/* * Copyright (c) 2020, Matthew Olsson * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include namespace Web::SVG { [[maybe_unused]] static void print_instruction(const PathInstruction& instruction) { VERIFY(PATH_DEBUG); auto& data = instruction.data; switch (instruction.type) { case PathInstructionType::Move: dbgln("Move (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 2) dbgln(" x={}, y={}", data[i], data[i + 1]); break; case PathInstructionType::ClosePath: dbgln("ClosePath (absolute={})", instruction.absolute); break; case PathInstructionType::Line: dbgln("Line (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 2) dbgln(" x={}, y={}", data[i], data[i + 1]); break; case PathInstructionType::HorizontalLine: dbgln("HorizontalLine (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); ++i) dbgln(" x={}", data[i]); break; case PathInstructionType::VerticalLine: dbgln("VerticalLine (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); ++i) dbgln(" y={}", data[i]); break; case PathInstructionType::Curve: dbgln("Curve (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 6) dbgln(" (x1={}, y1={}, x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5]); break; case PathInstructionType::SmoothCurve: dbgln("SmoothCurve (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 4) dbgln(" (x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]); break; case PathInstructionType::QuadraticBezierCurve: dbgln("QuadraticBezierCurve (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 4) dbgln(" (x1={}, y1={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]); break; case PathInstructionType::SmoothQuadraticBezierCurve: dbgln("SmoothQuadraticBezierCurve (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 2) dbgln(" x={}, y={}", data[i], data[i + 1]); break; case PathInstructionType::EllipticalArc: dbgln("EllipticalArc (absolute={})", instruction.absolute); for (size_t i = 0; i < data.size(); i += 7) dbgln(" (rx={}, ry={}) x-axis-rotation={}, large-arc-flag={}, sweep-flag={}, (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5], data[i + 6]); break; case PathInstructionType::Invalid: dbgln("Invalid"); break; } } SVGPathElement::SVGPathElement(DOM::Document& document, DOM::QualifiedName qualified_name) : SVGGeometryElement(document, move(qualified_name)) { } void SVGPathElement::parse_attribute(FlyString const& name, String const& value) { SVGGeometryElement::parse_attribute(name, value); if (name == "d") { m_instructions = AttributeParser::parse_path_data(value); m_path.clear(); } } Gfx::Path& SVGPathElement::get_path() { if (m_path.has_value()) return m_path.value(); Gfx::Path path; PathInstructionType last_instruction = PathInstructionType::Invalid; for (auto& instruction : m_instructions) { // If the first path element uses relative coordinates, we treat them as absolute by making them relative to (0, 0). auto last_point = path.segments().is_empty() ? Gfx::FloatPoint { 0, 0 } : path.segments().last().point(); auto& absolute = instruction.absolute; auto& data = instruction.data; if constexpr (PATH_DEBUG) { print_instruction(instruction); } bool clear_last_control_point = true; switch (instruction.type) { case PathInstructionType::Move: { Gfx::FloatPoint point = { data[0], data[1] }; if (absolute) { path.move_to(point); } else { path.move_to(point + last_point); } break; } case PathInstructionType::ClosePath: path.close(); break; case PathInstructionType::Line: { Gfx::FloatPoint point = { data[0], data[1] }; if (absolute) { path.line_to(point); } else { path.line_to(point + last_point); } break; } case PathInstructionType::HorizontalLine: { if (absolute) path.line_to(Gfx::FloatPoint { data[0], last_point.y() }); else path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() }); break; } case PathInstructionType::VerticalLine: { if (absolute) path.line_to(Gfx::FloatPoint { last_point.x(), data[0] }); else path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() }); break; } case PathInstructionType::EllipticalArc: { double rx = data[0]; double ry = data[1]; double x_axis_rotation = double { data[2] } * M_DEG2RAD; double large_arc_flag = data[3]; double sweep_flag = data[4]; Gfx::FloatPoint next_point; if (absolute) next_point = { data[5], data[6] }; else next_point = { data[5] + last_point.x(), data[6] + last_point.y() }; path.elliptical_arc_to(next_point, { rx, ry }, x_axis_rotation, large_arc_flag != 0, sweep_flag != 0); break; } case PathInstructionType::QuadraticBezierCurve: { clear_last_control_point = false; Gfx::FloatPoint through = { data[0], data[1] }; Gfx::FloatPoint point = { data[2], data[3] }; if (absolute) { path.quadratic_bezier_curve_to(through, point); m_previous_control_point = through; } else { auto control_point = through + last_point; path.quadratic_bezier_curve_to(control_point, point + last_point); m_previous_control_point = control_point; } break; } case PathInstructionType::SmoothQuadraticBezierCurve: { clear_last_control_point = false; if (m_previous_control_point.is_null() || ((last_instruction != PathInstructionType::QuadraticBezierCurve) && (last_instruction != PathInstructionType::SmoothQuadraticBezierCurve))) { m_previous_control_point = last_point; } auto dx_end_control = last_point.dx_relative_to(m_previous_control_point); auto dy_end_control = last_point.dy_relative_to(m_previous_control_point); auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control }; Gfx::FloatPoint end_point = { data[0], data[1] }; if (absolute) { path.quadratic_bezier_curve_to(control_point, end_point); } else { path.quadratic_bezier_curve_to(control_point, end_point + last_point); } m_previous_control_point = control_point; break; } case PathInstructionType::Curve: { clear_last_control_point = false; Gfx::FloatPoint c1 = { data[0], data[1] }; Gfx::FloatPoint c2 = { data[2], data[3] }; Gfx::FloatPoint p2 = { data[4], data[5] }; if (!absolute) { p2 += last_point; c1 += last_point; c2 += last_point; } path.cubic_bezier_curve_to(c1, c2, p2); m_previous_control_point = c2; break; } case PathInstructionType::SmoothCurve: { clear_last_control_point = false; if (m_previous_control_point.is_null() || ((last_instruction != PathInstructionType::Curve) && (last_instruction != PathInstructionType::SmoothCurve))) { m_previous_control_point = last_point; } auto reflected_previous_control_x = last_point.dx_relative_to(m_previous_control_point); auto reflected_previous_control_y = last_point.dy_relative_to(m_previous_control_point); Gfx::FloatPoint c1 = Gfx::FloatPoint { reflected_previous_control_x, reflected_previous_control_y }; Gfx::FloatPoint c2 = { data[0], data[1] }; Gfx::FloatPoint p2 = { data[2], data[3] }; if (!absolute) { p2 += last_point; c1 += last_point; c2 += last_point; } path.cubic_bezier_curve_to(c1, c2, p2); m_previous_control_point = c2; break; } case PathInstructionType::Invalid: VERIFY_NOT_REACHED(); } if (clear_last_control_point) { m_previous_control_point = Gfx::FloatPoint {}; } last_instruction = instruction.type; } m_path = path; return m_path.value(); } }