/* * Copyright (c) 2020, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include "MCTSTree.h" #include #include MCTSTree::MCTSTree(Chess::Board const& board, MCTSTree* parent) : m_parent(parent) , m_board(make(board)) , m_last_move(board.last_move()) , m_turn(board.turn()) { } MCTSTree::MCTSTree(MCTSTree&& other) : m_children(move(other.m_children)) , m_parent(other.m_parent) , m_white_points(other.m_white_points) , m_simulations(other.m_simulations) , m_board(move(other.m_board)) , m_last_move(move(other.m_last_move)) , m_turn(other.m_turn) , m_moves_generated(other.m_moves_generated) { other.m_parent = nullptr; } MCTSTree& MCTSTree::select_leaf() { if (!expanded() || m_children.size() == 0) return *this; MCTSTree* node = nullptr; double max_uct = -double(INFINITY); for (auto& child : m_children) { double uct = child.uct(m_turn); if (uct >= max_uct) { max_uct = uct; node = &child; } } VERIFY(node); return node->select_leaf(); } MCTSTree& MCTSTree::expand() { VERIFY(!expanded() || m_children.size() == 0); if (!m_moves_generated) { m_board->generate_moves([&](Chess::Move chess_move) { auto clone = m_board->clone_without_history(); clone.apply_move(chess_move); m_children.append(make(move(clone), this)); return IterationDecision::Continue; }); m_moves_generated = true; if (m_children.size() != 0) m_board = nullptr; // Release the board to save memory. } if (m_children.size() == 0) { return *this; } for (auto& child : m_children) { if (child.m_simulations == 0) { return child; } } VERIFY_NOT_REACHED(); } int MCTSTree::simulate_game() const { Chess::Board clone = *m_board; while (!clone.game_finished()) { clone.apply_move(clone.random_move()); } return clone.game_score(); } int MCTSTree::heuristic() const { if (m_board->game_finished()) return m_board->game_score(); double winchance = max(min(double(m_board->material_imbalance()) / 6, 1.0), -1.0); double random = double(rand()) / RAND_MAX; if (winchance >= random) return 1; if (winchance <= -random) return -1; return 0; } void MCTSTree::apply_result(int game_score) { m_simulations++; m_white_points += game_score; if (m_parent) m_parent->apply_result(game_score); } void MCTSTree::do_round() { // Note: Limit expansion to spare some memory // Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. // Rémi Coulom. auto* node_ptr = &select_leaf(); if (node_ptr->m_simulations > s_number_of_visit_parameter) node_ptr = &select_leaf().expand(); auto& node = *node_ptr; int result; if constexpr (s_eval_method == EvalMethod::Simulation) { result = node.simulate_game(); } else { result = node.heuristic(); } node.apply_result(result); } Optional MCTSTree::child_with_move(Chess::Move chess_move) { for (auto& node : m_children) { if (node.last_move() == chess_move) return node; } return {}; } MCTSTree& MCTSTree::best_node() { int score_multiplier = (m_turn == Chess::Color::White) ? 1 : -1; MCTSTree* best_node_ptr = nullptr; double best_score = -double(INFINITY); VERIFY(m_children.size()); for (auto& node : m_children) { double node_score = node.expected_value() * score_multiplier; if (node_score >= best_score) { best_node_ptr = &node; best_score = node_score; } } VERIFY(best_node_ptr); return *best_node_ptr; } Chess::Move MCTSTree::last_move() const { return m_last_move.value(); } double MCTSTree::expected_value() const { if (m_simulations == 0) return 0; return double(m_white_points) / m_simulations; } double MCTSTree::uct(Chess::Color color) const { // UCT: Upper Confidence Bound Applied to Trees. // Kocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning" // Fun fact: Szepesvári was my data structures professor. double expected = expected_value() * ((color == Chess::Color::White) ? 1 : -1); return expected + s_exploration_parameter * sqrt(log(m_parent->m_simulations) / m_simulations); } bool MCTSTree::expanded() const { if (!m_moves_generated) return false; for (auto& child : m_children) { if (child.m_simulations == 0) return false; } return true; }