/* * Copyright (c) 2020, Matthew Olsson * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include namespace Web::SVG { static void print_instruction(const PathInstruction& instruction) { VERIFY(PATH_DEBUG); auto& data = instruction.data; switch (instruction.type) { case PathInstructionType::Move: dbgln("Move (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 2) dbgln(" x={}, y={}", data[i], data[i + 1]); break; case PathInstructionType::ClosePath: dbgln("ClosePath (absolute={})", instruction.absolute); break; case PathInstructionType::Line: dbgln("Line (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 2) dbgln(" x={}, y={}", data[i], data[i + 1]); break; case PathInstructionType::HorizontalLine: dbgln("HorizontalLine (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); ++i) dbgln(" x={}", data[i]); break; case PathInstructionType::VerticalLine: dbgln("VerticalLine (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); ++i) dbgln(" y={}", data[i]); break; case PathInstructionType::Curve: dbgln("Curve (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 6) dbgln(" (x1={}, y1={}, x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5]); break; case PathInstructionType::SmoothCurve: dbgln("SmoothCurve (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 4) dbgln(" (x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]); break; case PathInstructionType::QuadraticBezierCurve: dbgln("QuadraticBezierCurve (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 4) dbgln(" (x1={}, y1={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]); break; case PathInstructionType::SmoothQuadraticBezierCurve: dbgln("SmoothQuadraticBezierCurve (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 2) dbgln(" x={}, y={}", data[i], data[i + 1]); break; case PathInstructionType::EllipticalArc: dbgln("EllipticalArc (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 7) dbgln(" (rx={}, ry={}) x-axis-rotation={}, large-arc-flag={}, sweep-flag={}, (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5], data[i + 6]); break; case PathInstructionType::Invalid: dbgln("Invalid"); break; } } PathDataParser::PathDataParser(const String& source) : m_source(source) { } Vector PathDataParser::parse() { parse_whitespace(); while (!done()) parse_drawto(); if (!m_instructions.is_empty() && m_instructions[0].type != PathInstructionType::Move) VERIFY_NOT_REACHED(); return m_instructions; } void PathDataParser::parse_drawto() { if (match('M') || match('m')) { parse_moveto(); } else if (match('Z') || match('z')) { parse_closepath(); } else if (match('L') || match('l')) { parse_lineto(); } else if (match('H') || match('h')) { parse_horizontal_lineto(); } else if (match('V') || match('v')) { parse_vertical_lineto(); } else if (match('C') || match('c')) { parse_curveto(); } else if (match('S') || match('s')) { parse_smooth_curveto(); } else if (match('Q') || match('q')) { parse_quadratic_bezier_curveto(); } else if (match('T') || match('t')) { parse_smooth_quadratic_bezier_curveto(); } else if (match('A') || match('a')) { parse_elliptical_arc(); } else { dbgln("PathDataParser::parse_drawto failed to match: '{}'", ch()); TODO(); } } void PathDataParser::parse_moveto() { bool absolute = consume() == 'M'; parse_whitespace(); for (auto& pair : parse_coordinate_pair_sequence()) m_instructions.append({ PathInstructionType::Move, absolute, pair }); } void PathDataParser::parse_closepath() { bool absolute = consume() == 'Z'; parse_whitespace(); m_instructions.append({ PathInstructionType::ClosePath, absolute, {} }); } void PathDataParser::parse_lineto() { bool absolute = consume() == 'L'; parse_whitespace(); for (auto& pair : parse_coordinate_pair_sequence()) m_instructions.append({ PathInstructionType::Line, absolute, pair }); } void PathDataParser::parse_horizontal_lineto() { bool absolute = consume() == 'H'; parse_whitespace(); m_instructions.append({ PathInstructionType::HorizontalLine, absolute, parse_coordinate_sequence() }); } void PathDataParser::parse_vertical_lineto() { bool absolute = consume() == 'V'; parse_whitespace(); m_instructions.append({ PathInstructionType::VerticalLine, absolute, parse_coordinate_sequence() }); } void PathDataParser::parse_curveto() { bool absolute = consume() == 'C'; parse_whitespace(); while (true) { m_instructions.append({ PathInstructionType::Curve, absolute, parse_coordinate_pair_triplet() }); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_coordinate()) break; } } void PathDataParser::parse_smooth_curveto() { bool absolute = consume() == 'S'; parse_whitespace(); while (true) { m_instructions.append({ PathInstructionType::SmoothCurve, absolute, parse_coordinate_pair_double() }); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_coordinate()) break; } } void PathDataParser::parse_quadratic_bezier_curveto() { bool absolute = consume() == 'Q'; parse_whitespace(); while (true) { m_instructions.append({ PathInstructionType::QuadraticBezierCurve, absolute, parse_coordinate_pair_double() }); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_coordinate()) break; } } void PathDataParser::parse_smooth_quadratic_bezier_curveto() { bool absolute = consume() == 'T'; parse_whitespace(); while (true) { m_instructions.append({ PathInstructionType::SmoothQuadraticBezierCurve, absolute, parse_coordinate_pair() }); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_coordinate()) break; } } void PathDataParser::parse_elliptical_arc() { bool absolute = consume() == 'A'; parse_whitespace(); while (true) { m_instructions.append({ PathInstructionType::EllipticalArc, absolute, parse_elliptical_arg_argument() }); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_coordinate()) break; } } float PathDataParser::parse_coordinate() { return parse_sign() * parse_number(); } Vector PathDataParser::parse_coordinate_pair() { Vector coordinates; coordinates.append(parse_coordinate()); if (match_comma_whitespace()) parse_comma_whitespace(); coordinates.append(parse_coordinate()); return coordinates; } Vector PathDataParser::parse_coordinate_sequence() { Vector sequence; while (true) { sequence.append(parse_coordinate()); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_comma_whitespace() && !match_coordinate()) break; } return sequence; } Vector> PathDataParser::parse_coordinate_pair_sequence() { Vector> sequence; while (true) { sequence.append(parse_coordinate_pair()); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_comma_whitespace() && !match_coordinate()) break; } return sequence; } Vector PathDataParser::parse_coordinate_pair_double() { Vector coordinates; coordinates.append(parse_coordinate_pair()); if (match_comma_whitespace()) parse_comma_whitespace(); coordinates.append(parse_coordinate_pair()); return coordinates; } Vector PathDataParser::parse_coordinate_pair_triplet() { Vector coordinates; coordinates.append(parse_coordinate_pair()); if (match_comma_whitespace()) parse_comma_whitespace(); coordinates.append(parse_coordinate_pair()); if (match_comma_whitespace()) parse_comma_whitespace(); coordinates.append(parse_coordinate_pair()); return coordinates; } Vector PathDataParser::parse_elliptical_arg_argument() { Vector numbers; numbers.append(parse_number()); if (match_comma_whitespace()) parse_comma_whitespace(); numbers.append(parse_number()); if (match_comma_whitespace()) parse_comma_whitespace(); numbers.append(parse_number()); parse_comma_whitespace(); numbers.append(parse_flag()); if (match_comma_whitespace()) parse_comma_whitespace(); numbers.append(parse_flag()); if (match_comma_whitespace()) parse_comma_whitespace(); numbers.append(parse_coordinate_pair()); return numbers; } void PathDataParser::parse_whitespace(bool must_match_once) { bool matched = false; while (!done() && match_whitespace()) { consume(); matched = true; } VERIFY(!must_match_once || matched); } void PathDataParser::parse_comma_whitespace() { if (match(',')) { consume(); parse_whitespace(); } else { parse_whitespace(1); if (match(',')) consume(); parse_whitespace(); } } float PathDataParser::parse_fractional_constant() { StringBuilder builder; bool floating_point = false; while (!done() && isdigit(ch())) builder.append(consume()); if (match('.')) { floating_point = true; builder.append('.'); consume(); while (!done() && isdigit(ch())) builder.append(consume()); } else { VERIFY(builder.length() > 0); } if (floating_point) return strtof(builder.to_string().characters(), nullptr); return builder.to_string().to_int().value(); } float PathDataParser::parse_number() { auto number = parse_fractional_constant(); if (!match('e') && !match('E')) return number; consume(); auto exponent_sign = parse_sign(); StringBuilder exponent_builder; while (!done() && isdigit(ch())) exponent_builder.append(consume()); VERIFY(exponent_builder.length() > 0); auto exponent = exponent_builder.to_string().to_int().value(); // Fast path: If the number is 0, there's no point in computing the exponentiation. if (number == 0) return number; if (exponent_sign < 0) { for (int i = 0; i < exponent; ++i) { number /= 10; } } else if (exponent_sign > 0) { for (int i = 0; i < exponent; ++i) { number *= 10; } } return number; } float PathDataParser::parse_flag() { if (!match('0') && !match('1')) VERIFY_NOT_REACHED(); return consume() - '0'; } int PathDataParser::parse_sign() { if (match('-')) { consume(); return -1; } if (match('+')) consume(); return 1; } bool PathDataParser::match_whitespace() const { if (done()) return false; char c = ch(); return c == 0x9 || c == 0x20 || c == 0xa || c == 0xc || c == 0xd; } bool PathDataParser::match_comma_whitespace() const { return match_whitespace() || match(','); } bool PathDataParser::match_coordinate() const { return !done() && (isdigit(ch()) || ch() == '-' || ch() == '+' || ch() == '.'); } SVGPathElement::SVGPathElement(DOM::Document& document, QualifiedName qualified_name) : SVGGeometryElement(document, move(qualified_name)) { } RefPtr SVGPathElement::create_layout_node() { auto style = document().style_resolver().resolve_style(*this); if (style->display() == CSS::Display::None) return nullptr; return adopt(*new Layout::SVGPathBox(document(), *this, move(style))); } void SVGPathElement::parse_attribute(const FlyString& name, const String& value) { SVGGeometryElement::parse_attribute(name, value); if (name == "d") m_instructions = PathDataParser(value).parse(); } Gfx::Path& SVGPathElement::get_path() { if (m_path.has_value()) return m_path.value(); Gfx::Path path; for (auto& instruction : m_instructions) { auto& absolute = instruction.absolute; auto& data = instruction.data; if constexpr (PATH_DEBUG) { print_instruction(instruction); } bool clear_last_control_point = true; switch (instruction.type) { case PathInstructionType::Move: { Gfx::FloatPoint point = { data[0], data[1] }; if (absolute) { path.move_to(point); } else { VERIFY(!path.segments().is_empty()); path.move_to(point + path.segments().last().point()); } break; } case PathInstructionType::ClosePath: path.close(); break; case PathInstructionType::Line: { Gfx::FloatPoint point = { data[0], data[1] }; if (absolute) { path.line_to(point); } else { VERIFY(!path.segments().is_empty()); path.line_to(point + path.segments().last().point()); } break; } case PathInstructionType::HorizontalLine: { VERIFY(!path.segments().is_empty()); auto last_point = path.segments().last().point(); if (absolute) { path.line_to(Gfx::FloatPoint { data[0], last_point.y() }); } else { path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() }); } break; } case PathInstructionType::VerticalLine: { VERIFY(!path.segments().is_empty()); auto last_point = path.segments().last().point(); if (absolute) { path.line_to(Gfx::FloatPoint { last_point.x(), data[0] }); } else { path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() }); } break; } case PathInstructionType::EllipticalArc: { double rx = data[0]; double ry = data[1]; double x_axis_rotation = double { data[2] } * M_DEG2RAD; double large_arc_flag = data[3]; double sweep_flag = data[4]; auto& last_point = path.segments().last().point(); Gfx::FloatPoint next_point; if (absolute) { next_point = { data[5], data[6] }; } else { next_point = { data[5] + last_point.x(), data[6] + last_point.y() }; } path.elliptical_arc_to(next_point, { rx, ry }, x_axis_rotation, large_arc_flag != 0, sweep_flag != 0); break; } case PathInstructionType::QuadraticBezierCurve: { clear_last_control_point = false; Gfx::FloatPoint through = { data[0], data[1] }; Gfx::FloatPoint point = { data[2], data[3] }; if (absolute) { path.quadratic_bezier_curve_to(through, point); m_previous_control_point = through; } else { VERIFY(!path.segments().is_empty()); auto last_point = path.segments().last().point(); auto control_point = through + last_point; path.quadratic_bezier_curve_to(control_point, point + last_point); m_previous_control_point = control_point; } break; } case PathInstructionType::SmoothQuadraticBezierCurve: { clear_last_control_point = false; VERIFY(!path.segments().is_empty()); auto last_point = path.segments().last().point(); if (m_previous_control_point.is_null()) { m_previous_control_point = last_point; } auto dx_end_control = last_point.dx_relative_to(m_previous_control_point); auto dy_end_control = last_point.dy_relative_to(m_previous_control_point); auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control }; Gfx::FloatPoint end_point = { data[0], data[1] }; if (absolute) { path.quadratic_bezier_curve_to(control_point, end_point); } else { path.quadratic_bezier_curve_to(control_point, end_point + last_point); } m_previous_control_point = control_point; break; } case PathInstructionType::Curve: case PathInstructionType::SmoothCurve: // Instead of crashing the browser every time we come across an SVG // with these path instructions, let's just skip them continue; case PathInstructionType::Invalid: VERIFY_NOT_REACHED(); } if (clear_last_control_point) { m_previous_control_point = Gfx::FloatPoint {}; } } m_path = path; return m_path.value(); } }