height *= scale_factor; } if (fb_flush_buffers(m_framebuffer_fd, buffer_index, fb_data.pending_flush_rects.data(), (unsigned)fb_data.pending_flush_rects.size()) < 0) { int err = errno; if (err == ENOTSUP) m_can_device_flush_buffers = false; else dbgln("Screen #{}: Error ({}) flushing display: {}", index(), err, strerror(err)); } fb_data.too_many_pending_flush_rects = false; fb_data.pending_flush_rects.clear_with_capacity(); } void Screen::flush_display_front_buffer(int front_buffer_index, Gfx::IntRect& rect) { VERIFY(m_can_device_flush_buffers); auto scale_factor = this->scale_factor(); FBRect flush_rect { .x = (unsigned)(rect.x() * scale_factor), .y = (unsigned)(rect.y() * scale_factor), .width = (unsigned)(rect.width() * scale_factor), .height = (unsigned)(rect.height() * scale_factor) }; VERIFY(Gfx::IntRect({}, m_virtual_rect.size()).contains(rect)); if (fb_flush_buffers(m_framebuffer_fd, front_buffer_index, &flush_rect, 1) < 0) { int err = errno; if (err == ENOTSUP) m_can_device_flush_buffers = false; else dbgln("Screen #{}: Error ({}) flushing display front buffer: {}", index(), err, strerror(err)); } } }