/* * Copyright (c) 2021, Andreas Kling * Copyright (c) 2021, Tobias Christiansen * * SPDX-License-Identifier: BSD-2-Clause */ #include "InlineFormattingContext.h" #include #include #include #include #include #include #include #include namespace Web::Layout { FlexFormattingContext::FlexFormattingContext(Box& context_box, FormattingContext* parent) : FormattingContext(context_box, parent) { } FlexFormattingContext::~FlexFormattingContext() { } struct DirectionAgnosticMargins { float main_before { 0 }; float main_after { 0 }; float cross_before { 0 }; float cross_after { 0 }; }; struct FlexItem { Box& box; float flex_base_size { 0 }; float hypothetical_main_size { 0 }; float hypothetical_cross_size { 0 }; float hypothetical_cross_size_with_margins() { return hypothetical_cross_size + margins.cross_before + margins.cross_after; } float target_main_size { 0 }; bool frozen { false }; Optional flex_factor {}; float scaled_flex_shrink_factor { 0 }; float max_content_flex_fraction { 0 }; float main_size { 0 }; float cross_size { 0 }; float main_offset { 0 }; float cross_offset { 0 }; DirectionAgnosticMargins margins {}; bool is_min_violation { false }; bool is_max_violation { false }; }; struct FlexLine { Vector items; float cross_size { 0 }; }; void FlexFormattingContext::run(Box& box, LayoutMode) { // This implements https://www.w3.org/TR/css-flexbox-1/#layout-algorithm // FIXME: Implement reverse and ordering. // Determine main/cross direction auto flex_direction = box.computed_values().flex_direction(); auto is_row = (flex_direction == CSS::FlexDirection::Row || flex_direction == CSS::FlexDirection::RowReverse); auto main_size_is_infinite = false; auto get_pixel_size = [](Box& box, const CSS::Length& length) { return length.resolved(CSS::Length::make_px(0), box, box.containing_block()->width()).to_px(box); }; auto layout_for_maximum_main_size = [&](Box& box) { bool main_constrained = false; if (is_row) { if (!box.computed_values().width().is_undefined_or_auto() || !box.computed_values().min_width().is_undefined_or_auto()) { main_constrained = true; } } else { if (!box.computed_values().height().is_undefined_or_auto() || !box.computed_values().min_height().is_undefined_or_auto()) { main_constrained = true; } } if (!main_constrained && box.children_are_inline()) { auto& block_container = verify_cast(box); BlockFormattingContext bfc(block_container, this); bfc.run(box, LayoutMode::Default); InlineFormattingContext ifc(block_container, &bfc); if (is_row) { ifc.run(box, LayoutMode::OnlyRequiredLineBreaks); return box.width(); } else { ifc.run(box, LayoutMode::AllPossibleLineBreaks); return box.height(); } } if (is_row) { layout_inside(box, LayoutMode::OnlyRequiredLineBreaks); return box.width(); } else { return BlockFormattingContext::compute_theoretical_height(box); } }; auto containing_block_effective_main_size = [&is_row, &main_size_is_infinite](Box& box) { if (is_row) { if (box.containing_block()->has_definite_width()) return box.containing_block()->width(); main_size_is_infinite = true; return NumericLimits::max(); } else { if (box.containing_block()->has_definite_height()) return box.containing_block()->height(); main_size_is_infinite = true; return NumericLimits::max(); } }; auto has_definite_main_size = [&is_row](Box& box) { return is_row ? box.has_definite_width() : box.has_definite_height(); }; Function cross_size_is_absolute_or_resolved_nicely = [&](NodeWithStyle& box) { auto length = is_row ? box.computed_values().height() : box.computed_values().width(); if (length.is_absolute() || length.is_relative()) return true; if (length.is_undefined_or_auto()) return false; if (!box.parent()) return false; if (length.is_percentage() && cross_size_is_absolute_or_resolved_nicely(*box.parent())) return true; return false; }; auto has_definite_cross_size = [&is_row, &cross_size_is_absolute_or_resolved_nicely](Box& box) { return (is_row ? box.has_definite_height() : box.has_definite_width()) && cross_size_is_absolute_or_resolved_nicely(box); }; auto specified_main_size = [&is_row](Box& box) { return is_row ? box.width() : box.height(); }; auto specified_main_size_of_child_box = [&is_row, &specified_main_size](Box& box, Box& child_box) { auto main_size_of_parent = specified_main_size(box); if (is_row) { return child_box.computed_values().width().resolved_or_zero(child_box, main_size_of_parent).to_px(child_box); } else { return child_box.computed_values().height().resolved_or_zero(child_box, main_size_of_parent).to_px(child_box); } }; auto specified_cross_size = [&is_row](Box& box) { return is_row ? box.height() : box.width(); }; auto has_main_min_size = [&is_row](Box& box) { return is_row ? !box.computed_values().min_width().is_undefined_or_auto() : !box.computed_values().min_height().is_undefined_or_auto(); }; auto has_cross_min_size = [&is_row](Box& box) { return is_row ? !box.computed_values().min_height().is_undefined_or_auto() : !box.computed_values().min_width().is_undefined_or_auto(); }; auto specified_main_min_size = [&is_row, &get_pixel_size](Box& box) { return is_row ? get_pixel_size(box, box.computed_values().min_width()) : get_pixel_size(box, box.computed_values().min_height()); }; auto specified_cross_min_size = [&is_row, &get_pixel_size](Box& box) { return is_row ? get_pixel_size(box, box.computed_values().min_height()) : get_pixel_size(box, box.computed_values().min_width()); }; auto has_main_max_size = [&is_row](Box& box) { return is_row ? !box.computed_values().max_width().is_undefined_or_auto() : !box.computed_values().max_height().is_undefined_or_auto(); }; auto has_cross_max_size = [&is_row](Box& box) { return is_row ? !box.computed_values().max_height().is_undefined_or_auto() : !box.computed_values().max_width().is_undefined_or_auto(); }; auto specified_main_max_size = [&is_row, &get_pixel_size](Box& box) { return is_row ? get_pixel_size(box, box.computed_values().max_width()) : get_pixel_size(box, box.computed_values().max_height()); }; auto specified_cross_max_size = [&is_row, &get_pixel_size](Box& box) { return is_row ? get_pixel_size(box, box.computed_values().max_height()) : get_pixel_size(box, box.computed_values().max_width()); }; auto calculated_main_size = [&is_row](Box& box) { return is_row ? box.width() : box.height(); }; auto is_cross_auto = [&is_row](Box& box) { return is_row ? box.computed_values().height().is_auto() : box.computed_values().width().is_auto(); }; auto is_main_axis_margin_first_auto = [&is_row](Box& box) { return is_row ? box.computed_values().margin().left.is_auto() : box.computed_values().margin().top.is_auto(); }; auto is_main_axis_margin_second_auto = [&is_row](Box& box) { return is_row ? box.computed_values().margin().right.is_auto() : box.computed_values().margin().bottom.is_auto(); }; auto sum_of_margin_padding_border_in_main_axis = [&is_row](Box& box) { if (is_row) { return box.box_model().margin.left + box.box_model().margin.right + box.box_model().padding.left + box.box_model().padding.right + box.box_model().border.left + box.box_model().border.right; } else { return box.box_model().margin.top + box.box_model().margin.bottom + box.box_model().padding.top + box.box_model().padding.bottom + box.box_model().border.top + box.box_model().border.bottom; } }; auto calculate_hypothetical_cross_size = [&is_row, this](Box& box) { bool cross_constrained = false; if (is_row) { if (!box.computed_values().height().is_undefined_or_auto() || !box.computed_values().min_height().is_undefined_or_auto()) { cross_constrained = true; } } else { if (!box.computed_values().width().is_undefined_or_auto() || !box.computed_values().min_width().is_undefined_or_auto()) { cross_constrained = true; } } if (!cross_constrained && box.children_are_inline()) { auto& block_container = verify_cast(box); BlockFormattingContext bfc(block_container, this); bfc.run(box, LayoutMode::Default); InlineFormattingContext ifc(block_container, &bfc); ifc.run(box, LayoutMode::OnlyRequiredLineBreaks); if (is_row) return box.height(); return box.width(); } if (is_row) { return BlockFormattingContext::compute_theoretical_height(box); } else { BlockFormattingContext context(verify_cast(box), this); context.compute_width(box); return box.width(); } }; auto set_main_size = [&is_row](Box& box, float size) { if (is_row) box.set_width(size); else box.set_height(size); }; auto set_cross_size = [&is_row](Box& box, float size) { if (is_row) box.set_height(size); else box.set_width(size); }; auto set_offset = [&is_row](Box& box, float main_offset, float cross_offset) { if (is_row) box.set_offset(main_offset, cross_offset); else box.set_offset(cross_offset, main_offset); }; auto set_main_axis_first_margin = [&is_row](Box& box, float margin) { if (is_row) box.box_model().margin.left = margin; else box.box_model().margin.top = margin; }; auto set_main_axis_second_margin = [&is_row](Box& box, float margin) { if (is_row) box.box_model().margin.right = margin; else box.box_model().margin.bottom = margin; }; auto populate_specified_margins = [&is_row](FlexItem& item) { auto width_of_containing_block = item.box.width_of_logical_containing_block(); if (is_row) { item.margins.main_before = item.box.computed_values().margin().left.resolved_or_zero(item.box, width_of_containing_block).to_px(item.box); item.margins.main_after = item.box.computed_values().margin().right.resolved_or_zero(item.box, width_of_containing_block).to_px(item.box); item.margins.cross_before = item.box.computed_values().margin().top.resolved_or_zero(item.box, width_of_containing_block).to_px(item.box); item.margins.cross_after = item.box.computed_values().margin().bottom.resolved_or_zero(item.box, width_of_containing_block).to_px(item.box); } else { item.margins.main_before = item.box.computed_values().margin().left.resolved_or_zero(item.box, width_of_containing_block).to_px(item.box); item.margins.main_after = item.box.computed_values().margin().right.resolved_or_zero(item.box, width_of_containing_block).to_px(item.box); item.margins.cross_before = item.box.computed_values().margin().top.resolved_or_zero(item.box, width_of_containing_block).to_px(item.box); item.margins.cross_after = item.box.computed_values().margin().bottom.resolved_or_zero(item.box, width_of_containing_block).to_px(item.box); } }; // 1. Generate anonymous flex items // More like, sift through the already generated items. // After this step no items are to be added or removed from flex_items! // It holds every item we need to consider and there should be nothing in the following // calculations that could change that. // This is particularly important since we take references to the items stored in flex_items // later, whose addresses won't be stable if we added or removed any items. Vector flex_items; if (!box.has_definite_width()) box.set_width(box.width_of_logical_containing_block()); box.for_each_child_of_type([&](Box& child_box) { layout_inside(child_box, LayoutMode::Default); // Skip anonymous text runs that are only whitespace. if (child_box.is_anonymous() && !child_box.first_child_of_type()) { bool contains_only_white_space = true; child_box.for_each_in_inclusive_subtree_of_type([&contains_only_white_space](auto& text_node) { if (!text_node.text_for_rendering().is_whitespace()) { contains_only_white_space = false; return IterationDecision::Break; } return IterationDecision::Continue; }); if (contains_only_white_space) return IterationDecision::Continue; } // Skip any "out-of-flow" children if (child_box.is_out_of_flow(*this)) return IterationDecision::Continue; child_box.set_flex_item(true); FlexItem flex_item = { child_box }; populate_specified_margins(flex_item); flex_items.append(move(flex_item)); return IterationDecision::Continue; }); // 2. Determine the available main and cross space for the flex items float main_available_size = 0; [[maybe_unused]] float cross_available_size = 0; [[maybe_unused]] float main_max_size = NumericLimits::max(); [[maybe_unused]] float main_min_size = 0; float cross_max_size = NumericLimits::max(); float cross_min_size = 0; bool main_is_constrained = false; bool cross_is_constrained = false; if (has_definite_main_size(box)) { main_is_constrained = true; main_available_size = specified_main_size(box); } else { if (has_main_max_size(box)) { main_max_size = specified_main_max_size(box); main_available_size = main_max_size; main_is_constrained = true; } if (has_main_min_size(box)) { main_min_size = specified_main_min_size(box); main_is_constrained = true; } if (!main_is_constrained) { auto available_main_size = containing_block_effective_main_size(box); main_available_size = available_main_size - sum_of_margin_padding_border_in_main_axis(box); if (box.computed_values().flex_wrap() == CSS::FlexWrap::Wrap || box.computed_values().flex_wrap() == CSS::FlexWrap::WrapReverse) { main_available_size = specified_main_size(*box.containing_block()); main_is_constrained = true; } } } if (has_definite_cross_size(box)) { cross_available_size = specified_cross_size(box); } else { if (has_cross_max_size(box)) { cross_max_size = specified_cross_max_size(box); cross_is_constrained = true; } if (has_cross_min_size(box)) { cross_min_size = specified_cross_min_size(box); cross_is_constrained = true; } // FIXME: Is this right? Probably not. if (!cross_is_constrained) cross_available_size = cross_max_size; } // 3. Determine the flex base size and hypothetical main size of each item for (auto& flex_item : flex_items) { auto& child_box = flex_item.box; auto flex_basis = child_box.computed_values().flex_basis(); if (flex_basis.type == CSS::FlexBasis::Length) { // A auto specified_base_size = get_pixel_size(child_box, flex_basis.length); if (specified_base_size == 0) flex_item.flex_base_size = calculated_main_size(flex_item.box); else flex_item.flex_base_size = specified_base_size; } else if (flex_basis.type == CSS::FlexBasis::Content && has_definite_cross_size(child_box) // FIXME: && has intrinsic aspect ratio. && false) { // B TODO(); // flex_base_size is calculated from definite cross size and intrinsic aspect ratio } else if (flex_basis.type == CSS::FlexBasis::Content // FIXME: && sized under min-content or max-content contstraints && false) { // C TODO(); // Size child_box under the constraints, flex_base_size is then the resulting main_size. } else if (flex_basis.type == CSS::FlexBasis::Content // FIXME: && main_size is infinite && inline axis is parallel to the main axis && false && false) { // D TODO(); // Use rules for a box in orthogonal flow } else { // E // FIXME: This is probably too naive. // FIXME: Care about FlexBasis::Auto if (has_definite_main_size(child_box)) { flex_item.flex_base_size = specified_main_size_of_child_box(box, child_box); } else { flex_item.flex_base_size = layout_for_maximum_main_size(child_box); } } auto clamp_min = has_main_min_size(child_box) ? specified_main_min_size(child_box) : 0; auto clamp_max = has_main_max_size(child_box) ? specified_main_max_size(child_box) : NumericLimits::max(); flex_item.hypothetical_main_size = clamp(flex_item.flex_base_size, clamp_min, clamp_max); } // 4. Determine the main size of the flex container if ((!main_is_constrained && main_size_is_infinite) || main_available_size == 0) { // Uses https://www.w3.org/TR/css-flexbox-1/#intrinsic-main-sizes // 9.9.1 // 1. float largest_max_content_flex_fraction = 0; for (auto& flex_item : flex_items) { // FIXME: This needs some serious work. float max_content_contribution = calculated_main_size(flex_item.box); float max_content_flex_fraction = max_content_contribution - flex_item.flex_base_size; if (max_content_flex_fraction > 0) { max_content_flex_fraction /= max(flex_item.box.computed_values().flex_grow_factor().value_or(1), 1.0f); } else { max_content_flex_fraction /= max(flex_item.box.computed_values().flex_shrink_factor().value_or(1), 1.0f) * flex_item.flex_base_size; } flex_item.max_content_flex_fraction = max_content_flex_fraction; if (max_content_flex_fraction > largest_max_content_flex_fraction) largest_max_content_flex_fraction = max_content_flex_fraction; } // 2. Omitted // 3. float result = 0; for (auto& flex_item : flex_items) { auto product = 0; if (flex_item.max_content_flex_fraction > 0) { product = largest_max_content_flex_fraction * flex_item.box.computed_values().flex_grow_factor().value_or(1); } else { product = largest_max_content_flex_fraction * max(flex_item.box.computed_values().flex_shrink_factor().value_or(1), 1.0f) * flex_item.flex_base_size; } result += flex_item.flex_base_size + product; } main_available_size = clamp(result, main_min_size, main_max_size); } set_main_size(box, main_available_size); // 5. Collect flex items into flex lines: // After this step no additional items are to be added to flex_lines or any of its items! Vector flex_lines; // FIXME: Also support wrap-reverse if (box.computed_values().flex_wrap() == CSS::FlexWrap::Nowrap) { FlexLine line; for (auto& flex_item : flex_items) { line.items.append(&flex_item); } flex_lines.append(line); } else { FlexLine line; float line_main_size = 0; for (auto& flex_item : flex_items) { if ((line_main_size + flex_item.hypothetical_main_size) > main_available_size) { flex_lines.append(line); line = {}; line_main_size = 0; } line.items.append(&flex_item); line_main_size += flex_item.hypothetical_main_size; } flex_lines.append(line); } // 6. Resolve the flexible lengths https://www.w3.org/TR/css-flexbox-1/#resolve-flexible-lengths enum FlexFactor { FlexGrowFactor, FlexShrinkFactor }; FlexFactor used_flex_factor; // 6.1. Determine used flex factor for (auto& flex_line : flex_lines) { size_t number_of_unfrozen_items_on_line = flex_line.items.size(); float sum_of_hypothetical_main_sizes = 0; for (auto& flex_item : flex_line.items) { sum_of_hypothetical_main_sizes += flex_item->hypothetical_main_size; } if (sum_of_hypothetical_main_sizes < main_available_size) used_flex_factor = FlexFactor::FlexGrowFactor; else used_flex_factor = FlexFactor::FlexShrinkFactor; for (auto& flex_item : flex_line.items) { if (used_flex_factor == FlexFactor::FlexGrowFactor) flex_item->flex_factor = flex_item->box.computed_values().flex_grow_factor(); else if (used_flex_factor == FlexFactor::FlexShrinkFactor) flex_item->flex_factor = flex_item->box.computed_values().flex_shrink_factor(); } // 6.2. Size inflexible items auto freeze_item_setting_target_main_size_to_hypothetical_main_size = [&number_of_unfrozen_items_on_line](FlexItem& item) { item.target_main_size = item.hypothetical_main_size; number_of_unfrozen_items_on_line--; item.frozen = true; }; for (auto& flex_item : flex_line.items) { if (flex_item->flex_factor.has_value() && flex_item->flex_factor.value() == 0) { freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item); } else if (used_flex_factor == FlexFactor::FlexGrowFactor) { // FIXME: Spec doesn't include the == case, but we take a too basic approach to calculating the values used so this is appropriate if (flex_item->flex_base_size > flex_item->hypothetical_main_size) { freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item); } } else if (used_flex_factor == FlexFactor::FlexShrinkFactor) { if (flex_item->flex_base_size < flex_item->hypothetical_main_size) { freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item); } } } // 6.3. Calculate initial free space auto calculate_free_space = [&]() { float sum_of_items_on_line = 0; for (auto& flex_item : flex_line.items) { if (flex_item->frozen) sum_of_items_on_line += flex_item->target_main_size; else sum_of_items_on_line += flex_item->flex_base_size; } return main_available_size - sum_of_items_on_line; }; float initial_free_space = calculate_free_space(); // 6.4 Loop auto for_each_unfrozen_item = [&flex_line](auto callback) { for (auto& flex_item : flex_line.items) { if (!flex_item->frozen) callback(flex_item); } }; while (number_of_unfrozen_items_on_line > 0) { // b Calculate the remaining free space auto remaining_free_space = calculate_free_space(); float sum_of_unfrozen_flex_items_flex_factors = 0; for_each_unfrozen_item([&](FlexItem* item) { sum_of_unfrozen_flex_items_flex_factors += item->flex_factor.value_or(1); }); if (sum_of_unfrozen_flex_items_flex_factors < 1) { auto intermediate_free_space = initial_free_space * sum_of_unfrozen_flex_items_flex_factors; if (AK::abs(intermediate_free_space) < AK::abs(remaining_free_space)) remaining_free_space = intermediate_free_space; } // c Distribute free space proportional to the flex factors if (remaining_free_space != 0) { if (used_flex_factor == FlexFactor::FlexGrowFactor) { float sum_of_flex_grow_factor_of_unfrozen_items = sum_of_unfrozen_flex_items_flex_factors; for_each_unfrozen_item([&](FlexItem* flex_item) { float ratio = flex_item->flex_factor.value_or(1) / sum_of_flex_grow_factor_of_unfrozen_items; flex_item->target_main_size = flex_item->flex_base_size + (remaining_free_space * ratio); }); } else if (used_flex_factor == FlexFactor::FlexShrinkFactor) { float sum_of_scaled_flex_shrink_factor_of_unfrozen_items = 0; for_each_unfrozen_item([&](FlexItem* flex_item) { flex_item->scaled_flex_shrink_factor = flex_item->flex_factor.value_or(1) * flex_item->flex_base_size; sum_of_scaled_flex_shrink_factor_of_unfrozen_items += flex_item->scaled_flex_shrink_factor; }); for_each_unfrozen_item([&](FlexItem* flex_item) { float ratio = 1.0f; if (sum_of_scaled_flex_shrink_factor_of_unfrozen_items != 0.0f) ratio = flex_item->scaled_flex_shrink_factor / sum_of_scaled_flex_shrink_factor_of_unfrozen_items; flex_item->target_main_size = flex_item->flex_base_size - (AK::abs(remaining_free_space) * ratio); }); } } else { // This isn't spec but makes sense. for_each_unfrozen_item([&](FlexItem* flex_item) { flex_item->target_main_size = flex_item->flex_base_size; }); } // d Fix min/max violations. float adjustments = 0.0f; for_each_unfrozen_item([&](FlexItem* item) { auto min_main = has_main_min_size(item->box) ? specified_main_min_size(item->box) : 0; auto max_main = has_main_max_size(item->box) ? specified_main_max_size(item->box) : NumericLimits::max(); float original_target_size = item->target_main_size; if (item->target_main_size < min_main) { item->target_main_size = min_main; item->is_min_violation = true; } if (item->target_main_size > max_main) { item->target_main_size = max_main; item->is_max_violation = true; } float delta = item->target_main_size - original_target_size; adjustments += delta; }); // e Freeze over-flexed items float total_violation = adjustments; if (total_violation == 0) { for_each_unfrozen_item([&](FlexItem* item) { --number_of_unfrozen_items_on_line; item->frozen = true; }); } else if (total_violation > 0) { for_each_unfrozen_item([&](FlexItem* item) { if (item->is_min_violation) { --number_of_unfrozen_items_on_line; item->frozen = true; } }); } else if (total_violation < 0) { for_each_unfrozen_item([&](FlexItem* item) { if (item->is_max_violation) { --number_of_unfrozen_items_on_line; item->frozen = true; } }); } } // 6.5. for (auto& flex_item : flex_line.items) { flex_item->main_size = flex_item->target_main_size; }; } // Cross Size Determination // 7. Determine the hypothetical cross size of each item for (auto& flex_item : flex_items) { flex_item.hypothetical_cross_size = calculate_hypothetical_cross_size(flex_item.box); } // 8. Calculate the cross size of each flex line. if (flex_lines.size() == 1 && has_definite_cross_size(box)) { flex_lines[0].cross_size = specified_cross_size(box); } else { for (auto& flex_line : flex_lines) { // FIXME: Implement 8.1 // FIXME: This isn't spec but makes sense here if (has_definite_cross_size(box) && box.computed_values().align_items() == CSS::AlignItems::Stretch) { flex_line.cross_size = specified_cross_size(box) / flex_lines.size(); continue; } // 8.2 float largest_hypothetical_cross_size = 0; for (auto& flex_item : flex_line.items) { if (largest_hypothetical_cross_size < flex_item->hypothetical_cross_size_with_margins()) largest_hypothetical_cross_size = flex_item->hypothetical_cross_size_with_margins(); } // 8.3 flex_line.cross_size = max(0.0f, largest_hypothetical_cross_size); } if (flex_lines.size() == 1) { clamp(flex_lines[0].cross_size, cross_min_size, cross_max_size); } } // 9. Handle 'align-content: stretch'. // FIXME: This // 10. Collapse visibility:collapse items. // FIXME: This // 11. Determine the used cross size of each flex item. // FIXME: Get the alignment via "align-self" of the item (which accesses "align-items" of the parent if unset) for (auto& flex_line : flex_lines) { for (auto& flex_item : flex_line.items) { if (is_cross_auto(flex_item->box) && box.computed_values().align_items() == CSS::AlignItems::Stretch) { flex_item->cross_size = flex_line.cross_size; } else { flex_item->cross_size = flex_item->hypothetical_cross_size; } } } // 12. Distribute any remaining free space. for (auto& flex_line : flex_lines) { // 12.1. float used_main_space = 0; size_t auto_margins = 0; for (auto& flex_item : flex_line.items) { used_main_space += flex_item->main_size; if (is_main_axis_margin_first_auto(flex_item->box)) ++auto_margins; if (is_main_axis_margin_second_auto(flex_item->box)) ++auto_margins; } float remaining_free_space = main_available_size - used_main_space; if (remaining_free_space > 0) { float size_per_auto_margin = remaining_free_space / (float)auto_margins; for (auto& flex_item : flex_line.items) { if (is_main_axis_margin_first_auto(flex_item->box)) set_main_axis_first_margin(flex_item->box, size_per_auto_margin); if (is_main_axis_margin_second_auto(flex_item->box)) set_main_axis_second_margin(flex_item->box, size_per_auto_margin); } } else { for (auto& flex_item : flex_line.items) { if (is_main_axis_margin_first_auto(flex_item->box)) set_main_axis_first_margin(flex_item->box, 0); if (is_main_axis_margin_second_auto(flex_item->box)) set_main_axis_second_margin(flex_item->box, 0); } } // 12.2. float space_between_items = 0; float space_before_first_item = 0; auto number_of_items = flex_line.items.size(); switch (box.computed_values().justify_content()) { case CSS::JustifyContent::FlexStart: break; case CSS::JustifyContent::FlexEnd: space_before_first_item = main_available_size - used_main_space; break; case CSS::JustifyContent::Center: space_before_first_item = (main_available_size - used_main_space) / 2.0f; break; case CSS::JustifyContent::SpaceBetween: space_between_items = remaining_free_space / (number_of_items - 1); break; case CSS::JustifyContent::SpaceAround: space_between_items = remaining_free_space / number_of_items; space_before_first_item = space_between_items / 2.0f; break; } // FIXME: Support reverse float main_offset = space_before_first_item; for (auto& flex_item : flex_line.items) { flex_item->main_offset = main_offset; main_offset += flex_item->main_size + space_between_items; } } // 13. Resolve cross-axis auto margins. // FIXME: This // 14. Align all flex items along the cross-axis // FIXME: Get the alignment via "align-self" of the item (which accesses "align-items" of the parent if unset) // FIXME: Take better care of margins float line_cross_offset = 0; for (auto& flex_line : flex_lines) { for (auto* flex_item : flex_line.items) { switch (box.computed_values().align_items()) { case CSS::AlignItems::Baseline: //FIXME: Implement this // Fallthrough case CSS::AlignItems::FlexStart: case CSS::AlignItems::Stretch: flex_item->cross_offset = line_cross_offset + flex_item->margins.cross_before; break; case CSS::AlignItems::FlexEnd: flex_item->cross_offset = line_cross_offset + flex_line.cross_size - flex_item->cross_size; break; case CSS::AlignItems::Center: flex_item->cross_offset = line_cross_offset + (flex_line.cross_size / 2.0f) - (flex_item->cross_size / 2.0f); break; default: break; } } line_cross_offset += flex_line.cross_size; } // 15. Determine the flex container’s used cross size: if (has_definite_cross_size(box)) { float clamped_cross_size = clamp(specified_cross_size(box), cross_min_size, cross_max_size); set_cross_size(box, clamped_cross_size); } else { float sum_of_flex_lines_cross_sizes = 0; for (auto& flex_line : flex_lines) { sum_of_flex_lines_cross_sizes += flex_line.cross_size; } float clamped_cross_size = clamp(sum_of_flex_lines_cross_sizes, cross_min_size, cross_max_size); set_cross_size(box, clamped_cross_size); } // 16. Align all flex lines // FIXME: Support align-content // FIXME: Support reverse for (auto& flex_line : flex_lines) { for (auto* flex_item : flex_line.items) { set_main_size(flex_item->box, flex_item->main_size); set_cross_size(flex_item->box, flex_item->cross_size); set_offset(flex_item->box, flex_item->main_offset, flex_item->cross_offset); } } } }