/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2022, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include namespace X86 { class Instruction; class Interpreter; typedef void (Interpreter::*InstructionHandler)(Instruction const&); class SymbolProvider { public: virtual String symbolicate(FlatPtr, u32* offset = nullptr) const = 0; protected: virtual ~SymbolProvider() = default; }; template struct TypeTrivia { static constexpr size_t bits = sizeof(T) * 8; static constexpr T sign_bit = 1 << (bits - 1); static constexpr T mask = MakeUnsigned(-1); }; template constexpr T sign_extended_to(U value) { if (!(value & TypeTrivia::sign_bit)) return value; return (TypeTrivia::mask & ~TypeTrivia::mask) | value; } enum IsLockPrefixAllowed { LockPrefixNotAllowed = 0, LockPrefixAllowed }; enum InstructionFormat { InvalidFormat, MultibyteWithSlash, InstructionPrefix, __BeginFormatsWithRMByte, OP_RM16_reg16, OP_reg8_RM8, OP_reg16_RM16, OP_RM16_seg, OP_RM32_seg, OP_RM8_imm8, OP_RM16_imm16, OP_RM16_imm8, OP_RM32_imm8, OP_RM8, OP_RM16, OP_RM32, OP_FPU, OP_FPU_reg, OP_FPU_mem, OP_FPU_AX16, OP_FPU_RM16, OP_FPU_RM32, OP_FPU_RM64, OP_FPU_M80, OP_RM8_reg8, OP_RM32_reg32, OP_reg32_RM32, OP_RM32_imm32, OP_reg16_RM16_imm8, OP_reg32_RM32_imm8, OP_reg16_RM16_imm16, OP_reg32_RM32_imm32, OP_reg16_mem16, OP_reg32_mem32, OP_seg_RM16, OP_seg_RM32, OP_RM8_1, OP_RM16_1, OP_RM32_1, OP_FAR_mem16, OP_FAR_mem32, OP_RM8_CL, OP_RM16_CL, OP_RM32_CL, OP_reg32_CR, OP_CR_reg32, OP_reg32_DR, OP_DR_reg32, OP_reg16_RM8, OP_reg32_RM8, OP_reg32_RM16, OP_RM16_reg16_imm8, OP_RM32_reg32_imm8, OP_RM16_reg16_CL, OP_RM32_reg32_CL, OP_reg, OP_m64, // SSE instructions mutate on some prefixes, so we have to mark them // for further parsing __SSE, OP_mm1_rm32, OP_rm32_mm2, OP_mm1_mm2m64, OP_mm1_mm2m32, OP_mm1_mm2m64_imm8, OP_mm1_imm8, OP_mm1m64_mm2, OP_reg_mm1, OP_reg_mm1_imm8, OP_mm1_r32m16_imm8, OP_xmm1_imm8, OP_xmm1_xmm2m32, OP_xmm1_xmm2m64, OP_xmm1_xmm2m128, OP_xmm1_xmm2m32_imm8, OP_xmm1_xmm2m128_imm8, OP_xmm1m32_xmm2, OP_xmm1m64_xmm2, OP_xmm1m128_xmm2, OP_reg_xmm1, OP_reg_xmm1_imm8, OP_r32_xmm2m32, OP_r32_xmm2m64, OP_rm32_xmm2, OP_xmm1_rm32, OP_xmm1_m64, OP_m64_xmm2, OP_rm8_xmm2m32, OP_xmm_mm, OP_xmm1_mm2m64, OP_mm1m64_xmm2, OP_mm_xmm, OP_mm1_xmm2m64, OP_mm1_xmm2m128, OP_xmm1_r32m16_imm8, __EndFormatsWithRMByte, OP_reg32_imm32, OP_AL_imm8, OP_AX_imm16, OP_EAX_imm32, OP_CS, OP_DS, OP_ES, OP_SS, OP_FS, OP_GS, OP, OP_reg16, OP_imm16, OP_relimm16, OP_relimm32, OP_imm8, OP_imm16_imm16, OP_imm16_imm32, OP_AX_reg16, OP_EAX_reg32, OP_AL_moff8, OP_AX_moff16, OP_EAX_moff32, OP_moff8_AL, OP_moff16_AX, OP_moff32_EAX, OP_reg8_imm8, OP_reg16_imm16, OP_3, OP_AX_imm8, OP_EAX_imm8, OP_short_imm8, OP_AL_DX, OP_AX_DX, OP_EAX_DX, OP_DX_AL, OP_DX_AX, OP_DX_EAX, OP_imm8_AL, OP_imm8_AX, OP_imm8_EAX, OP_reg8_CL, OP_reg32, OP_imm32, OP_imm16_imm8, OP_NEAR_imm, }; static constexpr unsigned CurrentAddressSize = 0xB33FBABE; struct InstructionDescriptor { InstructionHandler handler { nullptr }; bool opcode_has_register_index { false }; char const* mnemonic { nullptr }; InstructionFormat format { InvalidFormat }; bool has_rm { false }; unsigned imm1_bytes { 0 }; unsigned imm2_bytes { 0 }; // Addressed by the 3 REG bits in the MOD-REG-R/M byte. // Some slash instructions have further subgroups when MOD is 11, // in that case the InstructionDescriptors in slashes have themselves // a non-null slashes member that's indexed by the three R/M bits. InstructionDescriptor* slashes { nullptr }; unsigned imm1_bytes_for_address_size(bool a32) const { if (imm1_bytes == CurrentAddressSize) return a32 ? 4 : 2; return imm1_bytes; } unsigned imm2_bytes_for_address_size(bool a32) const { if (imm2_bytes == CurrentAddressSize) return a32 ? 4 : 2; return imm2_bytes; } IsLockPrefixAllowed lock_prefix_allowed { LockPrefixNotAllowed }; }; extern InstructionDescriptor s_table16[256]; extern InstructionDescriptor s_table32[256]; extern InstructionDescriptor s_0f_table16[256]; extern InstructionDescriptor s_0f_table32[256]; extern InstructionDescriptor s_sse_table_np[256]; extern InstructionDescriptor s_sse_table_66[256]; extern InstructionDescriptor s_sse_table_f3[256]; struct Prefix { enum Op { OperandSizeOverride = 0x66, AddressSizeOverride = 0x67, REP = 0xf3, REPZ = 0xf3, REPNZ = 0xf2, LOCK = 0xf0, }; }; enum class SegmentRegister { ES = 0, CS, SS, DS, FS, GS, SegR6, SegR7, }; enum RegisterIndex8 { RegisterAL = 0, RegisterCL, RegisterDL, RegisterBL, RegisterAH, RegisterCH, RegisterDH, RegisterBH }; enum RegisterIndex16 { RegisterAX = 0, RegisterCX, RegisterDX, RegisterBX, RegisterSP, RegisterBP, RegisterSI, RegisterDI }; enum RegisterIndex32 { RegisterEAX = 0, RegisterECX, RegisterEDX, RegisterEBX, RegisterESP, RegisterEBP, RegisterESI, RegisterEDI }; enum FpuRegisterIndex { ST0 = 0, ST1, ST2, ST3, ST4, ST5, ST6, ST7 }; enum MMXRegisterIndex { RegisterMM0 = 0, RegisterMM1, RegisterMM2, RegisterMM3, RegisterMM4, RegisterMM5, RegisterMM6, RegisterMM7 }; enum XMMRegisterIndex { RegisterXMM0 = 0, RegisterXMM1, RegisterXMM2, RegisterXMM3, RegisterXMM4, RegisterXMM5, RegisterXMM6, RegisterXMM7 }; class LogicalAddress { public: LogicalAddress() = default; LogicalAddress(u16 selector, FlatPtr offset) : m_selector(selector) , m_offset(offset) { } u16 selector() const { return m_selector; } FlatPtr offset() const { return m_offset; } void set_selector(u16 selector) { m_selector = selector; } void set_offset(FlatPtr offset) { m_offset = offset; } private: u16 m_selector { 0 }; FlatPtr m_offset { 0 }; }; class InstructionStream { public: virtual bool can_read() = 0; virtual u8 read8() = 0; virtual u16 read16() = 0; virtual u32 read32() = 0; virtual u64 read64() = 0; protected: virtual ~InstructionStream() = default; }; class SimpleInstructionStream final : public InstructionStream { public: SimpleInstructionStream(u8 const* data, size_t size) : m_data(data) , m_size(size) { } virtual bool can_read() override { return m_offset < m_size; } virtual u8 read8() override { if (!can_read()) return 0; return m_data[m_offset++]; } virtual u16 read16() override { u8 lsb = read8(); u8 msb = read8(); return ((u16)msb << 8) | (u16)lsb; } virtual u32 read32() override { u16 lsw = read16(); u16 msw = read16(); return ((u32)msw << 16) | (u32)lsw; } virtual u64 read64() override { u32 lsw = read32(); u32 msw = read32(); return ((u64)msw << 32) | (u64)lsw; } size_t offset() const { return m_offset; } private: u8 const* m_data { nullptr }; size_t m_offset { 0 }; size_t m_size { 0 }; }; class MemoryOrRegisterReference { friend class Instruction; public: String to_string_o8(Instruction const&) const; String to_string_o16(Instruction const&) const; String to_string_o32(Instruction const&) const; String to_string_fpu_reg() const; String to_string_fpu_mem(Instruction const&) const; String to_string_fpu_ax16() const; String to_string_fpu16(Instruction const&) const; String to_string_fpu32(Instruction const&) const; String to_string_fpu64(Instruction const&) const; String to_string_fpu80(Instruction const&) const; String to_string_mm(Instruction const&) const; String to_string_xmm(Instruction const&) const; bool is_register() const { return m_register_index != 0x7f; } unsigned register_index() const { return m_register_index; } RegisterIndex32 reg32() const { return static_cast(register_index()); } RegisterIndex16 reg16() const { return static_cast(register_index()); } RegisterIndex8 reg8() const { return static_cast(register_index()); } FpuRegisterIndex reg_fpu() const { return static_cast(register_index()); } // helpers to get the parts by name as in the spec u8 mod() const { return m_rm_byte >> 6; } u8 reg() const { return m_rm_byte >> 3 & 0b111; } u8 rm() const { return m_rm_byte & 0b111; } template void write8(CPU&, Instruction const&, T); template void write16(CPU&, Instruction const&, T); template void write32(CPU&, Instruction const&, T); template void write64(CPU&, Instruction const&, T); template void write128(CPU&, Instruction const&, T); template void write256(CPU&, Instruction const&, T); template typename CPU::ValueWithShadowType8 read8(CPU&, Instruction const&); template typename CPU::ValueWithShadowType16 read16(CPU&, Instruction const&); template typename CPU::ValueWithShadowType32 read32(CPU&, Instruction const&); template typename CPU::ValueWithShadowType64 read64(CPU&, Instruction const&); template typename CPU::ValueWithShadowType128 read128(CPU&, Instruction const&); template typename CPU::ValueWithShadowType256 read256(CPU&, Instruction const&); template LogicalAddress resolve(const CPU&, Instruction const&); private: MemoryOrRegisterReference() = default; String to_string(Instruction const&) const; String to_string_a16() const; String to_string_a32() const; template void decode(InstructionStreamType&, bool a32); template void decode16(InstructionStreamType&); template void decode32(InstructionStreamType&); template LogicalAddress resolve16(const CPU&, Optional); template LogicalAddress resolve32(const CPU&, Optional); template u32 evaluate_sib(const CPU&, SegmentRegister& default_segment) const; union { u32 m_displacement32 { 0 }; u16 m_displacement16; }; u8 m_rm_byte { 0 }; u8 m_sib { 0 }; u8 m_displacement_bytes { 0 }; u8 m_register_index : 7 { 0x7f }; bool m_has_sib : 1 { false }; }; class Instruction { public: template static Instruction from_stream(InstructionStreamType&, bool o32, bool a32); ~Instruction() = default; ALWAYS_INLINE MemoryOrRegisterReference& modrm() const { return m_modrm; } ALWAYS_INLINE InstructionHandler handler() const { return m_descriptor->handler; } bool has_segment_prefix() const { return m_segment_prefix != 0xff; } ALWAYS_INLINE Optional segment_prefix() const { if (has_segment_prefix()) return static_cast(m_segment_prefix); return {}; } bool has_address_size_override_prefix() const { return m_has_address_size_override_prefix; } bool has_operand_size_override_prefix() const { return m_has_operand_size_override_prefix; } bool has_lock_prefix() const { return m_has_lock_prefix; } bool has_rep_prefix() const { return m_rep_prefix; } u8 rep_prefix() const { return m_rep_prefix; } bool is_valid() const { return m_descriptor; } unsigned length() const; String mnemonic() const; u8 op() const { return m_op; } u8 modrm_byte() const { return m_modrm.m_rm_byte; } u8 slash() const { return (modrm_byte() >> 3) & 7; } u8 imm8() const { return m_imm1; } u16 imm16() const { return m_imm1; } u32 imm32() const { return m_imm1; } u8 imm8_1() const { return imm8(); } u8 imm8_2() const { return m_imm2; } u16 imm16_1() const { return imm16(); } u16 imm16_2() const { return m_imm2; } u32 imm32_1() const { return imm32(); } u32 imm32_2() const { return m_imm2; } u32 imm_address() const { return m_a32 ? imm32() : imm16(); } LogicalAddress imm_address16_16() const { return LogicalAddress(imm16_1(), imm16_2()); } LogicalAddress imm_address16_32() const { return LogicalAddress(imm16_1(), imm32_2()); } bool has_sub_op() const { return m_op == 0x0f; } unsigned register_index() const { return m_register_index; } RegisterIndex32 reg32() const { return static_cast(register_index()); } RegisterIndex16 reg16() const { return static_cast(register_index()); } RegisterIndex8 reg8() const { return static_cast(register_index()); } SegmentRegister segment_register() const { return static_cast(register_index()); } u8 cc() const { return has_sub_op() ? m_sub_op & 0xf : m_op & 0xf; } bool a32() const { return m_a32; } String to_string(u32 origin, SymbolProvider const* = nullptr, bool x32 = true) const; private: template Instruction(InstructionStreamType&, bool o32, bool a32); void to_string_internal(StringBuilder&, u32 origin, SymbolProvider const*, bool x32) const; StringView reg8_name() const; StringView reg16_name() const; StringView reg32_name() const; InstructionDescriptor* m_descriptor { nullptr }; mutable MemoryOrRegisterReference m_modrm; u32 m_imm1 { 0 }; u32 m_imm2 { 0 }; u8 m_segment_prefix { 0xff }; u8 m_register_index { 0xff }; u8 m_op { 0 }; u8 m_sub_op { 0 }; u8 m_extra_bytes { 0 }; u8 m_rep_prefix { 0 }; bool m_a32 : 1 { false }; bool m_o32 : 1 { false }; bool m_has_lock_prefix : 1 { false }; bool m_has_operand_size_override_prefix : 1 { false }; bool m_has_address_size_override_prefix : 1 { false }; }; template ALWAYS_INLINE LogicalAddress MemoryOrRegisterReference::resolve16(const CPU& cpu, Optional segment_prefix) { auto default_segment = SegmentRegister::DS; u16 offset = 0; switch (rm()) { case 0: offset = cpu.bx().value() + cpu.si().value() + m_displacement16; break; case 1: offset = cpu.bx().value() + cpu.di().value() + m_displacement16; break; case 2: default_segment = SegmentRegister::SS; offset = cpu.bp().value() + cpu.si().value() + m_displacement16; break; case 3: default_segment = SegmentRegister::SS; offset = cpu.bp().value() + cpu.di().value() + m_displacement16; break; case 4: offset = cpu.si().value() + m_displacement16; break; case 5: offset = cpu.di().value() + m_displacement16; break; case 6: if (mod() == 0) offset = m_displacement16; else { default_segment = SegmentRegister::SS; offset = cpu.bp().value() + m_displacement16; } break; default: offset = cpu.bx().value() + m_displacement16; break; } u16 segment = cpu.segment(segment_prefix.value_or(default_segment)); return { segment, offset }; } template ALWAYS_INLINE LogicalAddress MemoryOrRegisterReference::resolve32(const CPU& cpu, Optional segment_prefix) { auto default_segment = SegmentRegister::DS; u32 offset = 0; switch (rm()) { case 0 ... 3: case 6 ... 7: offset = cpu.const_gpr32((RegisterIndex32)(rm())).value() + m_displacement32; break; case 4: offset = evaluate_sib(cpu, default_segment); break; default: // 5 if (mod() == 0) { offset = m_displacement32; break; } else { default_segment = SegmentRegister::SS; offset = cpu.ebp().value() + m_displacement32; break; } break; } u16 segment = cpu.segment(segment_prefix.value_or(default_segment)); return { segment, offset }; } template ALWAYS_INLINE u32 MemoryOrRegisterReference::evaluate_sib(const CPU& cpu, SegmentRegister& default_segment) const { u32 scale_shift = m_sib >> 6; u32 index = 0; switch ((m_sib >> 3) & 0x07) { case 0 ... 3: case 5 ... 7: index = cpu.const_gpr32((RegisterIndex32)((m_sib >> 3) & 0x07)).value(); break; case 4: index = 0; break; } u32 base = m_displacement32; switch (m_sib & 0x07) { case 0 ... 3: case 6 ... 7: base += cpu.const_gpr32((RegisterIndex32)(m_sib & 0x07)).value(); break; case 4: default_segment = SegmentRegister::SS; base += cpu.esp().value(); break; default: // 5 switch (mod()) { case 0: break; case 1: case 2: default_segment = SegmentRegister::SS; base += cpu.ebp().value(); break; default: VERIFY_NOT_REACHED(); break; } break; } return (index << scale_shift) + base; } template ALWAYS_INLINE void MemoryOrRegisterReference::write8(CPU& cpu, Instruction const& insn, T value) { if (is_register()) { cpu.gpr8(reg8()) = value; return; } auto address = resolve(cpu, insn); cpu.write_memory8(address, value); } template ALWAYS_INLINE void MemoryOrRegisterReference::write16(CPU& cpu, Instruction const& insn, T value) { if (is_register()) { cpu.gpr16(reg16()) = value; return; } auto address = resolve(cpu, insn); cpu.write_memory16(address, value); } template ALWAYS_INLINE void MemoryOrRegisterReference::write32(CPU& cpu, Instruction const& insn, T value) { if (is_register()) { cpu.gpr32(reg32()) = value; return; } auto address = resolve(cpu, insn); cpu.write_memory32(address, value); } template ALWAYS_INLINE void MemoryOrRegisterReference::write64(CPU& cpu, Instruction const& insn, T value) { VERIFY(!is_register()); auto address = resolve(cpu, insn); cpu.write_memory64(address, value); } template ALWAYS_INLINE void MemoryOrRegisterReference::write128(CPU& cpu, Instruction const& insn, T value) { VERIFY(!is_register()); auto address = resolve(cpu, insn); cpu.write_memory128(address, value); } template ALWAYS_INLINE void MemoryOrRegisterReference::write256(CPU& cpu, Instruction const& insn, T value) { VERIFY(!is_register()); auto address = resolve(cpu, insn); cpu.write_memory256(address, value); } template ALWAYS_INLINE typename CPU::ValueWithShadowType8 MemoryOrRegisterReference::read8(CPU& cpu, Instruction const& insn) { if (is_register()) return cpu.const_gpr8(reg8()); auto address = resolve(cpu, insn); return cpu.read_memory8(address); } template ALWAYS_INLINE typename CPU::ValueWithShadowType16 MemoryOrRegisterReference::read16(CPU& cpu, Instruction const& insn) { if (is_register()) return cpu.const_gpr16(reg16()); auto address = resolve(cpu, insn); return cpu.read_memory16(address); } template ALWAYS_INLINE typename CPU::ValueWithShadowType32 MemoryOrRegisterReference::read32(CPU& cpu, Instruction const& insn) { if (is_register()) return cpu.const_gpr32(reg32()); auto address = resolve(cpu, insn); return cpu.read_memory32(address); } template ALWAYS_INLINE typename CPU::ValueWithShadowType64 MemoryOrRegisterReference::read64(CPU& cpu, Instruction const& insn) { VERIFY(!is_register()); auto address = resolve(cpu, insn); return cpu.read_memory64(address); } template ALWAYS_INLINE typename CPU::ValueWithShadowType128 MemoryOrRegisterReference::read128(CPU& cpu, Instruction const& insn) { VERIFY(!is_register()); auto address = resolve(cpu, insn); return cpu.read_memory128(address); } template ALWAYS_INLINE typename CPU::ValueWithShadowType256 MemoryOrRegisterReference::read256(CPU& cpu, Instruction const& insn) { VERIFY(!is_register()); auto address = resolve(cpu, insn); return cpu.read_memory256(address); } template ALWAYS_INLINE Instruction Instruction::from_stream(InstructionStreamType& stream, bool o32, bool a32) { return Instruction(stream, o32, a32); } ALWAYS_INLINE unsigned Instruction::length() const { unsigned len = 1; if (has_sub_op()) ++len; if (m_descriptor->has_rm) { ++len; if (m_modrm.m_has_sib) ++len; len += m_modrm.m_displacement_bytes; } len += m_extra_bytes; return len; } ALWAYS_INLINE Optional to_segment_prefix(u8 op) { switch (op) { case 0x26: return SegmentRegister::ES; case 0x2e: return SegmentRegister::CS; case 0x36: return SegmentRegister::SS; case 0x3e: return SegmentRegister::DS; case 0x64: return SegmentRegister::FS; case 0x65: return SegmentRegister::GS; default: return {}; } } template ALWAYS_INLINE Instruction::Instruction(InstructionStreamType& stream, bool o32, bool a32) : m_a32(a32) , m_o32(o32) { u8 prefix_bytes = 0; for (;; ++prefix_bytes) { u8 opbyte = stream.read8(); if (opbyte == Prefix::OperandSizeOverride) { m_o32 = !o32; m_has_operand_size_override_prefix = true; continue; } if (opbyte == Prefix::AddressSizeOverride) { m_a32 = !a32; m_has_address_size_override_prefix = true; continue; } if (opbyte == Prefix::REPZ || opbyte == Prefix::REPNZ) { m_rep_prefix = opbyte; continue; } if (opbyte == Prefix::LOCK) { m_has_lock_prefix = true; continue; } auto segment_prefix = to_segment_prefix(opbyte); if (segment_prefix.has_value()) { m_segment_prefix = (u8)segment_prefix.value(); continue; } m_op = opbyte; break; } if (m_op == 0x0f) { m_sub_op = stream.read8(); m_descriptor = m_o32 ? &s_0f_table32[m_sub_op] : &s_0f_table16[m_sub_op]; } else { m_descriptor = m_o32 ? &s_table32[m_op] : &s_table16[m_op]; } if (m_descriptor->format == __SSE) { if (m_rep_prefix == 0xF3) { m_descriptor = &s_sse_table_f3[m_sub_op]; } else if (m_has_operand_size_override_prefix) { // This was unset while parsing the prefix initially m_o32 = true; m_descriptor = &s_sse_table_66[m_sub_op]; } else { m_descriptor = &s_sse_table_np[m_sub_op]; } } if (m_descriptor->has_rm) { // Consume ModR/M (may include SIB and displacement.) m_modrm.decode(stream, m_a32); m_register_index = m_modrm.reg(); } else { if (has_sub_op()) m_register_index = m_sub_op & 7; else m_register_index = m_op & 7; } bool has_slash = m_descriptor->format == MultibyteWithSlash; if (has_slash) { m_descriptor = &m_descriptor->slashes[slash()]; if ((modrm_byte() & 0xc0) == 0xc0 && m_descriptor->slashes) m_descriptor = &m_descriptor->slashes[modrm_byte() & 7]; } if (!m_descriptor->mnemonic) { if (has_sub_op()) { if (has_slash) warnln("Instruction {:02X} {:02X} /{} not understood", m_op, m_sub_op, slash()); else warnln("Instruction {:02X} {:02X} not understood", m_op, m_sub_op); } else { if (has_slash) warnln("Instruction {:02X} /{} not understood", m_op, slash()); else warnln("Instruction {:02X} not understood", m_op); } m_descriptor = nullptr; return; } auto imm1_bytes = m_descriptor->imm1_bytes_for_address_size(m_a32); auto imm2_bytes = m_descriptor->imm2_bytes_for_address_size(m_a32); // Consume immediates if present. switch (imm2_bytes) { case 1: m_imm2 = stream.read8(); break; case 2: m_imm2 = stream.read16(); break; case 4: m_imm2 = stream.read32(); break; default: VERIFY(imm2_bytes == 0); break; } switch (imm1_bytes) { case 1: m_imm1 = stream.read8(); break; case 2: m_imm1 = stream.read16(); break; case 4: m_imm1 = stream.read32(); break; default: VERIFY(imm1_bytes == 0); break; } m_extra_bytes = prefix_bytes + imm1_bytes + imm2_bytes; #ifdef DISALLOW_INVALID_LOCK_PREFIX if (m_has_lock_prefix && !m_descriptor->lock_prefix_allowed) { warnln("Instruction not allowed with LOCK prefix, this will raise #UD"); m_descriptor = nullptr; } #endif } template ALWAYS_INLINE void MemoryOrRegisterReference::decode(InstructionStreamType& stream, bool a32) { m_rm_byte = stream.read8(); if (a32) { decode32(stream); switch (m_displacement_bytes) { case 0: break; case 1: m_displacement32 = sign_extended_to(stream.read8()); break; case 4: m_displacement32 = stream.read32(); break; default: VERIFY_NOT_REACHED(); break; } } else { decode16(stream); switch (m_displacement_bytes) { case 0: break; case 1: m_displacement16 = sign_extended_to(stream.read8()); break; case 2: m_displacement16 = stream.read16(); break; default: VERIFY_NOT_REACHED(); break; } } } template ALWAYS_INLINE void MemoryOrRegisterReference::decode16(InstructionStreamType&) { switch (mod()) { case 0b00: if (rm() == 6) m_displacement_bytes = 2; else VERIFY(m_displacement_bytes == 0); break; case 0b01: m_displacement_bytes = 1; break; case 0b10: m_displacement_bytes = 2; break; case 0b11: m_register_index = rm(); break; } } template ALWAYS_INLINE void MemoryOrRegisterReference::decode32(InstructionStreamType& stream) { switch (mod()) { case 0b00: if (rm() == 5) m_displacement_bytes = 4; break; case 0b01: m_displacement_bytes = 1; break; case 0b10: m_displacement_bytes = 4; break; case 0b11: m_register_index = rm(); return; } m_has_sib = rm() == 4; if (m_has_sib) { m_sib = stream.read8(); if ((m_sib & 0x07) == 5) { switch (mod()) { case 0b00: m_displacement_bytes = 4; break; case 0b01: m_displacement_bytes = 1; break; case 0b10: m_displacement_bytes = 4; break; default: VERIFY_NOT_REACHED(); break; } } } } template ALWAYS_INLINE LogicalAddress MemoryOrRegisterReference::resolve(const CPU& cpu, Instruction const& insn) { if (insn.a32()) return resolve32(cpu, insn.segment_prefix()); return resolve16(cpu, insn.segment_prefix()); } }