/* * Copyright (c) 2018-2021, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include namespace Web::Layout { TreeBuilder::TreeBuilder() { } // The insertion_parent_for_*() functions maintain the invariant that block-level boxes must have either // only block-level children or only inline-level children. static Layout::Node& insertion_parent_for_inline_node(Layout::NodeWithStyle& layout_parent) { if (layout_parent.is_inline() && !layout_parent.is_inline_block()) return layout_parent; if (!layout_parent.has_children() || layout_parent.children_are_inline()) return layout_parent; // Parent has block-level children, insert into an anonymous wrapper block (and create it first if needed) if (!layout_parent.last_child()->is_anonymous() || !layout_parent.last_child()->children_are_inline()) { layout_parent.append_child(layout_parent.create_anonymous_wrapper()); } return *layout_parent.last_child(); } static Layout::Node& insertion_parent_for_block_node(Layout::Node& layout_parent, Layout::Node& layout_node) { if (!layout_parent.has_children()) { // Parent block has no children, insert this block into parent. return layout_parent; } if (!layout_parent.children_are_inline()) { // Parent block has block-level children, insert this block into parent. return layout_parent; } // Parent block has inline-level children (our siblings). // First move these siblings into an anonymous wrapper block. NonnullRefPtrVector children; while (RefPtr child = layout_parent.first_child()) { layout_parent.remove_child(*child); children.append(child.release_nonnull()); } layout_parent.append_child(adopt(*new BlockBox(layout_node.document(), nullptr, layout_parent.computed_values().clone_inherited_values()))); layout_parent.set_children_are_inline(false); for (auto& child : children) { layout_parent.last_child()->append_child(child); } layout_parent.last_child()->set_children_are_inline(true); // Then it's safe to insert this block into parent. return layout_parent; } void TreeBuilder::create_layout_tree(DOM::Node& dom_node) { // If the parent doesn't have a layout node, we don't need one either. if (dom_node.parent_or_shadow_host() && !dom_node.parent_or_shadow_host()->layout_node()) return; auto layout_node = dom_node.create_layout_node(); if (!layout_node) return; if (!dom_node.parent_or_shadow_host()) { m_layout_root = layout_node; } else { if (layout_node->is_inline()) { // Inlines can be inserted into the nearest ancestor. auto& insertion_point = insertion_parent_for_inline_node(*m_parent_stack.last()); insertion_point.append_child(*layout_node); insertion_point.set_children_are_inline(true); } else { // Non-inlines can't be inserted into an inline parent, so find the nearest non-inline ancestor. auto& nearest_non_inline_ancestor = [&]() -> Layout::Node& { for (ssize_t i = m_parent_stack.size() - 1; i >= 0; --i) { if (!m_parent_stack[i]->is_inline() || m_parent_stack[i]->is_inline_block()) return *m_parent_stack[i]; } VERIFY_NOT_REACHED(); }(); auto& insertion_point = insertion_parent_for_block_node(nearest_non_inline_ancestor, *layout_node); insertion_point.append_child(*layout_node); insertion_point.set_children_are_inline(false); } } auto* shadow_root = is(dom_node) ? downcast(dom_node).shadow_root() : nullptr; if ((dom_node.has_children() || shadow_root) && layout_node->can_have_children()) { push_parent(downcast(*layout_node)); if (shadow_root) create_layout_tree(*shadow_root); downcast(dom_node).for_each_child([&](auto& dom_child) { create_layout_tree(dom_child); }); pop_parent(); } } RefPtr TreeBuilder::build(DOM::Node& dom_node) { if (dom_node.parent()) { // We're building a partial layout tree, so start by building up the stack of parent layout nodes. for (auto* ancestor = dom_node.parent()->layout_node(); ancestor; ancestor = ancestor->parent()) m_parent_stack.prepend(downcast(ancestor)); } create_layout_tree(dom_node); if (auto* root = dom_node.document().layout_node()) fixup_tables(*root); return move(m_layout_root); } template void TreeBuilder::for_each_in_tree_with_display(NodeWithStyle& root, Callback callback) { root.for_each_in_subtree_of_type([&](auto& box) { if (box.computed_values().display() == display) callback(box); return IterationDecision::Continue; }); } void TreeBuilder::fixup_tables(NodeWithStyle& root) { // NOTE: Even if we only do a partial build, we always do fixup from the root. remove_irrelevant_boxes(root); generate_missing_child_wrappers(root); generate_missing_parents(root); } void TreeBuilder::remove_irrelevant_boxes(NodeWithStyle& root) { // The following boxes are discarded as if they were display:none: NonnullRefPtrVector to_remove; // Children of a table-column. for_each_in_tree_with_display(root, [&](Box& table_column) { table_column.for_each_child([&](auto& child) { to_remove.append(child); }); }); // Children of a table-column-group which are not a table-column. for_each_in_tree_with_display(root, [&](Box& table_column_group) { table_column_group.for_each_child([&](auto& child) { if (child.computed_values().display() != CSS::Display::TableColumn) to_remove.append(child); }); }); // FIXME: // Anonymous inline boxes which contain only white space and are between two immediate siblings each of which is a table-non-root box. // Anonymous inline boxes which meet all of the following criteria: // - they contain only white space // - they are the first and/or last child of a tabular container // - whose immediate sibling, if any, is a table-non-root box for (auto& box : to_remove) box.parent()->remove_child(box); } static bool is_table_track(CSS::Display display) { return display == CSS::Display::TableRow || display == CSS::Display::TableColumn; } static bool is_table_track_group(CSS::Display display) { return display == CSS::Display::TableRowGroup || display == CSS::Display::TableColumnGroup; } static bool is_not_proper_table_child(const Node& node) { if (!node.has_style()) return true; auto display = node.computed_values().display(); return !is_table_track_group(display) && !is_table_track(display) && display != CSS::Display::TableCaption; } static bool is_not_table_row(const Node& node) { if (!node.has_style()) return true; auto display = node.computed_values().display(); return display != CSS::Display::TableRow; } static bool is_not_table_cell(const Node& node) { if (!node.has_style()) return true; auto display = node.computed_values().display(); return display != CSS::Display::TableCell; } template static void for_each_sequence_of_consecutive_children_matching(NodeWithStyle& parent, Matcher matcher, Callback callback) { NonnullRefPtrVector sequence; Node* next_sibling = nullptr; for (auto* child = parent.first_child(); child; child = next_sibling) { next_sibling = child->next_sibling(); if (matcher(*child)) { sequence.append(*child); } else { if (!sequence.is_empty()) { callback(sequence, next_sibling); sequence.clear(); } } } if (!sequence.is_empty()) callback(sequence, nullptr); } template static void wrap_in_anonymous(NonnullRefPtrVector& sequence, Node* nearest_sibling) { VERIFY(!sequence.is_empty()); auto& parent = *sequence.first().parent(); auto computed_values = parent.computed_values().clone_inherited_values(); static_cast(computed_values).set_display(WrapperBoxType::static_display()); auto wrapper = adopt(*new WrapperBoxType(parent.document(), nullptr, move(computed_values))); for (auto& child : sequence) { parent.remove_child(child); wrapper->append_child(child); } if (nearest_sibling) parent.insert_before(move(wrapper), *nearest_sibling); else parent.append_child(move(wrapper)); } void TreeBuilder::generate_missing_child_wrappers(NodeWithStyle& root) { // An anonymous table-row box must be generated around each sequence of consecutive children of a table-root box which are not proper table child boxes. for_each_in_tree_with_display(root, [&](auto& parent) { for_each_sequence_of_consecutive_children_matching(parent, is_not_proper_table_child, [&](auto sequence, auto nearest_sibling) { wrap_in_anonymous(sequence, nearest_sibling); }); }); // An anonymous table-row box must be generated around each sequence of consecutive children of a table-row-group box which are not table-row boxes. for_each_in_tree_with_display(root, [&](auto& parent) { for_each_sequence_of_consecutive_children_matching(parent, is_not_table_row, [&](auto& sequence, auto nearest_sibling) { wrap_in_anonymous(sequence, nearest_sibling); }); }); // An anonymous table-cell box must be generated around each sequence of consecutive children of a table-row box which are not table-cell boxes. !Testcase for_each_in_tree_with_display(root, [&](auto& parent) { for_each_sequence_of_consecutive_children_matching(parent, is_not_table_cell, [&](auto& sequence, auto nearest_sibling) { wrap_in_anonymous(sequence, nearest_sibling); }); }); } void TreeBuilder::generate_missing_parents(NodeWithStyle&) { // FIXME: Implement. } }