/* * Copyright (c) 2022-2023, Martin Falisse * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include namespace Web::Layout { GridFormattingContext::GridFormattingContext(LayoutState& state, Box const& grid_container, FormattingContext* parent) : FormattingContext(Type::Grid, state, grid_container, parent) { } GridFormattingContext::~GridFormattingContext() = default; CSSPixels GridFormattingContext::resolve_definite_track_size(CSS::GridSize const& grid_size, AvailableSpace const& available_space, Box const& box) { VERIFY(grid_size.is_definite()); switch (grid_size.type()) { case CSS::GridSize::Type::Length: if (grid_size.length().is_auto()) break; return grid_size.length().to_px(box); case CSS::GridSize::Type::Percentage: if (available_space.width.is_definite()) return grid_size.percentage().as_fraction() * available_space.width.to_px().value(); break; default: VERIFY_NOT_REACHED(); } return 0; } size_t GridFormattingContext::count_of_gap_columns() { size_t count = 0; for (auto& grid_column : m_grid_columns) { if (grid_column.is_gap) count++; } return count; } size_t GridFormattingContext::count_of_gap_rows() { size_t count = 0; for (auto& grid_row : m_grid_rows) { if (grid_row.is_gap) count++; } return count; } CSSPixels GridFormattingContext::resolve_size(CSS::Size const& size, AvailableSize const& available_size, Box const& box) { if (size.is_length() && size.length().is_calculated()) { if (size.length().calculated_style_value()->contains_percentage()) { if (!available_size.is_definite()) return 0; auto& calc_value = *size.length().calculated_style_value(); return calc_value.resolve_length_percentage(box, CSS::Length::make_px(available_size.to_px())).value_or(CSS::Length::make_auto()).to_px(box); } return size.length().to_px(box); } if (size.is_length()) { return size.length().to_px(box); } if (size.is_percentage()) { if (!available_size.is_definite()) return 0; return available_size.to_px() * size.percentage().as_fraction(); } return 0; } int GridFormattingContext::get_count_of_tracks(Vector const& track_list, AvailableSpace const& available_space, Box const& box) { auto track_count = 0; for (auto const& explicit_grid_track : track_list) { if (explicit_grid_track.is_repeat() && explicit_grid_track.repeat().is_default()) track_count += explicit_grid_track.repeat().repeat_count() * explicit_grid_track.repeat().grid_track_size_list().track_list().size(); else track_count += 1; } if (track_list.size() == 1 && track_list.first().is_repeat() && (track_list.first().repeat().is_auto_fill() || track_list.first().repeat().is_auto_fit())) { track_count = count_of_repeated_auto_fill_or_fit_tracks(track_list, available_space, box); } return track_count; } int GridFormattingContext::count_of_repeated_auto_fill_or_fit_tracks(Vector const& track_list, AvailableSpace const& available_space, Box const& box) { // https://www.w3.org/TR/css-grid-2/#auto-repeat // 7.2.3.2. Repeat-to-fill: auto-fill and auto-fit repetitions // On a subgridded axis, the auto-fill keyword is only valid once per , and repeats // enough times for the name list to match the subgrid’s specified grid span (falling back to 0 if // the span is already fulfilled). // Otherwise on a standalone axis, when auto-fill is given as the repetition number // If the grid container has a definite size or max size in the relevant axis, then the number of // repetitions is the largest possible positive integer that does not cause the grid to overflow the // content box of its grid container CSSPixels sum_of_grid_track_sizes = 0; // (treating each track as its max track sizing function if that is definite or its minimum track sizing // function otherwise, flooring the max track sizing function by the min track sizing function if both // are definite, and taking gap into account) // FIXME: take gap into account for (auto& explicit_grid_track : track_list.first().repeat().grid_track_size_list().track_list()) { auto track_sizing_function = explicit_grid_track; if (track_sizing_function.is_minmax()) { if (track_sizing_function.minmax().max_grid_size().is_definite() && !track_sizing_function.minmax().min_grid_size().is_definite()) sum_of_grid_track_sizes += resolve_definite_track_size(track_sizing_function.minmax().max_grid_size(), available_space, box); else if (track_sizing_function.minmax().min_grid_size().is_definite() && !track_sizing_function.minmax().max_grid_size().is_definite()) sum_of_grid_track_sizes += resolve_definite_track_size(track_sizing_function.minmax().min_grid_size(), available_space, box); else if (track_sizing_function.minmax().min_grid_size().is_definite() && track_sizing_function.minmax().max_grid_size().is_definite()) sum_of_grid_track_sizes += min(resolve_definite_track_size(track_sizing_function.minmax().min_grid_size(), available_space, box), resolve_definite_track_size(track_sizing_function.minmax().max_grid_size(), available_space, box)); } else { sum_of_grid_track_sizes += min(resolve_definite_track_size(track_sizing_function.grid_size(), available_space, box), resolve_definite_track_size(track_sizing_function.grid_size(), available_space, box)); } } return max(1, static_cast((get_free_space_x(available_space) / sum_of_grid_track_sizes).value())); // For the purpose of finding the number of auto-repeated tracks in a standalone axis, the UA must // floor the track size to a UA-specified value to avoid division by zero. It is suggested that this // floor be 1px. } void GridFormattingContext::place_item_with_row_and_column_position(Box const& box, Box const& child_box) { int row_start = child_box.computed_values().grid_row_start().raw_value() - 1; int row_end = child_box.computed_values().grid_row_end().raw_value() - 1; int column_start = child_box.computed_values().grid_column_start().raw_value() - 1; int column_end = child_box.computed_values().grid_column_end().raw_value() - 1; // https://www.w3.org/TR/css-grid-2/#line-placement // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties // https://www.w3.org/TR/css-grid-2/#grid-placement-slot // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose // line name is -start (for grid-*-start) / -end (for grid-*-end), // contributes the first such line to the grid item’s placement. // Otherwise, treat this as if the integer 1 had been specified along with the . // https://www.w3.org/TR/css-grid-2/#grid-placement-int // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it // instead counts in reverse, starting from the end edge of the explicit grid. if (row_end < 0) row_end = m_occupation_grid.row_count() + row_end + 2; if (column_end < 0) column_end = m_occupation_grid.column_count() + column_end + 2; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose // of finding this position. // https://www.w3.org/TR/css-grid-2/#grid-placement-span-int // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid // item’s grid area is N lines from its opposite edge in the corresponding direction. For example, // grid-column-end: span 2 indicates the second grid line in the endward direction from the // grid-column-start line. int row_span = 1; int column_span = 1; if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_end().raw_value(); if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_end().raw_value(); if (child_box.computed_values().grid_row_end().is_position() && child_box.computed_values().grid_row_start().is_span()) { row_span = child_box.computed_values().grid_row_start().raw_value(); row_start = row_end - row_span; } if (child_box.computed_values().grid_column_end().is_position() && child_box.computed_values().grid_column_start().is_span()) { column_span = child_box.computed_values().grid_column_start().raw_value(); column_start = column_end - column_span; } // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines on the side of the explicit grid // corresponding to the search direction are assumed to have that name for the purpose of counting // this span. // https://drafts.csswg.org/css-grid/#grid-placement-auto // auto // The property contributes nothing to the grid item’s placement, indicating auto-placement or a // default span of one. (See § 8 Placing Grid Items, above.) // https://www.w3.org/TR/css-grid-2/#common-uses-named-lines // 8.1.3. Named Lines and Spans // Instead of counting lines by number, lines can be referenced by their line name: if (child_box.computed_values().grid_column_end().has_line_name()) { if (auto grid_area_index = find_valid_grid_area(child_box.computed_values().grid_column_end().line_name()); grid_area_index > -1) column_end = m_valid_grid_areas[grid_area_index].column_end; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_column_end().line_name(), box.computed_values().grid_template_columns()); line_name_index > -1) column_end = line_name_index; else column_end = 1; column_start = column_end - 1; } if (child_box.computed_values().grid_column_start().has_line_name()) { if (auto grid_area_index = find_valid_grid_area(child_box.computed_values().grid_column_end().line_name()); grid_area_index > -1) column_start = m_valid_grid_areas[grid_area_index].column_start; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_column_start().line_name(), box.computed_values().grid_template_columns()); line_name_index > -1) column_start = line_name_index; else column_start = 0; } if (child_box.computed_values().grid_row_end().has_line_name()) { if (auto grid_area_index = find_valid_grid_area(child_box.computed_values().grid_row_end().line_name()); grid_area_index > -1) row_end = m_valid_grid_areas[grid_area_index].row_end; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_row_end().line_name(), box.computed_values().grid_template_rows()); line_name_index > -1) row_end = line_name_index; else row_end = 1; row_start = row_end - 1; } if (child_box.computed_values().grid_row_start().has_line_name()) { if (auto grid_area_index = find_valid_grid_area(child_box.computed_values().grid_row_end().line_name()); grid_area_index > -1) row_start = m_valid_grid_areas[grid_area_index].row_start; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_row_start().line_name(), box.computed_values().grid_template_rows()); line_name_index > -1) row_start = line_name_index; else row_start = 0; } // If there are multiple lines of the same name, they effectively establish a named set of grid // lines, which can be exclusively indexed by filtering the placement by name: // https://drafts.csswg.org/css-grid/#grid-placement-errors // 8.3.1. Grid Placement Conflict Handling // If the placement for a grid item contains two lines, and the start line is further end-ward than // the end line, swap the two lines. If the start line is equal to the end line, remove the end // line. if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position()) { if (row_start > row_end) swap(row_start, row_end); if (row_start != row_end) row_span = row_end - row_start; } if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position()) { if (column_start > column_end) swap(column_start, column_end); if (column_start != column_end) column_span = column_end - column_start; } // If the placement contains two spans, remove the one contributed by the end grid-placement // property. if (child_box.computed_values().grid_row_start().is_span() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_start().raw_value(); if (child_box.computed_values().grid_column_start().is_span() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_start().raw_value(); // FIXME: If the placement contains only a span for a named line, replace it with a span of 1. m_positioned_boxes.append(PositionedBox(child_box, row_start, row_span, column_start, column_span)); m_occupation_grid.maybe_add_row(row_start + 1); m_occupation_grid.maybe_add_column(column_start + 1); m_occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span); } void GridFormattingContext::place_item_with_row_position(Box const& box, Box const& child_box) { int row_start = child_box.computed_values().grid_row_start().raw_value() - 1; int row_end = child_box.computed_values().grid_row_end().raw_value() - 1; // https://www.w3.org/TR/css-grid-2/#line-placement // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties // https://www.w3.org/TR/css-grid-2/#grid-placement-slot // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose // line name is -start (for grid-*-start) / -end (for grid-*-end), // contributes the first such line to the grid item’s placement. // Otherwise, treat this as if the integer 1 had been specified along with the . // https://www.w3.org/TR/css-grid-2/#grid-placement-int // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it // instead counts in reverse, starting from the end edge of the explicit grid. if (row_end < 0) row_end = m_occupation_grid.row_count() + row_end + 2; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose // of finding this position. // https://www.w3.org/TR/css-grid-2/#grid-placement-span-int // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid // item’s grid area is N lines from its opposite edge in the corresponding direction. For example, // grid-column-end: span 2 indicates the second grid line in the endward direction from the // grid-column-start line. int row_span = 1; if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_end().raw_value(); if (child_box.computed_values().grid_row_end().is_position() && child_box.computed_values().grid_row_start().is_span()) { row_span = child_box.computed_values().grid_row_start().raw_value(); row_start = row_end - row_span; // FIXME: Remove me once have implemented spans overflowing into negative indexes, e.g., grid-row: span 2 / 1 if (row_start < 0) row_start = 0; } // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines on the side of the explicit grid // corresponding to the search direction are assumed to have that name for the purpose of counting // this span. // https://drafts.csswg.org/css-grid/#grid-placement-auto // auto // The property contributes nothing to the grid item’s placement, indicating auto-placement or a // default span of one. (See § 8 Placing Grid Items, above.) // https://www.w3.org/TR/css-grid-2/#common-uses-named-lines // 8.1.3. Named Lines and Spans // Instead of counting lines by number, lines can be referenced by their line name: if (child_box.computed_values().grid_row_end().has_line_name()) { if (auto grid_area_index = find_valid_grid_area(child_box.computed_values().grid_row_end().line_name()); grid_area_index > -1) row_end = m_valid_grid_areas[grid_area_index].row_end; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_row_end().line_name(), box.computed_values().grid_template_rows()); line_name_index > -1) row_end = line_name_index; else row_end = 1; row_start = row_end - 1; } if (child_box.computed_values().grid_row_start().has_line_name()) { if (auto grid_area_index = find_valid_grid_area(child_box.computed_values().grid_row_end().line_name()); grid_area_index > -1) row_start = m_valid_grid_areas[grid_area_index].row_start; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_row_start().line_name(), box.computed_values().grid_template_rows()); line_name_index > -1) row_start = line_name_index; else row_start = 0; } // If there are multiple lines of the same name, they effectively establish a named set of grid // lines, which can be exclusively indexed by filtering the placement by name: // https://drafts.csswg.org/css-grid/#grid-placement-errors // 8.3.1. Grid Placement Conflict Handling // If the placement for a grid item contains two lines, and the start line is further end-ward than // the end line, swap the two lines. If the start line is equal to the end line, remove the end // line. if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position()) { if (row_start > row_end) swap(row_start, row_end); if (row_start != row_end) row_span = row_end - row_start; } // FIXME: Have yet to find the spec for this. if (!child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position() && row_end == 0) row_start = 0; // If the placement contains two spans, remove the one contributed by the end grid-placement // property. if (child_box.computed_values().grid_row_start().is_span() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_start().raw_value(); // FIXME: If the placement contains only a span for a named line, replace it with a span of 1. m_occupation_grid.maybe_add_row(row_start + row_span); int column_start = 0; auto column_span = child_box.computed_values().grid_column_start().is_span() ? child_box.computed_values().grid_column_start().raw_value() : 1; // https://drafts.csswg.org/css-grid/#auto-placement-algo // 8.5. Grid Item Placement Algorithm // 3.3. If the largest column span among all the items without a definite column position is larger // than the width of the implicit grid, add columns to the end of the implicit grid to accommodate // that column span. m_occupation_grid.maybe_add_column(column_span); bool found_available_column = false; for (int column_index = column_start; column_index < m_occupation_grid.column_count(); column_index++) { if (!m_occupation_grid.is_occupied(column_index, row_start)) { found_available_column = true; column_start = column_index; break; } } if (!found_available_column) { column_start = m_occupation_grid.column_count(); m_occupation_grid.maybe_add_column(column_start + column_span); } m_occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span); m_positioned_boxes.append(PositionedBox(child_box, row_start, row_span, column_start, column_span)); } void GridFormattingContext::place_item_with_column_position(Box const& box, Box const& child_box, int& auto_placement_cursor_x, int& auto_placement_cursor_y) { int column_start = child_box.computed_values().grid_column_start().raw_value() - 1; int column_end = child_box.computed_values().grid_column_end().raw_value() - 1; // https://www.w3.org/TR/css-grid-2/#line-placement // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties // https://www.w3.org/TR/css-grid-2/#grid-placement-slot // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose // line name is -start (for grid-*-start) / -end (for grid-*-end), // contributes the first such line to the grid item’s placement. // Otherwise, treat this as if the integer 1 had been specified along with the . // https://www.w3.org/TR/css-grid-2/#grid-placement-int // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it // instead counts in reverse, starting from the end edge of the explicit grid. if (column_end < 0) column_end = m_occupation_grid.column_count() + column_end + 2; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose // of finding this position. // https://www.w3.org/TR/css-grid-2/#grid-placement-span-int // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid // item’s grid area is N lines from its opposite edge in the corresponding direction. For example, // grid-column-end: span 2 indicates the second grid line in the endward direction from the // grid-column-start line. int column_span = 1; auto row_span = child_box.computed_values().grid_row_start().is_span() ? child_box.computed_values().grid_row_start().raw_value() : 1; if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_end().raw_value(); if (child_box.computed_values().grid_column_end().is_position() && child_box.computed_values().grid_column_start().is_span()) { column_span = child_box.computed_values().grid_column_start().raw_value(); column_start = column_end - column_span; // FIXME: Remove me once have implemented spans overflowing into negative indexes, e.g., grid-column: span 2 / 1 if (column_start < 0) column_start = 0; } // FIXME: Have yet to find the spec for this. if (!child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position() && column_end == 0) column_start = 0; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines on the side of the explicit grid // corresponding to the search direction are assumed to have that name for the purpose of counting // this span. // https://drafts.csswg.org/css-grid/#grid-placement-auto // auto // The property contributes nothing to the grid item’s placement, indicating auto-placement or a // default span of one. (See § 8 Placing Grid Items, above.) // https://www.w3.org/TR/css-grid-2/#common-uses-named-lines // 8.1.3. Named Lines and Spans // Instead of counting lines by number, lines can be referenced by their line name: if (child_box.computed_values().grid_column_end().has_line_name()) { if (auto grid_area_index = find_valid_grid_area(child_box.computed_values().grid_column_end().line_name()); grid_area_index > -1) column_end = m_valid_grid_areas[grid_area_index].column_end; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_column_end().line_name(), box.computed_values().grid_template_columns()); line_name_index > -1) column_end = line_name_index; else column_end = 1; column_start = column_end - 1; } if (child_box.computed_values().grid_column_start().has_line_name()) { if (auto grid_area_index = find_valid_grid_area(child_box.computed_values().grid_column_end().line_name()); grid_area_index > -1) column_start = m_valid_grid_areas[grid_area_index].column_start; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_column_start().line_name(), box.computed_values().grid_template_columns()); line_name_index > -1) column_start = line_name_index; else column_start = 0; } // If there are multiple lines of the same name, they effectively establish a named set of grid // lines, which can be exclusively indexed by filtering the placement by name: // https://drafts.csswg.org/css-grid/#grid-placement-errors // 8.3.1. Grid Placement Conflict Handling // If the placement for a grid item contains two lines, and the start line is further end-ward than // the end line, swap the two lines. If the start line is equal to the end line, remove the end // line. if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position()) { if (column_start > column_end) swap(column_start, column_end); if (column_start != column_end) column_span = column_end - column_start; } // If the placement contains two spans, remove the one contributed by the end grid-placement // property. if (child_box.computed_values().grid_column_start().is_span() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_start().raw_value(); // FIXME: If the placement contains only a span for a named line, replace it with a span of 1. // 4.1.1.1. Set the column position of the cursor to the grid item's column-start line. If this is // less than the previous column position of the cursor, increment the row position by 1. if (column_start < auto_placement_cursor_x) auto_placement_cursor_y++; auto_placement_cursor_x = column_start; m_occupation_grid.maybe_add_column(auto_placement_cursor_x + 1); m_occupation_grid.maybe_add_row(auto_placement_cursor_y + 1); // 4.1.1.2. Increment the cursor's row position until a value is found where the grid item does not // overlap any occupied grid cells (creating new rows in the implicit grid as necessary). while (true) { if (!m_occupation_grid.is_occupied(column_start, auto_placement_cursor_y)) { break; } auto_placement_cursor_y++; m_occupation_grid.maybe_add_row(auto_placement_cursor_y + row_span); } // 4.1.1.3. Set the item's row-start line to the cursor's row position, and set the item's row-end // line according to its span from that position. m_occupation_grid.set_occupied(column_start, column_start + column_span, auto_placement_cursor_y, auto_placement_cursor_y + row_span); m_positioned_boxes.append(PositionedBox(child_box, auto_placement_cursor_y, row_span, column_start, column_span)); } void GridFormattingContext::place_item_with_no_declared_position(Box const& child_box, int& auto_placement_cursor_x, int& auto_placement_cursor_y) { // 4.1.2.1. Increment the column position of the auto-placement cursor until either this item's grid // area does not overlap any occupied grid cells, or the cursor's column position, plus the item's // column span, overflow the number of columns in the implicit grid, as determined earlier in this // algorithm. auto column_start = 0; auto column_span = 1; if (child_box.computed_values().grid_column_start().is_span()) column_span = child_box.computed_values().grid_column_start().raw_value(); else if (child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_end().raw_value(); // https://drafts.csswg.org/css-grid/#auto-placement-algo // 8.5. Grid Item Placement Algorithm // 3.3. If the largest column span among all the items without a definite column position is larger // than the width of the implicit grid, add columns to the end of the implicit grid to accommodate // that column span. m_occupation_grid.maybe_add_column(column_span); auto row_start = 0; auto row_span = 1; if (child_box.computed_values().grid_row_start().is_span()) row_span = child_box.computed_values().grid_row_start().raw_value(); else if (child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_end().raw_value(); auto found_unoccupied_area = false; for (int row_index = auto_placement_cursor_y; row_index < m_occupation_grid.row_count(); row_index++) { for (int column_index = auto_placement_cursor_x; column_index < m_occupation_grid.column_count(); column_index++) { if (column_span + column_index <= m_occupation_grid.column_count()) { auto found_all_available = true; for (int span_index = 0; span_index < column_span; span_index++) { if (m_occupation_grid.is_occupied(column_index + span_index, row_index)) found_all_available = false; } if (found_all_available) { found_unoccupied_area = true; column_start = column_index; row_start = row_index; goto finish; } } } auto_placement_cursor_x = 0; auto_placement_cursor_y++; } finish: // 4.1.2.2. If a non-overlapping position was found in the previous step, set the item's row-start // and column-start lines to the cursor's position. Otherwise, increment the auto-placement cursor's // row position (creating new rows in the implicit grid as necessary), set its column position to the // start-most column line in the implicit grid, and return to the previous step. if (!found_unoccupied_area) { row_start = m_occupation_grid.row_count(); m_occupation_grid.maybe_add_row(m_occupation_grid.row_count() + 1); } m_occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span); m_positioned_boxes.append(PositionedBox(child_box, row_start, row_span, column_start, column_span)); } void GridFormattingContext::initialize_grid_tracks(Box const& box, AvailableSpace const& available_space, int column_count, int row_count) { for (auto const& track_in_list : box.computed_values().grid_template_columns().track_list()) { auto repeat_count = (track_in_list.is_repeat() && track_in_list.repeat().is_default()) ? track_in_list.repeat().repeat_count() : 1; if (track_in_list.is_repeat()) { if (track_in_list.repeat().is_auto_fill() || track_in_list.repeat().is_auto_fit()) repeat_count = column_count; } for (auto _ = 0; _ < repeat_count; _++) { switch (track_in_list.type()) { case CSS::ExplicitGridTrack::Type::MinMax: m_grid_columns.append(TemporaryTrack(track_in_list.minmax().min_grid_size(), track_in_list.minmax().max_grid_size())); break; case CSS::ExplicitGridTrack::Type::Repeat: for (auto& explicit_grid_track : track_in_list.repeat().grid_track_size_list().track_list()) { auto track_sizing_function = explicit_grid_track; if (track_sizing_function.is_minmax()) m_grid_columns.append(TemporaryTrack(track_sizing_function.minmax().min_grid_size(), track_sizing_function.minmax().max_grid_size())); else m_grid_columns.append(TemporaryTrack(track_sizing_function.grid_size())); } break; case CSS::ExplicitGridTrack::Type::Default: m_grid_columns.append(TemporaryTrack(track_in_list.grid_size())); break; default: VERIFY_NOT_REACHED(); } } } for (auto const& track_in_list : box.computed_values().grid_template_rows().track_list()) { auto repeat_count = (track_in_list.is_repeat() && track_in_list.repeat().is_default()) ? track_in_list.repeat().repeat_count() : 1; if (track_in_list.is_repeat()) { if (track_in_list.repeat().is_auto_fill() || track_in_list.repeat().is_auto_fit()) repeat_count = row_count; } for (auto _ = 0; _ < repeat_count; _++) { switch (track_in_list.type()) { case CSS::ExplicitGridTrack::Type::MinMax: m_grid_rows.append(TemporaryTrack(track_in_list.minmax().min_grid_size(), track_in_list.minmax().max_grid_size())); break; case CSS::ExplicitGridTrack::Type::Repeat: for (auto& explicit_grid_track : track_in_list.repeat().grid_track_size_list().track_list()) { auto track_sizing_function = explicit_grid_track; if (track_sizing_function.is_minmax()) m_grid_rows.append(TemporaryTrack(track_sizing_function.minmax().min_grid_size(), track_sizing_function.minmax().max_grid_size())); else m_grid_rows.append(TemporaryTrack(track_sizing_function.grid_size())); } break; case CSS::ExplicitGridTrack::Type::Default: m_grid_rows.append(TemporaryTrack(track_in_list.grid_size())); break; default: VERIFY_NOT_REACHED(); } } } for (int column_index = m_grid_columns.size(); column_index < m_occupation_grid.column_count(); column_index++) m_grid_columns.append(TemporaryTrack()); for (int row_index = m_grid_rows.size(); row_index < m_occupation_grid.row_count(); row_index++) m_grid_rows.append(TemporaryTrack()); // https://www.w3.org/TR/css-grid-2/#gutters // 11.1. Gutters: the row-gap, column-gap, and gap properties // For the purpose of track sizing, each gutter is treated as an extra, empty, fixed-size track of // the specified size, which is spanned by any grid items that span across its corresponding grid // line. if (!box.computed_values().column_gap().is_auto()) { for (int column_index = 1; column_index < (m_occupation_grid.column_count() * 2) - 1; column_index += 2) m_grid_columns.insert(column_index, TemporaryTrack(resolve_size(box.computed_values().column_gap(), available_space.width, box), true)); } if (!box.computed_values().row_gap().is_auto()) { for (int row_index = 1; row_index < (m_occupation_grid.row_count() * 2) - 1; row_index += 2) m_grid_rows.insert(row_index, TemporaryTrack(resolve_size(box.computed_values().row_gap(), available_space.height, box), true)); } } void GridFormattingContext::calculate_sizes_of_columns(Box const& box, AvailableSpace const& available_space) { // https://www.w3.org/TR/css-grid-2/#algo-init // 12.4. Initialize Track Sizes // Initialize each track’s base size and growth limit. for (auto& grid_column : m_grid_columns) { if (grid_column.is_gap) continue; // For each track, if the track’s min track sizing function is: switch (grid_column.min_track_sizing_function.type()) { // - A fixed sizing function // Resolve to an absolute length and use that size as the track’s initial base size. case CSS::GridSize::Type::Length: if (!grid_column.min_track_sizing_function.length().is_auto()) grid_column.base_size = grid_column.min_track_sizing_function.length().to_px(box); break; case CSS::GridSize::Type::Percentage: if (available_space.width.is_definite()) grid_column.base_size = grid_column.min_track_sizing_function.percentage().as_fraction() * available_space.width.to_px().value(); break; // - An intrinsic sizing function // Use an initial base size of zero. case CSS::GridSize::Type::FlexibleLength: case CSS::GridSize::Type::MaxContent: case CSS::GridSize::Type::MinContent: break; default: VERIFY_NOT_REACHED(); } // For each track, if the track’s max track sizing function is: switch (grid_column.max_track_sizing_function.type()) { // - A fixed sizing function // Resolve to an absolute length and use that size as the track’s initial growth limit. case CSS::GridSize::Type::Length: if (!grid_column.max_track_sizing_function.length().is_auto()) grid_column.growth_limit = grid_column.max_track_sizing_function.length().to_px(box); else // - An intrinsic sizing function // Use an initial growth limit of infinity. grid_column.growth_limit = -1; break; case CSS::GridSize::Type::Percentage: if (available_space.width.is_definite()) grid_column.growth_limit = grid_column.max_track_sizing_function.percentage().as_fraction() * available_space.width.to_px().value(); break; // - A flexible sizing function // Use an initial growth limit of infinity. case CSS::GridSize::Type::FlexibleLength: grid_column.growth_limit = -1; break; // - An intrinsic sizing function // Use an initial growth limit of infinity. case CSS::GridSize::Type::MaxContent: case CSS::GridSize::Type::MinContent: grid_column.growth_limit = -1; break; default: VERIFY_NOT_REACHED(); } // In all cases, if the growth limit is less than the base size, increase the growth limit to match // the base size. if (grid_column.growth_limit != -1 && grid_column.growth_limit < grid_column.base_size) grid_column.growth_limit = grid_column.base_size; } // https://www.w3.org/TR/css-grid-2/#algo-content // 12.5. Resolve Intrinsic Track Sizes // This step resolves intrinsic track sizing functions to absolute lengths. First it resolves those // sizes based on items that are contained wholly within a single track. Then it gradually adds in // the space requirements of items that span multiple tracks, evenly distributing the extra space // across those tracks insofar as possible. // FIXME: 1. Shim baseline-aligned items so their intrinsic size contributions reflect their baseline // alignment. For the items in each baseline-sharing group, add a “shim” (effectively, additional // margin) on the start/end side (for first/last-baseline alignment) of each item so that, when // start/end-aligned together their baselines align as specified. // Consider these “shims” as part of the items’ intrinsic size contribution for the purpose of track // sizing, below. If an item uses multiple intrinsic size contributions, it can have different shims // for each one. // 2. Size tracks to fit non-spanning items: For each track with an intrinsic track sizing function and // not a flexible sizing function, consider the items in it with a span of 1: int index = 0; for (auto& grid_column : m_grid_columns) { if (grid_column.is_gap) { ++index; continue; } if (!grid_column.min_track_sizing_function.is_intrinsic_track_sizing()) { ++index; continue; } Vector boxes_of_column; for (auto& positioned_box : m_positioned_boxes) { if (positioned_box.gap_adjusted_column(box) == index && positioned_box.raw_column_span() == 1) boxes_of_column.append(positioned_box.box()); } switch (grid_column.min_track_sizing_function.type()) { // - For min-content minimums: // If the track has a min-content min track sizing function, set its base size to the maximum of the // items’ min-content contributions, floored at zero. case CSS::GridSize::Type::MinContent: { CSSPixels column_width = 0; for (auto& box_of_column : boxes_of_column) column_width = max(column_width, calculate_min_content_width(box_of_column)); grid_column.base_size = column_width; } break; // - For max-content minimums: // If the track has a max-content min track sizing function, set its base size to the maximum of the // items’ max-content contributions, floored at zero. case CSS::GridSize::Type::MaxContent: { CSSPixels column_width = 0; for (auto& box_of_column : boxes_of_column) column_width = max(column_width, calculate_max_content_width(box_of_column)); grid_column.base_size = column_width; } break; // - For auto minimums: // If the track has an auto min track sizing function and the grid container is being sized under a // min-/max-content constraint, set the track’s base size to the maximum of its items’ limited // min-/max-content contributions (respectively), floored at zero. The limited min-/max-content // contribution of an item is (for this purpose) its min-/max-content contribution (accordingly), // limited by the max track sizing function (which could be the argument to a fit-content() track // sizing function) if that is fixed and ultimately floored by its minimum contribution (defined // below). // FIXME: Container min/max-content case CSS::GridSize::Type::Length: // Otherwise, set the track’s base size to the maximum of its items’ minimum contributions, floored // at zero. The minimum contribution of an item is the smallest outer size it can have. // Specifically, if the item’s computed preferred size behaves as auto or depends on the size of its // containing block in the relevant axis, its minimum contribution is the outer size that would // result from assuming the item’s used minimum size as its preferred size; else the item’s minimum // contribution is its min-content contribution. Because the minimum contribution often depends on // the size of the item’s content, it is considered a type of intrinsic size contribution. case CSS::GridSize::Type::Percentage: case CSS::GridSize::Type::FlexibleLength: { CSSPixels grid_column_width = 0; for (auto& box_of_column : boxes_of_column) grid_column_width = max(grid_column_width, calculate_min_content_width(box_of_column).value()); grid_column.base_size = grid_column_width; } break; default: VERIFY_NOT_REACHED(); } switch (grid_column.max_track_sizing_function.type()) { // - For min-content maximums: // If the track has a min-content max track sizing function, set its growth limit to the maximum of // the items’ min-content contributions. case CSS::GridSize::Type::MinContent: { CSSPixels column_width = 0; for (auto& box_of_column : boxes_of_column) column_width = max(column_width, calculate_min_content_width(box_of_column)); grid_column.growth_limit = column_width; } break; // - For max-content maximums: // If the track has a max-content max track sizing function, set its growth limit to the maximum of // the items’ max-content contributions. For fit-content() maximums, furthermore clamp this growth // limit by the fit-content() argument. case CSS::GridSize::Type::MaxContent: { CSSPixels column_width = 0; for (auto& box_of_column : boxes_of_column) column_width = max(column_width, calculate_max_content_width(box_of_column)); grid_column.growth_limit = column_width; } break; case CSS::GridSize::Type::Length: case CSS::GridSize::Type::Percentage: case CSS::GridSize::Type::FlexibleLength: break; default: VERIFY_NOT_REACHED(); } // In all cases, if a track’s growth limit is now less than its base size, increase the growth limit // to match the base size. if (grid_column.growth_limit != -1 && grid_column.growth_limit < grid_column.base_size) grid_column.growth_limit = grid_column.base_size; ++index; } // https://www.w3.org/TR/css-grid-2/#auto-repeat // The auto-fit keyword behaves the same as auto-fill, except that after grid item placement any // empty repeated tracks are collapsed. An empty track is one with no in-flow grid items placed into // or spanning across it. (This can result in all tracks being collapsed, if they’re all empty.) if (box.computed_values().grid_template_columns().track_list().size() == 1 && box.computed_values().grid_template_columns().track_list().first().is_repeat() && box.computed_values().grid_template_columns().track_list().first().repeat().is_auto_fit()) { for (size_t idx = 0; idx < m_grid_columns.size(); idx++) { auto column_to_check = box.computed_values().column_gap().is_auto() ? idx : idx / 2; if (m_occupation_grid.is_occupied(column_to_check, 0)) continue; if (!box.computed_values().column_gap().is_auto() && idx % 2 != 0) continue; // A collapsed track is treated as having a fixed track sizing function of 0px m_grid_columns[idx].base_size = 0; m_grid_columns[idx].growth_limit = 0; // FIXME: And the gutters on either side of it—including any space allotted through distributed // alignment—collapse. } } // 3. Increase sizes to accommodate spanning items crossing content-sized tracks: Next, consider the // items with a span of 2 that do not span a track with a flexible sizing function. // FIXME: Content-sized tracks not implemented (min-content, etc.) // 3.1. For intrinsic minimums: First increase the base size of tracks with an intrinsic min track sizing // function by distributing extra space as needed to accommodate these items’ minimum contributions. // If the grid container is being sized under a min- or max-content constraint, use the items’ // limited min-content contributions in place of their minimum contributions here. (For an item // spanning multiple tracks, the upper limit used to calculate its limited min-/max-content // contribution is the sum of the fixed max track sizing functions of any tracks it spans, and is // applied if it only spans such tracks.) // 3.2. For content-based minimums: Next continue to increase the base size of tracks with a min track // sizing function of min-content or max-content by distributing extra space as needed to account // for these items' min-content contributions. // 3.3. For max-content minimums: Next, if the grid container is being sized under a max-content // constraint, continue to increase the base size of tracks with a min track sizing function of auto // or max-content by distributing extra space as needed to account for these items' limited // max-content contributions. // In all cases, continue to increase the base size of tracks with a min track sizing function of // max-content by distributing extra space as needed to account for these items' max-content // contributions. // 3.4. If at this point any track’s growth limit is now less than its base size, increase its growth // limit to match its base size. // 3.5. For intrinsic maximums: Next increase the growth limit of tracks with an intrinsic max track // sizing function by distributing extra space as needed to account for these items' min-content // contributions. Mark any tracks whose growth limit changed from infinite to finite in this step as // infinitely growable for the next step. // 3.6. For max-content maximums: Lastly continue to increase the growth limit of tracks with a max track // sizing function of max-content by distributing extra space as needed to account for these items' // max-content contributions. However, limit the growth of any fit-content() tracks by their // fit-content() argument. // Repeat incrementally for items with greater spans until all items have been considered. // FIXME: 4. Increase sizes to accommodate spanning items crossing flexible tracks: Next, repeat the previous // step instead considering (together, rather than grouped by span size) all items that do span a // track with a flexible sizing function while // - distributing space only to flexible tracks (i.e. treating all other tracks as having a fixed // sizing function) // - if the sum of the flexible sizing functions of all flexible tracks spanned by the item is greater // than zero, distributing space to such tracks according to the ratios of their flexible sizing // functions rather than distributing space equally // FIXME: 5. If any track still has an infinite growth limit (because, for example, it had no items placed in // it or it is a flexible track), set its growth limit to its base size. // https://www.w3.org/TR/css-grid-2/#extra-space // 12.5.1. Distributing Extra Space Across Spanned Tracks // To distribute extra space by increasing the affected sizes of a set of tracks as required by a // set of intrinsic size contributions, CSSPixels sum_of_track_sizes = 0; for (auto& it : m_grid_columns) sum_of_track_sizes += it.base_size; // 1. Maintain separately for each affected base size or growth limit a planned increase, initially // set to 0. (This prevents the size increases from becoming order-dependent.) // 2. For each considered item, // 2.1. Find the space to distribute: Subtract the corresponding size (base size or growth limit) of // every spanned track from the item’s size contribution to find the item’s remaining size // contribution. (For infinite growth limits, substitute the track’s base size.) This is the space // to distribute. Floor it at zero. // For base sizes, the limit is its growth limit. For growth limits, the limit is infinity if it is // marked as infinitely growable, and equal to the growth limit otherwise. If the affected size was // a growth limit and the track is not marked infinitely growable, then each item-incurred increase // will be zero. // extra-space = max(0, size-contribution - ∑track-sizes) for (auto& grid_column : m_grid_columns) { if (grid_column.is_gap) continue; grid_column.space_to_distribute = max(CSSPixels(0), (grid_column.growth_limit == -1 ? grid_column.base_size : grid_column.growth_limit) - grid_column.base_size); } auto remaining_free_space = available_space.width.is_definite() ? available_space.width.to_px() - sum_of_track_sizes : 0; // 2.2. Distribute space up to limits: Find the item-incurred increase for each spanned track with an // affected size by: distributing the space equally among such tracks, freezing a track’s // item-incurred increase as its affected size + item-incurred increase reaches its limit (and // continuing to grow the unfrozen tracks as needed). auto count_of_unfrozen_tracks = 0; for (auto& grid_column : m_grid_columns) { if (grid_column.space_to_distribute > 0) count_of_unfrozen_tracks++; } while (remaining_free_space > 0) { if (count_of_unfrozen_tracks == 0) break; auto free_space_to_distribute_per_track = remaining_free_space / count_of_unfrozen_tracks; for (auto& grid_column : m_grid_columns) { if (grid_column.space_to_distribute == 0) continue; // 2.4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned // increase set the track’s planned increase to that value. if (grid_column.space_to_distribute <= free_space_to_distribute_per_track) { grid_column.planned_increase += grid_column.space_to_distribute; remaining_free_space -= grid_column.space_to_distribute; grid_column.space_to_distribute = 0; } else { grid_column.space_to_distribute -= free_space_to_distribute_per_track; grid_column.planned_increase += free_space_to_distribute_per_track; remaining_free_space -= free_space_to_distribute_per_track; } } count_of_unfrozen_tracks = 0; for (auto& grid_column : m_grid_columns) { if (grid_column.space_to_distribute > 0) count_of_unfrozen_tracks++; } if (remaining_free_space == 0) break; } // 2.3. Distribute space beyond limits: If space remains after all tracks are frozen, unfreeze and // continue to distribute space to the item-incurred increase of… // - when accommodating minimum contributions or accommodating min-content contributions: any affected // track that happens to also have an intrinsic max track sizing function; if there are no such // tracks, then all affected tracks. // - when accommodating max-content contributions: any affected track that happens to also have a // max-content max track sizing function; if there are no such tracks, then all affected tracks. // - when handling any intrinsic growth limit: all affected tracks. // For this purpose, the max track sizing function of a fit-content() track is treated as // max-content until it reaches the limit specified as the fit-content() argument, after which it is // treated as having a fixed sizing function of that argument. // This step prioritizes the distribution of space for accommodating space required by the // tracks’ min track sizing functions beyond their current growth limits based on the types of their // max track sizing functions. // 3. Update the tracks' affected sizes by adding in the planned increase so that the next round of // space distribution will account for the increase. (If the affected size is an infinite growth // limit, set it to the track’s base size plus the planned increase.) for (auto& grid_column : m_grid_columns) grid_column.base_size += grid_column.planned_increase; // https://www.w3.org/TR/css-grid-2/#algo-grow-tracks // 12.6. Maximize Tracks // If the free space is positive, distribute it equally to the base sizes of all tracks, freezing // tracks as they reach their growth limits (and continuing to grow the unfrozen tracks as needed). auto free_space = get_free_space_x(available_space); while (free_space > 0) { auto free_space_to_distribute_per_track = free_space / (m_grid_columns.size() - count_of_gap_columns()); for (auto& grid_column : m_grid_columns) { if (grid_column.is_gap) continue; if (grid_column.growth_limit != -1) grid_column.base_size = min(grid_column.growth_limit, grid_column.base_size + free_space_to_distribute_per_track); else grid_column.base_size = grid_column.base_size + free_space_to_distribute_per_track; } if (get_free_space_x(available_space) == free_space) break; free_space = get_free_space_x(available_space); } // For the purpose of this step: if sizing the grid container under a max-content constraint, the // free space is infinite; if sizing under a min-content constraint, the free space is zero. // If this would cause the grid to be larger than the grid container’s inner size as limited by its // max-width/height, then redo this step, treating the available grid space as equal to the grid // container’s inner size when it’s sized to its max-width/height. // https://drafts.csswg.org/css-grid/#algo-flex-tracks // 12.7. Expand Flexible Tracks // This step sizes flexible tracks using the largest value it can assign to an fr without exceeding // the available space. // First, find the grid’s used flex fraction: auto column_flex_factor_sum = 0; for (auto& grid_column : m_grid_columns) { if (grid_column.min_track_sizing_function.is_flexible_length()) column_flex_factor_sum++; } // See 12.7.1. // Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less // than 1, set it to 1 instead. if (column_flex_factor_sum < 1) column_flex_factor_sum = 1; // See 12.7.1. CSSPixels sized_column_widths = 0; for (auto& grid_column : m_grid_columns) { if (!grid_column.min_track_sizing_function.is_flexible_length()) sized_column_widths += grid_column.base_size; } // Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks. CSSPixels free_horizontal_space = available_space.width.is_definite() ? available_space.width.to_px() - sized_column_widths : 0; // If the free space is zero or if sizing the grid container under a min-content constraint: // The used flex fraction is zero. // FIXME: Add min-content constraint check. // Otherwise, if the free space is a definite length: // The used flex fraction is the result of finding the size of an fr using all of the grid tracks // and a space to fill of the available grid space. if (free_horizontal_space > 0) { for (auto& grid_column : m_grid_columns) { if (grid_column.min_track_sizing_function.is_flexible_length()) { // See 12.7.1. // Let the hypothetical fr size be the leftover space divided by the flex factor sum. auto hypothetical_fr_size = free_horizontal_space / column_flex_factor_sum; // For each flexible track, if the product of the used flex fraction and the track’s flex factor is // greater than the track’s base size, set its base size to that product. grid_column.base_size = max(grid_column.base_size, hypothetical_fr_size); } } } // Otherwise, if the free space is an indefinite length: // FIXME: No tracks will have indefinite length as per current implementation. // The used flex fraction is the maximum of: // For each flexible track, if the flexible track’s flex factor is greater than one, the result of // dividing the track’s base size by its flex factor; otherwise, the track’s base size. // For each grid item that crosses a flexible track, the result of finding the size of an fr using // all the grid tracks that the item crosses and a space to fill of the item’s max-content // contribution. // If using this flex fraction would cause the grid to be smaller than the grid container’s // min-width/height (or larger than the grid container’s max-width/height), then redo this step, // treating the free space as definite and the available grid space as equal to the grid container’s // inner size when it’s sized to its min-width/height (max-width/height). // For each flexible track, if the product of the used flex fraction and the track’s flex factor is // greater than the track’s base size, set its base size to that product. // https://drafts.csswg.org/css-grid/#algo-find-fr-size // 12.7.1. Find the Size of an fr // This algorithm finds the largest size that an fr unit can be without exceeding the target size. // It must be called with a set of grid tracks and some quantity of space to fill. // 1. Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks. // 2. Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less // than 1, set it to 1 instead. // 3. Let the hypothetical fr size be the leftover space divided by the flex factor sum. // FIXME: 4. If the product of the hypothetical fr size and a flexible track’s flex factor is less than the // track’s base size, restart this algorithm treating all such tracks as inflexible. // 5. Return the hypothetical fr size. // https://drafts.csswg.org/css-grid/#algo-stretch // 12.8. Stretch auto Tracks // When the content-distribution property of the grid container is normal or stretch in this axis, // this step expands tracks that have an auto max track sizing function by dividing any remaining // positive, definite free space equally amongst them. If the free space is indefinite, but the grid // container has a definite min-width/height, use that size to calculate the free space for this // step instead. CSSPixels used_horizontal_space = 0; for (auto& grid_column : m_grid_columns) { if (!(grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto())) used_horizontal_space += grid_column.base_size; } CSSPixels remaining_horizontal_space = available_space.width.is_definite() ? available_space.width.to_px() - used_horizontal_space : 0; auto count_of_auto_max_column_tracks = 0; for (auto& grid_column : m_grid_columns) { if (grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto()) count_of_auto_max_column_tracks++; } for (auto& grid_column : m_grid_columns) { if (grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto()) grid_column.base_size = max(grid_column.base_size, remaining_horizontal_space / count_of_auto_max_column_tracks); } // If calculating the layout of a grid item in this step depends on the available space in the block // axis, assume the available space that it would have if any row with a definite max track sizing // function had that size and all other rows were infinite. If both the grid container and all // tracks have definite sizes, also apply align-content to find the final effective size of any gaps // spanned by such items; otherwise ignore the effects of track alignment in this estimation. } void GridFormattingContext::calculate_sizes_of_rows(Box const& box) { // https://www.w3.org/TR/css-grid-2/#algo-init // 12.4. Initialize Track Sizes // Initialize each track’s base size and growth limit. auto& box_state = m_state.get_mutable(box); for (auto& grid_row : m_grid_rows) { if (grid_row.is_gap) continue; // For each track, if the track’s min track sizing function is: switch (grid_row.min_track_sizing_function.type()) { // - A fixed sizing function // Resolve to an absolute length and use that size as the track’s initial base size. case CSS::GridSize::Type::Length: if (!grid_row.min_track_sizing_function.length().is_auto()) grid_row.base_size = grid_row.min_track_sizing_function.length().to_px(box); break; case CSS::GridSize::Type::Percentage: grid_row.base_size = grid_row.min_track_sizing_function.percentage().as_fraction() * box_state.content_height(); break; // - An intrinsic sizing function // Use an initial base size of zero. case CSS::GridSize::Type::FlexibleLength: case CSS::GridSize::Type::MaxContent: case CSS::GridSize::Type::MinContent: break; default: VERIFY_NOT_REACHED(); } // For each track, if the track’s max track sizing function is: switch (grid_row.max_track_sizing_function.type()) { // - A fixed sizing function // Resolve to an absolute length and use that size as the track’s initial growth limit. case CSS::GridSize::Type::Length: if (!grid_row.max_track_sizing_function.length().is_auto()) grid_row.growth_limit = grid_row.max_track_sizing_function.length().to_px(box); else // - An intrinsic sizing function // Use an initial growth limit of infinity. grid_row.growth_limit = -1; break; case CSS::GridSize::Type::Percentage: grid_row.growth_limit = grid_row.max_track_sizing_function.percentage().as_fraction() * box_state.content_height(); break; // - A flexible sizing function // Use an initial growth limit of infinity. case CSS::GridSize::Type::FlexibleLength: grid_row.growth_limit = -1; break; // - An intrinsic sizing function // Use an initial growth limit of infinity. case CSS::GridSize::Type::MaxContent: case CSS::GridSize::Type::MinContent: grid_row.growth_limit = -1; break; default: VERIFY_NOT_REACHED(); } // In all cases, if the growth limit is less than the base size, increase the growth limit to match // the base size. if (grid_row.growth_limit != -1 && grid_row.growth_limit < grid_row.base_size) grid_row.growth_limit = grid_row.base_size; } // https://www.w3.org/TR/css-grid-2/#algo-content // 12.5. Resolve Intrinsic Track Sizes // This step resolves intrinsic track sizing functions to absolute lengths. First it resolves those // sizes based on items that are contained wholly within a single track. Then it gradually adds in // the space requirements of items that span multiple tracks, evenly distributing the extra space // across those tracks insofar as possible. // FIXME: 1. Shim baseline-aligned items so their intrinsic size contributions reflect their baseline // alignment. For the items in each baseline-sharing group, add a “shim” (effectively, additional // margin) on the start/end side (for first/last-baseline alignment) of each item so that, when // start/end-aligned together their baselines align as specified. // Consider these “shims” as part of the items’ intrinsic size contribution for the purpose of track // sizing, below. If an item uses multiple intrinsic size contributions, it can have different shims // for each one. // 2. Size tracks to fit non-spanning items: For each track with an intrinsic track sizing function and // not a flexible sizing function, consider the items in it with a span of 1: auto index = 0; for (auto& grid_row : m_grid_rows) { if (grid_row.is_gap) { ++index; continue; } if (!grid_row.min_track_sizing_function.is_intrinsic_track_sizing()) { ++index; continue; } Vector positioned_boxes_of_row; for (auto& positioned_box : m_positioned_boxes) { if (positioned_box.gap_adjusted_row(box) == index && positioned_box.raw_row_span() == 1) positioned_boxes_of_row.append(positioned_box); } switch (grid_row.min_track_sizing_function.type()) { // - For min-content minimums: // If the track has a min-content min track sizing function, set its base size to the maximum of the // items’ min-content contributions, floored at zero. case CSS::GridSize::Type::MinContent: { CSSPixels row_height = 0; for (auto& positioned_box : positioned_boxes_of_row) row_height = max(row_height, calculate_min_content_height(positioned_box.box(), AvailableSize::make_definite(m_grid_columns[positioned_box.gap_adjusted_column(box)].base_size))); grid_row.base_size = row_height; } break; // - For max-content minimums: // If the track has a max-content min track sizing function, set its base size to the maximum of the // items’ max-content contributions, floored at zero. case CSS::GridSize::Type::MaxContent: { CSSPixels row_height = 0; for (auto& positioned_box : positioned_boxes_of_row) row_height = max(row_height, calculate_max_content_height(positioned_box.box(), AvailableSize::make_definite(m_grid_columns[positioned_box.gap_adjusted_column(box)].base_size))); grid_row.base_size = row_height; } break; // - For auto minimums: // If the track has an auto min track sizing function and the grid container is being sized under a // min-/max-content constraint, set the track’s base size to the maximum of its items’ limited // min-/max-content contributions (respectively), floored at zero. The limited min-/max-content // contribution of an item is (for this purpose) its min-/max-content contribution (accordingly), // limited by the max track sizing function (which could be the argument to a fit-content() track // sizing function) if that is fixed and ultimately floored by its minimum contribution (defined // below). // FIXME: Container min/max-content case CSS::GridSize::Type::Length: // Otherwise, set the track’s base size to the maximum of its items’ minimum contributions, floored // at zero. The minimum contribution of an item is the smallest outer size it can have. // Specifically, if the item’s computed preferred size behaves as auto or depends on the size of its // containing block in the relevant axis, its minimum contribution is the outer size that would // result from assuming the item’s used minimum size as its preferred size; else the item’s minimum // contribution is its min-content contribution. Because the minimum contribution often depends on // the size of the item’s content, it is considered a type of intrinsic size contribution. case CSS::GridSize::Type::Percentage: case CSS::GridSize::Type::FlexibleLength: { CSSPixels grid_row_height = 0; for (auto& positioned_box : positioned_boxes_of_row) grid_row_height = max(grid_row_height, calculate_min_content_height(positioned_box.box(), AvailableSize::make_definite(m_grid_columns[positioned_box.gap_adjusted_column(box)].base_size))); grid_row.base_size = grid_row_height; } break; default: VERIFY_NOT_REACHED(); } switch (grid_row.max_track_sizing_function.type()) { // - For min-content maximums: // If the track has a min-content max track sizing function, set its growth limit to the maximum of // the items’ min-content contributions. case CSS::GridSize::Type::MinContent: { CSSPixels row_height = 0; for (auto& positioned_box : positioned_boxes_of_row) row_height = max(row_height, calculate_max_content_height(positioned_box.box(), AvailableSize::make_definite(m_grid_columns[positioned_box.gap_adjusted_column(box)].base_size))); grid_row.base_size = row_height; } break; // - For max-content maximums: // If the track has a max-content max track sizing function, set its growth limit to the maximum of // the items’ max-content contributions. For fit-content() maximums, furthermore clamp this growth // limit by the fit-content() argument. case CSS::GridSize::Type::MaxContent: { CSSPixels row_height = 0; for (auto& positioned_box : positioned_boxes_of_row) row_height = max(row_height, calculate_max_content_height(positioned_box.box(), AvailableSize::make_definite(m_grid_columns[positioned_box.gap_adjusted_column(box)].base_size))); grid_row.base_size = row_height; } break; case CSS::GridSize::Type::Length: case CSS::GridSize::Type::Percentage: case CSS::GridSize::Type::FlexibleLength: break; default: VERIFY_NOT_REACHED(); } // In all cases, if a track’s growth limit is now less than its base size, increase the growth limit // to match the base size. if (grid_row.growth_limit != -1 && grid_row.growth_limit < grid_row.base_size) grid_row.growth_limit = grid_row.base_size; ++index; } // https://www.w3.org/TR/css-grid-2/#auto-repeat // The auto-fit keyword behaves the same as auto-fill, except that after grid item placement any // empty repeated tracks are collapsed. An empty track is one with no in-flow grid items placed into // or spanning across it. (This can result in all tracks being collapsed, if they’re all empty.) // 3. Increase sizes to accommodate spanning items crossing content-sized tracks: Next, consider the // items with a span of 2 that do not span a track with a flexible sizing function. // FIXME: Content-sized tracks not implemented (min-content, etc.) // 3.1. For intrinsic minimums: First increase the base size of tracks with an intrinsic min track sizing // function by distributing extra space as needed to accommodate these items’ minimum contributions. // If the grid container is being sized under a min- or max-content constraint, use the items’ // limited min-content contributions in place of their minimum contributions here. (For an item // spanning multiple tracks, the upper limit used to calculate its limited min-/max-content // contribution is the sum of the fixed max track sizing functions of any tracks it spans, and is // applied if it only spans such tracks.) // 3.2. For content-based minimums: Next continue to increase the base size of tracks with a min track // sizing function of min-content or max-content by distributing extra space as needed to account // for these items' min-content contributions. // 3.3. For max-content minimums: Next, if the grid container is being sized under a max-content // constraint, continue to increase the base size of tracks with a min track sizing function of auto // or max-content by distributing extra space as needed to account for these items' limited // max-content contributions. // In all cases, continue to increase the base size of tracks with a min track sizing function of // max-content by distributing extra space as needed to account for these items' max-content // contributions. // 3.4. If at this point any track’s growth limit is now less than its base size, increase its growth // limit to match its base size. // 3.5. For intrinsic maximums: Next increase the growth limit of tracks with an intrinsic max track // sizing function by distributing extra space as needed to account for these items' min-content // contributions. Mark any tracks whose growth limit changed from infinite to finite in this step as // infinitely growable for the next step. // 3.6. For max-content maximums: Lastly continue to increase the growth limit of tracks with a max track // sizing function of max-content by distributing extra space as needed to account for these items' // max-content contributions. However, limit the growth of any fit-content() tracks by their // fit-content() argument. // Repeat incrementally for items with greater spans until all items have been considered. // FIXME: 4. Increase sizes to accommodate spanning items crossing flexible tracks: Next, repeat the previous // step instead considering (together, rather than grouped by span size) all items that do span a // track with a flexible sizing function while // - distributing space only to flexible tracks (i.e. treating all other tracks as having a fixed // sizing function) // - if the sum of the flexible sizing functions of all flexible tracks spanned by the item is greater // than zero, distributing space to such tracks according to the ratios of their flexible sizing // functions rather than distributing space equally // FIXME: 5. If any track still has an infinite growth limit (because, for example, it had no items placed in // it or it is a flexible track), set its growth limit to its base size. // https://www.w3.org/TR/css-grid-2/#extra-space // 12.5.1. Distributing Extra Space Across Spanned Tracks // To distribute extra space by increasing the affected sizes of a set of tracks as required by a // set of intrinsic size contributions, // 1. Maintain separately for each affected base size or growth limit a planned increase, initially // set to 0. (This prevents the size increases from becoming order-dependent.) // 2. For each considered item, // 2.1. Find the space to distribute: Subtract the corresponding size (base size or growth limit) of // every spanned track from the item’s size contribution to find the item’s remaining size // contribution. (For infinite growth limits, substitute the track’s base size.) This is the space // to distribute. Floor it at zero. // For base sizes, the limit is its growth limit. For growth limits, the limit is infinity if it is // marked as infinitely growable, and equal to the growth limit otherwise. If the affected size was // a growth limit and the track is not marked infinitely growable, then each item-incurred increase // will be zero. // extra-space = max(0, size-contribution - ∑track-sizes) // 2.2. Distribute space up to limits: Find the item-incurred increase for each spanned track with an // affected size by: distributing the space equally among such tracks, freezing a track’s // item-incurred increase as its affected size + item-incurred increase reaches its limit (and // continuing to grow the unfrozen tracks as needed). // 2.3. Distribute space beyond limits: If space remains after all tracks are frozen, unfreeze and // continue to distribute space to the item-incurred increase of… // - when accommodating minimum contributions or accommodating min-content contributions: any affected // track that happens to also have an intrinsic max track sizing function; if there are no such // tracks, then all affected tracks. // - when accommodating max-content contributions: any affected track that happens to also have a // max-content max track sizing function; if there are no such tracks, then all affected tracks. // - when handling any intrinsic growth limit: all affected tracks. // For this purpose, the max track sizing function of a fit-content() track is treated as // max-content until it reaches the limit specified as the fit-content() argument, after which it is // treated as having a fixed sizing function of that argument. // This step prioritizes the distribution of space for accommodating space required by the // tracks’ min track sizing functions beyond their current growth limits based on the types of their // max track sizing functions. // 3. Update the tracks' affected sizes by adding in the planned increase so that the next round of // space distribution will account for the increase. (If the affected size is an infinite growth // limit, set it to the track’s base size plus the planned increase.) // FIXME: Do for rows. // https://www.w3.org/TR/css-grid-2/#algo-grow-tracks // 12.6. Maximize Tracks // If the free space is positive, distribute it equally to the base sizes of all tracks, freezing // tracks as they reach their growth limits (and continuing to grow the unfrozen tracks as needed). auto free_space = get_free_space_y(box); while (free_space > 0) { auto free_space_to_distribute_per_track = free_space / (m_grid_rows.size() - count_of_gap_rows()); for (auto& grid_row : m_grid_rows) { if (grid_row.is_gap) continue; grid_row.base_size = min(grid_row.growth_limit, grid_row.base_size + free_space_to_distribute_per_track); } if (get_free_space_y(box) == free_space) break; free_space = get_free_space_y(box); } if (free_space == -1) { for (auto& grid_row : m_grid_rows) { if (grid_row.is_gap) continue; if (grid_row.growth_limit != -1) grid_row.base_size = grid_row.growth_limit; } } // For the purpose of this step: if sizing the grid container under a max-content constraint, the // free space is infinite; if sizing under a min-content constraint, the free space is zero. // If this would cause the grid to be larger than the grid container’s inner size as limited by its // max-width/height, then redo this step, treating the available grid space as equal to the grid // container’s inner size when it’s sized to its max-width/height. // https://drafts.csswg.org/css-grid/#algo-flex-tracks // 12.7. Expand Flexible Tracks // This step sizes flexible tracks using the largest value it can assign to an fr without exceeding // the available space. // First, find the grid’s used flex fraction: auto row_flex_factor_sum = 0; for (auto& grid_row : m_grid_rows) { if (grid_row.min_track_sizing_function.is_flexible_length()) row_flex_factor_sum++; } // See 12.7.1. // Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less // than 1, set it to 1 instead. if (row_flex_factor_sum < 1) row_flex_factor_sum = 1; // See 12.7.1. CSSPixels sized_row_heights = 0; for (auto& grid_row : m_grid_rows) { if (!grid_row.min_track_sizing_function.is_flexible_length()) sized_row_heights += grid_row.base_size; } // Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks. CSSPixels free_vertical_space = CSSPixels(box_state.content_height()) - sized_row_heights; // If the free space is zero or if sizing the grid container under a min-content constraint: // The used flex fraction is zero. // FIXME: Add min-content constraint check. // Otherwise, if the free space is a definite length: // The used flex fraction is the result of finding the size of an fr using all of the grid tracks // and a space to fill of the available grid space. if (free_vertical_space > 0) { for (auto& grid_row : m_grid_rows) { if (grid_row.min_track_sizing_function.is_flexible_length()) { // See 12.7.1. // Let the hypothetical fr size be the leftover space divided by the flex factor sum. auto hypothetical_fr_size = free_vertical_space / row_flex_factor_sum; // For each flexible track, if the product of the used flex fraction and the track’s flex factor is // greater than the track’s base size, set its base size to that product. grid_row.base_size = max(grid_row.base_size, hypothetical_fr_size); } } } // Otherwise, if the free space is an indefinite length: // FIXME: No tracks will have indefinite length as per current implementation. // The used flex fraction is the maximum of: // For each flexible track, if the flexible track’s flex factor is greater than one, the result of // dividing the track’s base size by its flex factor; otherwise, the track’s base size. // For each grid item that crosses a flexible track, the result of finding the size of an fr using // all the grid tracks that the item crosses and a space to fill of the item’s max-content // contribution. // If using this flex fraction would cause the grid to be smaller than the grid container’s // min-width/height (or larger than the grid container’s max-width/height), then redo this step, // treating the free space as definite and the available grid space as equal to the grid container’s // inner size when it’s sized to its min-width/height (max-width/height). // For each flexible track, if the product of the used flex fraction and the track’s flex factor is // greater than the track’s base size, set its base size to that product. // https://drafts.csswg.org/css-grid/#algo-find-fr-size // 12.7.1. Find the Size of an fr // This algorithm finds the largest size that an fr unit can be without exceeding the target size. // It must be called with a set of grid tracks and some quantity of space to fill. // 1. Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks. // 2. Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less // than 1, set it to 1 instead. // 3. Let the hypothetical fr size be the leftover space divided by the flex factor sum. // FIXME: 4. If the product of the hypothetical fr size and a flexible track’s flex factor is less than the // track’s base size, restart this algorithm treating all such tracks as inflexible. // 5. Return the hypothetical fr size. // https://drafts.csswg.org/css-grid/#algo-stretch // 12.8. Stretch auto Tracks // When the content-distribution property of the grid container is normal or stretch in this axis, // this step expands tracks that have an auto max track sizing function by dividing any remaining // positive, definite free space equally amongst them. If the free space is indefinite, but the grid // container has a definite min-width/height, use that size to calculate the free space for this // step instead. CSSPixels used_vertical_space = 0; for (auto& grid_row : m_grid_rows) { if (!(grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto())) used_vertical_space += grid_row.base_size; } CSSPixels remaining_vertical_space = CSSPixels(box_state.content_height()) - used_vertical_space; auto count_of_auto_max_row_tracks = 0; for (auto& grid_row : m_grid_rows) { if (grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto()) count_of_auto_max_row_tracks++; } for (auto& grid_row : m_grid_rows) { if (grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto()) grid_row.base_size = max(grid_row.base_size, remaining_vertical_space / count_of_auto_max_row_tracks); } } void GridFormattingContext::build_valid_grid_areas(Box const& box) { Vector found_grid_areas; auto get_index_of_found_grid_area = [&](String needle) -> int { for (size_t x = 0; x < found_grid_areas.size(); x++) { if (found_grid_areas[x].name == needle) return static_cast(x); } return -1; }; // https://www.w3.org/TR/css-grid-2/#grid-template-areas-property // If a named grid area spans multiple grid cells, but those cells do not form a single // filled-in rectangle, the declaration is invalid. for (int y = 0; y < static_cast(box.computed_values().grid_template_areas().size()); y++) { for (int x = 0; x < static_cast(box.computed_values().grid_template_areas()[y].size()); x++) { auto grid_area_idx = get_index_of_found_grid_area(box.computed_values().grid_template_areas()[y][x]); if (grid_area_idx == -1) { found_grid_areas.append({ box.computed_values().grid_template_areas()[y][x], y, y + 1, x, x + 1 }); } else { auto& grid_area = found_grid_areas[grid_area_idx]; if (grid_area.row_start == y) { if (grid_area.column_end == x) grid_area.column_end = grid_area.column_end + 1; else return; } else { if (grid_area.row_end == y) { if (grid_area.column_start != x) return; grid_area.row_end = grid_area.row_end + 1; } else if (grid_area.row_end == y + 1) { if (grid_area.column_end < x || grid_area.column_end > x + 1) return; } else { return; } } } } } for (auto const& checked_grid_area : found_grid_areas) m_valid_grid_areas.append(checked_grid_area); } int GridFormattingContext::find_valid_grid_area(String const& needle) { for (size_t x = 0; x < m_valid_grid_areas.size(); x++) { if (m_valid_grid_areas[x].name == needle) return static_cast(x); } return -1; } void GridFormattingContext::run(Box const& box, LayoutMode, AvailableSpace const& available_space) { auto grid_template_columns = box.computed_values().grid_template_columns(); auto grid_template_rows = box.computed_values().grid_template_rows(); // https://drafts.csswg.org/css-grid/#overview-placement // 2.2. Placing Items // The contents of the grid container are organized into individual grid items (analogous to // flex items), which are then assigned to predefined areas in the grid. They can be explicitly // placed using coordinates through the grid-placement properties or implicitly placed into // empty areas using auto-placement. box.for_each_child_of_type([&](Box& child_box) { if (can_skip_is_anonymous_text_run(child_box)) return IterationDecision::Continue; m_boxes_to_place.append(child_box); return IterationDecision::Continue; }); auto column_count = get_count_of_tracks(grid_template_columns.track_list(), available_space, box); auto row_count = get_count_of_tracks(grid_template_rows.track_list(), available_space, box); m_occupation_grid = OccupationGrid(column_count, row_count); build_valid_grid_areas(box); // https://drafts.csswg.org/css-grid/#auto-placement-algo // 8.5. Grid Item Placement Algorithm // FIXME: 0. Generate anonymous grid items // 1. Position anything that's not auto-positioned. for (size_t i = 0; i < m_boxes_to_place.size(); i++) { auto const& child_box = m_boxes_to_place[i]; if (is_auto_positioned_row(child_box->computed_values().grid_row_start(), child_box->computed_values().grid_row_end()) || is_auto_positioned_column(child_box->computed_values().grid_column_start(), child_box->computed_values().grid_column_end())) continue; place_item_with_row_and_column_position(box, child_box); m_boxes_to_place.remove(i); i--; } // 2. Process the items locked to a given row. // FIXME: Do "dense" packing for (size_t i = 0; i < m_boxes_to_place.size(); i++) { auto const& child_box = m_boxes_to_place[i]; if (is_auto_positioned_row(child_box->computed_values().grid_row_start(), child_box->computed_values().grid_row_end())) continue; place_item_with_row_position(box, child_box); m_boxes_to_place.remove(i); i--; } // 3. Determine the columns in the implicit grid. // NOTE: "implicit grid" here is the same as the m_occupation_grid // 3.1. Start with the columns from the explicit grid. // NOTE: Done in step 1. // 3.2. Among all the items with a definite column position (explicitly positioned items, items // positioned in the previous step, and items not yet positioned but with a definite column) add // columns to the beginning and end of the implicit grid as necessary to accommodate those items. // NOTE: "Explicitly positioned items" and "items positioned in the previous step" done in step 1 // and 2, respectively. Adding columns for "items not yet positioned but with a definite column" // will be done in step 4. // 4. Position the remaining grid items. // For each grid item that hasn't been positioned by the previous steps, in order-modified document // order: auto auto_placement_cursor_x = 0; auto auto_placement_cursor_y = 0; for (size_t i = 0; i < m_boxes_to_place.size(); i++) { auto const& child_box = m_boxes_to_place[i]; // 4.1. For sparse packing: // FIXME: no distinction made. See #4.2 // 4.1.1. If the item has a definite column position: if (!is_auto_positioned_column(child_box->computed_values().grid_column_start(), child_box->computed_values().grid_column_end())) place_item_with_column_position(box, child_box, auto_placement_cursor_x, auto_placement_cursor_y); // 4.1.2. If the item has an automatic grid position in both axes: else place_item_with_no_declared_position(child_box, auto_placement_cursor_x, auto_placement_cursor_y); m_boxes_to_place.remove(i); i--; // FIXME: 4.2. For dense packing: } // https://drafts.csswg.org/css-grid/#overview-sizing // 2.3. Sizing the Grid // Once the grid items have been placed, the sizes of the grid tracks (rows and columns) are // calculated, accounting for the sizes of their contents and/or available space as specified in // the grid definition. // https://www.w3.org/TR/css-grid-2/#layout-algorithm // 12. Grid Sizing // This section defines the grid sizing algorithm, which determines the size of all grid tracks and, // by extension, the entire grid. // Each track has specified minimum and maximum sizing functions (which may be the same). Each // sizing function is either: // - A fixed sizing function ( or resolvable ). // - An intrinsic sizing function (min-content, max-content, auto, fit-content()). // - A flexible sizing function (). // The grid sizing algorithm defines how to resolve these sizing constraints into used track sizes. initialize_grid_tracks(box, available_space, column_count, row_count); // https://www.w3.org/TR/css-grid-2/#algo-overview // 12.1. Grid Sizing Algorithm // 1. First, the track sizing algorithm is used to resolve the sizes of the grid columns. // In this process, any grid item which is subgridded in the grid container’s inline axis is treated // as empty and its grid items (the grandchildren) are treated as direct children of the grid // container (their grandparent). This introspection is recursive. // Items which are subgridded only in the block axis, and whose grid container size in the inline // axis depends on the size of its contents are also introspected: since the size of the item in // this dimension can be dependent on the sizing of its subgridded tracks in the other, the size // contribution of any such item to this grid’s column sizing (see Resolve Intrinsic Track Sizes) is // taken under the provision of having determined its track sizing only up to the same point in the // Grid Sizing Algorithm as this itself. E.g. for the first pass through this step, the item will // have its tracks sized only through this first step; if a second pass of this step is triggered // then the item will have completed a first pass through steps 1-3 as well as the second pass of // this step prior to returning its size for consideration in this grid’s column sizing. Again, this // introspection is recursive. // https://www.w3.org/TR/css-grid-2/#algo-track-sizing // 12.3. Track Sizing Algorithm // The remainder of this section is the track sizing algorithm, which calculates from the min and // max track sizing functions the used track size. Each track has a base size, a which // grows throughout the algorithm and which will eventually be the track’s final size, and a growth // limit, a which provides a desired maximum size for the base size. There are 5 steps: // 1. Initialize Track Sizes // 2. Resolve Intrinsic Track Sizes // 3. Maximize Tracks // 4. Expand Flexible Tracks // 5. Expand Stretched auto Tracks calculate_sizes_of_columns(box, available_space); // https://www.w3.org/TR/css-grid-2/#algo-overview // 12.1. Grid Sizing Algorithm // 2. Next, the track sizing algorithm resolves the sizes of the grid rows. // In this process, any grid item which is subgridded in the grid container’s block axis is treated // as empty and its grid items (the grandchildren) are treated as direct children of the grid // container (their grandparent). This introspection is recursive. // As with sizing columns, items which are subgridded only in the inline axis, and whose grid // container size in the block axis depends on the size of its contents are also introspected. (As // with sizing columns, the size contribution to this grid’s row sizing is taken under the provision // of having determined its track sizing only up to this corresponding point in the algorithm; and // again, this introspection is recursive.) // To find the inline-axis available space for any items whose block-axis size contributions require // it, use the grid column sizes calculated in the previous step. If the grid container’s inline // size is definite, also apply justify-content to account for the effective column gap sizes. // https://www.w3.org/TR/css-grid-2/#algo-track-sizing // 12.3. Track Sizing Algorithm // The remainder of this section is the track sizing algorithm, which calculates from the min and // max track sizing functions the used track size. Each track has a base size, a which // grows throughout the algorithm and which will eventually be the track’s final size, and a growth // limit, a which provides a desired maximum size for the base size. There are 5 steps: // 1. Initialize Track Sizes // 2. Resolve Intrinsic Track Sizes // 3. Maximize Tracks // 4. Expand Flexible Tracks // 5. Expand Stretched auto Tracks calculate_sizes_of_rows(box); // https://www.w3.org/TR/css-grid-2/#algo-overview // 12.1. Grid Sizing Algorithm // 3. Then, if the min-content contribution of any grid item has changed based on the row sizes and // alignment calculated in step 2, re-resolve the sizes of the grid columns with the new min-content // and max-content contributions (once only). // To find the block-axis available space for any items whose inline-axis size contributions require // it, use the grid row sizes calculated in the previous step. If the grid container’s block size is // definite, also apply align-content to account for the effective row gap sizes // 4. Next, if the min-content contribution of any grid item has changed based on the column sizes and // alignment calculated in step 3, re-resolve the sizes of the grid rows with the new min-content // and max-content contributions (once only). // To find the inline-axis available space for any items whose block-axis size contributions require // it, use the grid column sizes calculated in the previous step. If the grid container’s inline // size is definite, also apply justify-content to account for the effective column gap sizes. // 5. Finally, the grid container is sized using the resulting size of the grid as its content size, // and the tracks are aligned within the grid container according to the align-content and // justify-content properties. // Once the size of each grid area is thus established, the grid items are laid out into their // respective containing blocks. The grid area’s width and height are considered definite for this // purpose. auto layout_box = [&](int row_start, int row_end, int column_start, int column_end, Box const& child_box) -> void { auto& child_box_state = m_state.get_mutable(child_box); CSSPixels x_start = 0; CSSPixels x_end = 0; CSSPixels y_start = 0; CSSPixels y_end = 0; for (int i = 0; i < column_start; i++) x_start += m_grid_columns[i].base_size; for (int i = 0; i < column_end; i++) x_end += m_grid_columns[i].base_size; for (int i = 0; i < row_start; i++) y_start += m_grid_rows[i].base_size; for (int i = 0; i < row_end; i++) y_end += m_grid_rows[i].base_size; child_box_state.set_content_width((x_end - x_start)); child_box_state.set_content_height((y_end - y_start)); child_box_state.offset = { x_start, y_start }; auto available_space_for_children = AvailableSpace(AvailableSize::make_definite(child_box_state.content_width()), AvailableSize::make_definite(child_box_state.content_height())); if (auto independent_formatting_context = layout_inside(child_box, LayoutMode::Normal, available_space_for_children)) independent_formatting_context->parent_context_did_dimension_child_root_box(); }; for (auto& positioned_box : m_positioned_boxes) { auto resolved_row_span = box.computed_values().row_gap().is_auto() ? positioned_box.raw_row_span() : positioned_box.raw_row_span() * 2; if (!box.computed_values().row_gap().is_auto() && positioned_box.gap_adjusted_row(box) == 0) resolved_row_span -= 1; if (positioned_box.gap_adjusted_row(box) + resolved_row_span > static_cast(m_grid_rows.size())) resolved_row_span = m_grid_rows.size() - positioned_box.gap_adjusted_row(box); auto resolved_column_span = box.computed_values().column_gap().is_auto() ? positioned_box.raw_column_span() : positioned_box.raw_column_span() * 2; if (!box.computed_values().column_gap().is_auto() && positioned_box.gap_adjusted_column(box) == 0) resolved_column_span -= 1; if (positioned_box.gap_adjusted_column(box) + resolved_column_span > static_cast(m_grid_columns.size())) resolved_column_span = m_grid_columns.size() - positioned_box.gap_adjusted_column(box); layout_box( positioned_box.gap_adjusted_row(box), positioned_box.gap_adjusted_row(box) + resolved_row_span, positioned_box.gap_adjusted_column(box), positioned_box.gap_adjusted_column(box) + resolved_column_span, positioned_box.box()); } CSSPixels total_y = 0; for (auto& grid_row : m_grid_rows) total_y += grid_row.base_size; m_automatic_content_height = total_y; } CSSPixels GridFormattingContext::automatic_content_height() const { return m_automatic_content_height; } bool GridFormattingContext::is_auto_positioned_row(CSS::GridTrackPlacement const& grid_row_start, CSS::GridTrackPlacement const& grid_row_end) const { return is_auto_positioned_track(grid_row_start, grid_row_end); } bool GridFormattingContext::is_auto_positioned_column(CSS::GridTrackPlacement const& grid_column_start, CSS::GridTrackPlacement const& grid_column_end) const { return is_auto_positioned_track(grid_column_start, grid_column_end); } bool GridFormattingContext::is_auto_positioned_track(CSS::GridTrackPlacement const& grid_track_start, CSS::GridTrackPlacement const& grid_track_end) const { return grid_track_start.is_auto_positioned() && grid_track_end.is_auto_positioned(); } CSSPixels GridFormattingContext::get_free_space_x(AvailableSpace const& available_space) { // https://www.w3.org/TR/css-grid-2/#algo-terms // free space: Equal to the available grid space minus the sum of the base sizes of all the grid // tracks (including gutters), floored at zero. If available grid space is indefinite, the free // space is indefinite as well. // FIXME: do indefinite space if (!available_space.width.is_definite()) return 0; CSSPixels sum_base_sizes = 0; for (auto& grid_column : m_grid_columns) sum_base_sizes += grid_column.base_size; return max(CSSPixels(0), available_space.width.to_px() - sum_base_sizes); } CSSPixels GridFormattingContext::get_free_space_y(Box const& box) { // https://www.w3.org/TR/css-grid-2/#algo-terms // free space: Equal to the available grid space minus the sum of the base sizes of all the grid // tracks (including gutters), floored at zero. If available grid space is indefinite, the free // space is indefinite as well. CSSPixels sum_base_sizes = 0; for (auto& grid_row : m_grid_rows) sum_base_sizes += grid_row.base_size; auto& box_state = m_state.get_mutable(box); if (box_state.has_definite_height()) return max(CSSPixels(0), CSSPixels(absolute_content_rect(box, m_state).height()) - sum_base_sizes); return -1; } int GridFormattingContext::get_line_index_by_line_name(String const& needle, CSS::GridTrackSizeList grid_track_size_list) { if (grid_track_size_list.track_list().size() == 0) return -1; auto repeated_tracks_count = 0; for (size_t x = 0; x < grid_track_size_list.track_list().size(); x++) { if (grid_track_size_list.track_list()[x].is_repeat()) { // FIXME: Calculate amount of columns/rows if auto-fill/fit if (!grid_track_size_list.track_list()[x].repeat().is_default()) return -1; auto repeat = grid_track_size_list.track_list()[x].repeat().grid_track_size_list(); for (size_t y = 0; y < repeat.track_list().size(); y++) { for (size_t z = 0; z < repeat.line_names()[y].size(); z++) { if (repeat.line_names()[y][z] == needle) return x + repeated_tracks_count; repeated_tracks_count++; } } } else { for (size_t y = 0; y < grid_track_size_list.line_names()[x].size(); y++) { if (grid_track_size_list.line_names()[x][y] == needle) return x + repeated_tracks_count; } } } for (size_t y = 0; y < grid_track_size_list.line_names()[grid_track_size_list.track_list().size()].size(); y++) { if (grid_track_size_list.line_names()[grid_track_size_list.track_list().size()][y] == needle) return grid_track_size_list.track_list().size() + repeated_tracks_count; } return -1; } OccupationGrid::OccupationGrid(int column_count, int row_count) { Vector occupation_grid_row; for (int column_index = 0; column_index < max(column_count, 1); column_index++) occupation_grid_row.append(false); for (int row_index = 0; row_index < max(row_count, 1); row_index++) m_occupation_grid.append(occupation_grid_row); } OccupationGrid::OccupationGrid() { } void OccupationGrid::maybe_add_column(int needed_number_of_columns) { if (needed_number_of_columns <= column_count()) return; auto column_count_before_modification = column_count(); for (auto& occupation_grid_row : m_occupation_grid) for (int idx = 0; idx < needed_number_of_columns - column_count_before_modification; idx++) occupation_grid_row.append(false); } void OccupationGrid::maybe_add_row(int needed_number_of_rows) { if (needed_number_of_rows <= row_count()) return; Vector new_occupation_grid_row; for (int idx = 0; idx < column_count(); idx++) new_occupation_grid_row.append(false); for (int idx = 0; idx < needed_number_of_rows - row_count(); idx++) m_occupation_grid.append(new_occupation_grid_row); } void OccupationGrid::set_occupied(int column_start, int column_end, int row_start, int row_end) { for (int row_index = 0; row_index < row_count(); row_index++) { if (row_index >= row_start && row_index < row_end) { for (int column_index = 0; column_index < column_count(); column_index++) { if (column_index >= column_start && column_index < column_end) set_occupied(column_index, row_index); } } } } void OccupationGrid::set_occupied(int column_index, int row_index) { m_occupation_grid[row_index][column_index] = true; } bool OccupationGrid::is_occupied(int column_index, int row_index) { return m_occupation_grid[row_index][column_index]; } int PositionedBox::gap_adjusted_row(Box const& parent_box) { return parent_box.computed_values().row_gap().is_auto() ? m_row : m_row * 2; } int PositionedBox::gap_adjusted_column(Box const& parent_box) { return parent_box.computed_values().column_gap().is_auto() ? m_column : m_column * 2; } }