/* * Copyright (c) 2021, Hunter Salyer * Copyright (c) 2022, Gregory Bertilson * * SPDX-License-Identifier: BSD-2-Clause */ #include #include "Context.h" #include "Enums.h" #include "LookupTables.h" #include "Parser.h" #include "TreeParser.h" #include "Utilities.h" namespace Video::VP9 { // Parsing of binary trees is handled here, as defined in sections 9.3. // Each syntax element is defined in its own section for each overarching section listed here: // - 9.3.1: Selection of the binary tree to be used. // - 9.3.2: Probability selection based on context and often the node of the tree. // - 9.3.4: Counting each syntax element when it is read. template inline ErrorOr parse_tree(BitStream& bit_stream, TreeParser::TreeSelection tree_selection, Function const& probability_getter) { // 9.3.3: The tree decoding function. if (tree_selection.is_single_value()) return static_cast(tree_selection.single_value()); int const* tree = tree_selection.tree(); int n = 0; do { u8 node = n >> 1; n = tree[n + TRY(bit_stream.read_bool(probability_getter(node)))]; } while (n > 0); return static_cast(-n); } inline void increment_counter(u8& counter) { counter = min(static_cast(counter) + 1, 255); } ErrorOr TreeParser::parse_partition(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, bool has_rows, bool has_columns, BlockSubsize block_subsize, u8 num_8x8, PartitionContextView above_partition_context, PartitionContextView left_partition_context, u32 row, u32 column, bool frame_is_intra) { // Tree array TreeParser::TreeSelection tree = { PartitionSplit }; if (has_rows && has_columns) tree = { partition_tree }; else if (has_rows) tree = { rows_partition_tree }; else if (has_columns) tree = { cols_partition_tree }; // Probability array u32 above = 0; u32 left = 0; auto bsl = mi_width_log2_lookup[block_subsize]; auto block_offset = mi_width_log2_lookup[Block_64x64] - bsl; for (auto i = 0; i < num_8x8; i++) { if (column + i >= above_partition_context.size()) dbgln("column={}, i={}, size={}", column, i, above_partition_context.size()); above |= above_partition_context[column + i]; if (row + i >= left_partition_context.size()) dbgln("row={}, i={}, size={}", row, i, left_partition_context.size()); left |= left_partition_context[row + i]; } above = (above & (1 << block_offset)) > 0; left = (left & (1 << block_offset)) > 0; auto context = bsl * 4 + left * 2 + above; u8 const* probabilities = frame_is_intra ? probability_table.kf_partition_probs()[context] : probability_table.partition_probs()[context]; Function probability_getter = [&](u8 node) { if (has_rows && has_columns) return probabilities[node]; if (has_columns) return probabilities[1]; return probabilities[2]; }; auto value = TRY(parse_tree(bit_stream, tree, probability_getter)); increment_counter(counter.m_counts_partition[context][value]); return value; } ErrorOr TreeParser::parse_default_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, BlockSubsize mi_size, FrameBlockContext above, FrameBlockContext left, Array const& block_sub_modes, u8 index_x, u8 index_y) { // FIXME: This should use a struct for the above and left contexts. // Tree TreeParser::TreeSelection tree = { intra_mode_tree }; // Probabilities PredictionMode above_mode, left_mode; if (mi_size >= Block_8x8) { above_mode = above.sub_modes[2]; left_mode = left.sub_modes[1]; } else { if (index_y > 0) above_mode = block_sub_modes[index_x]; else above_mode = above.sub_modes[2 + index_x]; if (index_x > 0) left_mode = block_sub_modes[index_y << 1]; else left_mode = left.sub_modes[1 + (index_y << 1)]; } u8 const* probabilities = probability_table.kf_y_mode_probs()[to_underlying(above_mode)][to_underlying(left_mode)]; auto value = TRY(parse_tree(bit_stream, tree, [&](u8 node) { return probabilities[node]; })); // Default intra mode is not counted. return value; } ErrorOr TreeParser::parse_default_uv_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, PredictionMode y_mode) { // Tree TreeParser::TreeSelection tree = { intra_mode_tree }; // Probabilities u8 const* probabilities = probability_table.kf_uv_mode_prob()[to_underlying(y_mode)]; auto value = TRY(parse_tree(bit_stream, tree, [&](u8 node) { return probabilities[node]; })); // Default UV mode is not counted. return value; } ErrorOr TreeParser::parse_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, BlockSubsize mi_size) { // Tree TreeParser::TreeSelection tree = { intra_mode_tree }; // Probabilities auto context = size_group_lookup[mi_size]; u8 const* probabilities = probability_table.y_mode_probs()[context]; auto value = TRY(parse_tree(bit_stream, tree, [&](u8 node) { return probabilities[node]; })); increment_counter(counter.m_counts_intra_mode[context][to_underlying(value)]); return value; } ErrorOr TreeParser::parse_sub_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter) { // Tree TreeParser::TreeSelection tree = { intra_mode_tree }; // Probabilities u8 const* probabilities = probability_table.y_mode_probs()[0]; auto value = TRY(parse_tree(bit_stream, tree, [&](u8 node) { return probabilities[node]; })); increment_counter(counter.m_counts_intra_mode[0][to_underlying(value)]); return value; } ErrorOr TreeParser::parse_uv_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, PredictionMode y_mode) { // Tree TreeParser::TreeSelection tree = { intra_mode_tree }; // Probabilities u8 const* probabilities = probability_table.uv_mode_probs()[to_underlying(y_mode)]; auto value = TRY(parse_tree(bit_stream, tree, [&](u8 node) { return probabilities[node]; })); increment_counter(counter.m_counts_uv_mode[to_underlying(y_mode)][to_underlying(value)]); return value; } ErrorOr TreeParser::parse_segment_id(BitStream& bit_stream, Array const& probabilities) { auto value = TRY(parse_tree(bit_stream, { segment_tree }, [&](u8 node) { return probabilities[node]; })); // Segment ID is not counted. return value; } ErrorOr TreeParser::parse_segment_id_predicted(BitStream& bit_stream, Array const& probabilities, u8 above_seg_pred_context, u8 left_seg_pred_context) { auto context = left_seg_pred_context + above_seg_pred_context; auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probabilities[context]; })); // Segment ID prediction is not counted. return value; } ErrorOr TreeParser::parse_inter_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 mode_context_for_ref_frame_0) { // Tree TreeParser::TreeSelection tree = { inter_mode_tree }; // Probabilities u8 const* probabilities = probability_table.inter_mode_probs()[mode_context_for_ref_frame_0]; auto value = TRY(parse_tree(bit_stream, tree, [&](u8 node) { return probabilities[node]; })); increment_counter(counter.m_counts_inter_mode[mode_context_for_ref_frame_0][to_underlying(value) - to_underlying(PredictionMode::NearestMv)]); return value; } ErrorOr TreeParser::parse_interpolation_filter(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, FrameBlockContext above, FrameBlockContext left) { // FIXME: Above and left context should be provided by a struct. // Tree TreeParser::TreeSelection tree = { interp_filter_tree }; // Probabilities // NOTE: SWITCHABLE_FILTERS is not used in the spec for this function. Therefore, the number // was demystified by referencing the reference codec libvpx: // https://github.com/webmproject/libvpx/blob/705bf9de8c96cfe5301451f1d7e5c90a41c64e5f/vp9/common/vp9_pred_common.h#L69 u8 left_interp = !left.is_intra_predicted() ? left.interpolation_filter : SWITCHABLE_FILTERS; u8 above_interp = !above.is_intra_predicted() ? above.interpolation_filter : SWITCHABLE_FILTERS; u8 context = SWITCHABLE_FILTERS; if (above_interp == left_interp || above_interp == SWITCHABLE_FILTERS) context = left_interp; else if (left_interp == SWITCHABLE_FILTERS) context = above_interp; u8 const* probabilities = probability_table.interp_filter_probs()[context]; auto value = TRY(parse_tree(bit_stream, tree, [&](u8 node) { return probabilities[node]; })); increment_counter(counter.m_counts_interp_filter[context][to_underlying(value)]); return value; } ErrorOr TreeParser::parse_skip(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, FrameBlockContext above, FrameBlockContext left) { // Probabilities u8 context = 0; context += static_cast(above.skip_coefficients); context += static_cast(left.skip_coefficients); u8 probability = probability_table.skip_prob()[context]; auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probability; })); increment_counter(counter.m_counts_skip[context][value]); return value; } ErrorOr TreeParser::parse_tx_size(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, TransformSize max_tx_size, FrameBlockContext above, FrameBlockContext left) { // FIXME: Above and left contexts should be in structs. // Tree TreeParser::TreeSelection tree { tx_size_8_tree }; if (max_tx_size == Transform_16x16) tree = { tx_size_16_tree }; if (max_tx_size == Transform_32x32) tree = { tx_size_32_tree }; // Probabilities auto above_context = max_tx_size; auto left_context = max_tx_size; if (above.is_available && !above.skip_coefficients) above_context = above.transform_size; if (left.is_available && !left.skip_coefficients) left_context = left.transform_size; if (!left.is_available) left_context = above_context; if (!above.is_available) above_context = left_context; auto context = (above_context + left_context) > max_tx_size; u8 const* probabilities = probability_table.tx_probs()[max_tx_size][context]; auto value = TRY(parse_tree(bit_stream, tree, [&](u8 node) { return probabilities[node]; })); increment_counter(counter.m_counts_tx_size[max_tx_size][context][value]); return value; } ErrorOr TreeParser::parse_block_is_inter_predicted(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, FrameBlockContext above, FrameBlockContext left) { // FIXME: Above and left contexts should be in structs. // Probabilities u8 context = 0; if (above.is_available && left.is_available) context = (left.is_intra_predicted() && above.is_intra_predicted()) ? 3 : static_cast(above.is_intra_predicted() || left.is_intra_predicted()); else if (above.is_available || left.is_available) context = 2 * static_cast(above.is_available ? above.is_intra_predicted() : left.is_intra_predicted()); u8 probability = probability_table.is_inter_prob()[context]; auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probability; })); increment_counter(counter.m_counts_is_inter[context][value]); return value; } ErrorOr TreeParser::parse_comp_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, ReferenceFrameType comp_fixed_ref, FrameBlockContext above, FrameBlockContext left) { // FIXME: Above and left contexts should be in structs. // Probabilities u8 context; if (above.is_available && left.is_available) { if (above.is_single_reference() && left.is_single_reference()) { auto is_above_fixed = above.ref_frames.primary == comp_fixed_ref; auto is_left_fixed = left.ref_frames.primary == comp_fixed_ref; context = is_above_fixed ^ is_left_fixed; } else if (above.is_single_reference()) { auto is_above_fixed = above.ref_frames.primary == comp_fixed_ref; context = 2 + static_cast(is_above_fixed || above.is_intra_predicted()); } else if (left.is_single_reference()) { auto is_left_fixed = left.ref_frames.primary == comp_fixed_ref; context = 2 + static_cast(is_left_fixed || left.is_intra_predicted()); } else { context = 4; } } else if (above.is_available) { if (above.is_single_reference()) context = above.ref_frames.primary == comp_fixed_ref; else context = 3; } else if (left.is_available) { if (left.is_single_reference()) context = static_cast(left.ref_frames.primary == comp_fixed_ref); else context = 3; } else { context = 1; } u8 probability = probability_table.comp_mode_prob()[context]; auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probability; })); increment_counter(counter.m_counts_comp_mode[context][value]); return value; } ErrorOr TreeParser::parse_comp_ref(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, ReferenceFrameType comp_fixed_ref, ReferenceFramePair comp_var_ref, ReferenceIndex variable_reference_index, FrameBlockContext above, FrameBlockContext left) { // FIXME: Above and left contexts should be in structs. // Probabilities u8 context; if (above.is_available && left.is_available) { if (above.is_intra_predicted() && left.is_intra_predicted()) { context = 2; } else if (left.is_intra_predicted()) { if (above.is_single_reference()) { context = 1 + 2 * (above.ref_frames.primary != comp_var_ref.secondary); } else { context = 1 + 2 * (above.ref_frames[variable_reference_index] != comp_var_ref.secondary); } } else if (above.is_intra_predicted()) { if (left.is_single_reference()) { context = 1 + 2 * (left.ref_frames.primary != comp_var_ref.secondary); } else { context = 1 + 2 * (left.ref_frames[variable_reference_index] != comp_var_ref.secondary); } } else { auto var_ref_above = above.is_single_reference() ? above.ref_frames.primary : above.ref_frames[variable_reference_index]; auto var_ref_left = left.is_single_reference() ? left.ref_frames.primary : left.ref_frames[variable_reference_index]; if (var_ref_above == var_ref_left && comp_var_ref.secondary == var_ref_above) { context = 0; } else if (left.is_single_reference() && above.is_single_reference()) { if ((var_ref_above == comp_fixed_ref && var_ref_left == comp_var_ref.primary) || (var_ref_left == comp_fixed_ref && var_ref_above == comp_var_ref.primary)) { context = 4; } else if (var_ref_above == var_ref_left) { context = 3; } else { context = 1; } } else if (left.is_single_reference() || above.is_single_reference()) { auto vrfc = left.is_single_reference() ? var_ref_above : var_ref_left; auto rfs = above.is_single_reference() ? var_ref_above : var_ref_left; if (vrfc == comp_var_ref.secondary && rfs != comp_var_ref.secondary) { context = 1; } else if (rfs == comp_var_ref.secondary && vrfc != comp_var_ref.secondary) { context = 2; } else { context = 4; } } else if (var_ref_above == var_ref_left) { context = 4; } else { context = 2; } } } else if (above.is_available) { if (above.is_intra_predicted()) { context = 2; } else { if (above.is_single_reference()) { context = 3 * static_cast(above.ref_frames.primary != comp_var_ref.secondary); } else { context = 4 * static_cast(above.ref_frames[variable_reference_index] != comp_var_ref.secondary); } } } else if (left.is_available) { if (left.is_intra_predicted()) { context = 2; } else { if (left.is_single_reference()) { context = 3 * static_cast(left.ref_frames.primary != comp_var_ref.secondary); } else { context = 4 * static_cast(left.ref_frames[variable_reference_index] != comp_var_ref.secondary); } } } else { context = 2; } u8 probability = probability_table.comp_ref_prob()[context]; auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probability; })); increment_counter(counter.m_counts_comp_ref[context][to_underlying(value)]); return value; } ErrorOr TreeParser::parse_single_ref_part_1(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, FrameBlockContext above, FrameBlockContext left) { // FIXME: Above and left contexts should be in structs. // Probabilities u8 context; if (above.is_available && left.is_available) { if (above.is_intra_predicted() && left.is_intra_predicted()) { context = 2; } else if (left.is_intra_predicted()) { if (above.is_single_reference()) { context = 4 * (above.ref_frames.primary == ReferenceFrameType::LastFrame); } else { context = 1 + (above.ref_frames.primary == ReferenceFrameType::LastFrame || above.ref_frames.secondary == ReferenceFrameType::LastFrame); } } else if (above.is_intra_predicted()) { if (left.is_single_reference()) { context = 4 * (left.ref_frames.primary == ReferenceFrameType::LastFrame); } else { context = 1 + (left.ref_frames.primary == ReferenceFrameType::LastFrame || left.ref_frames.secondary == ReferenceFrameType::LastFrame); } } else { if (left.is_single_reference() && above.is_single_reference()) { context = 2 * (above.ref_frames.primary == ReferenceFrameType::LastFrame) + 2 * (left.ref_frames.primary == ReferenceFrameType::LastFrame); } else if (!left.is_single_reference() && !above.is_single_reference()) { auto above_used_last_frame = above.ref_frames.primary == ReferenceFrameType::LastFrame || above.ref_frames.secondary == ReferenceFrameType::LastFrame; auto left_used_last_frame = left.ref_frames.primary == ReferenceFrameType::LastFrame || left.ref_frames.secondary == ReferenceFrameType::LastFrame; context = 1 + (above_used_last_frame || left_used_last_frame); } else { auto single_reference_type = above.is_single_reference() ? above.ref_frames.primary : left.ref_frames.primary; auto compound_reference_a_type = above.is_single_reference() ? left.ref_frames.primary : above.ref_frames.primary; auto compound_reference_b_type = above.is_single_reference() ? left.ref_frames.secondary : above.ref_frames.secondary; context = compound_reference_a_type == ReferenceFrameType::LastFrame || compound_reference_b_type == ReferenceFrameType::LastFrame; if (single_reference_type == ReferenceFrameType::LastFrame) context += 3; } } } else if (above.is_available) { if (above.is_intra_predicted()) { context = 2; } else { if (above.is_single_reference()) { context = 4 * (above.ref_frames.primary == ReferenceFrameType::LastFrame); } else { context = 1 + (above.ref_frames.primary == ReferenceFrameType::LastFrame || above.ref_frames.secondary == ReferenceFrameType::LastFrame); } } } else if (left.is_available) { if (left.is_intra_predicted()) { context = 2; } else { if (left.is_single_reference()) { context = 4 * (left.ref_frames.primary == ReferenceFrameType::LastFrame); } else { context = 1 + (left.ref_frames.primary == ReferenceFrameType::LastFrame || left.ref_frames.secondary == ReferenceFrameType::LastFrame); } } } else { context = 2; } u8 probability = probability_table.single_ref_prob()[context][0]; auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probability; })); increment_counter(counter.m_counts_single_ref[context][0][value]); return value; } ErrorOr TreeParser::parse_single_ref_part_2(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, FrameBlockContext above, FrameBlockContext left) { // FIXME: Above and left contexts should be in structs. // Probabilities u8 context; if (above.is_available && left.is_available) { if (above.is_intra_predicted() && left.is_intra_predicted()) { context = 2; } else if (left.is_intra_predicted()) { if (above.is_single_reference()) { if (above.ref_frames.primary == ReferenceFrameType::LastFrame) { context = 3; } else { context = 4 * (above.ref_frames.primary == ReferenceFrameType::GoldenFrame); } } else { context = 1 + 2 * (above.ref_frames.primary == ReferenceFrameType::GoldenFrame || above.ref_frames.secondary == ReferenceFrameType::GoldenFrame); } } else if (above.is_intra_predicted()) { if (left.is_single_reference()) { if (left.ref_frames.primary == ReferenceFrameType::LastFrame) { context = 3; } else { context = 4 * (left.ref_frames.primary == ReferenceFrameType::GoldenFrame); } } else { context = 1 + 2 * (left.ref_frames.primary == ReferenceFrameType::GoldenFrame || left.ref_frames.secondary == ReferenceFrameType::GoldenFrame); } } else { if (left.is_single_reference() && above.is_single_reference()) { auto above_last = above.ref_frames.primary == ReferenceFrameType::LastFrame; auto left_last = left.ref_frames.primary == ReferenceFrameType::LastFrame; if (above_last && left_last) { context = 3; } else if (above_last) { context = 4 * (left.ref_frames.primary == ReferenceFrameType::GoldenFrame); } else if (left_last) { context = 4 * (above.ref_frames.primary == ReferenceFrameType::GoldenFrame); } else { context = 2 * (above.ref_frames.primary == ReferenceFrameType::GoldenFrame) + 2 * (left.ref_frames.primary == ReferenceFrameType::GoldenFrame); } } else if (!left.is_single_reference() && !above.is_single_reference()) { if (above.ref_frames.primary == left.ref_frames.primary && above.ref_frames.secondary == left.ref_frames.secondary) { context = 3 * (above.ref_frames.primary == ReferenceFrameType::GoldenFrame || above.ref_frames.secondary == ReferenceFrameType::GoldenFrame); } else { context = 2; } } else { auto single_reference_type = above.is_single_reference() ? above.ref_frames.primary : left.ref_frames.primary; auto compound_reference_a_type = above.is_single_reference() ? left.ref_frames.primary : above.ref_frames.primary; auto compound_reference_b_type = above.is_single_reference() ? left.ref_frames.secondary : above.ref_frames.secondary; context = compound_reference_a_type == ReferenceFrameType::GoldenFrame || compound_reference_b_type == ReferenceFrameType::GoldenFrame; if (single_reference_type == ReferenceFrameType::GoldenFrame) { context += 3; } else if (single_reference_type != ReferenceFrameType::AltRefFrame) { context = 1 + (2 * context); } } } } else if (above.is_available) { if (above.is_intra_predicted() || (above.ref_frames.primary == ReferenceFrameType::LastFrame && above.is_single_reference())) { context = 2; } else if (above.is_single_reference()) { context = 4 * (above.ref_frames.primary == ReferenceFrameType::GoldenFrame); } else { context = 3 * (above.ref_frames.primary == ReferenceFrameType::GoldenFrame || above.ref_frames.secondary == ReferenceFrameType::GoldenFrame); } } else if (left.is_available) { if (left.is_intra_predicted() || (left.ref_frames.primary == ReferenceFrameType::LastFrame && left.is_single_reference())) { context = 2; } else if (left.is_single_reference()) { context = 4 * (left.ref_frames.primary == ReferenceFrameType::GoldenFrame); } else { context = 3 * (left.ref_frames.primary == ReferenceFrameType::GoldenFrame || left.ref_frames.secondary == ReferenceFrameType::GoldenFrame); } } else { context = 2; } u8 probability = probability_table.single_ref_prob()[context][1]; auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probability; })); increment_counter(counter.m_counts_single_ref[context][1][value]); return value; } ErrorOr TreeParser::parse_motion_vector_joint(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter) { auto value = TRY(parse_tree(bit_stream, { mv_joint_tree }, [&](u8 node) { return probability_table.mv_joint_probs()[node]; })); increment_counter(counter.m_counts_mv_joint[value]); return value; } ErrorOr TreeParser::parse_motion_vector_sign(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component) { auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probability_table.mv_sign_prob()[component]; })); increment_counter(counter.m_counts_mv_sign[component][value]); return value; } ErrorOr TreeParser::parse_motion_vector_class(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component) { // Spec doesn't mention node, but the probabilities table has an extra dimension // so we will use node for that. auto value = TRY(parse_tree(bit_stream, { mv_class_tree }, [&](u8 node) { return probability_table.mv_class_probs()[component][node]; })); increment_counter(counter.m_counts_mv_class[component][value]); return value; } ErrorOr TreeParser::parse_motion_vector_class0_bit(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component) { auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probability_table.mv_class0_bit_prob()[component]; })); increment_counter(counter.m_counts_mv_class0_bit[component][value]); return value; } ErrorOr TreeParser::parse_motion_vector_class0_fr(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, bool class_0_bit) { auto value = TRY(parse_tree(bit_stream, { mv_fr_tree }, [&](u8 node) { return probability_table.mv_class0_fr_probs()[component][class_0_bit][node]; })); increment_counter(counter.m_counts_mv_class0_fr[component][class_0_bit][value]); return value; } ErrorOr TreeParser::parse_motion_vector_class0_hp(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, bool use_hp) { TreeParser::TreeSelection tree { 1 }; if (use_hp) tree = { binary_tree }; auto value = TRY(parse_tree(bit_stream, tree, [&](u8) { return probability_table.mv_class0_hp_prob()[component]; })); increment_counter(counter.m_counts_mv_class0_hp[component][value]); return value; } ErrorOr TreeParser::parse_motion_vector_bit(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, u8 bit_index) { auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probability_table.mv_bits_prob()[component][bit_index]; })); increment_counter(counter.m_counts_mv_bits[component][bit_index][value]); return value; } ErrorOr TreeParser::parse_motion_vector_fr(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component) { auto value = TRY(parse_tree(bit_stream, { mv_fr_tree }, [&](u8 node) { return probability_table.mv_fr_probs()[component][node]; })); increment_counter(counter.m_counts_mv_fr[component][value]); return value; } ErrorOr TreeParser::parse_motion_vector_hp(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, bool use_hp) { TreeParser::TreeSelection tree { 1 }; if (use_hp) tree = { binary_tree }; auto value = TRY(parse_tree(bit_stream, tree, [&](u8) { return probability_table.mv_hp_prob()[component]; })); increment_counter(counter.m_counts_mv_hp[component][value]); return value; } TokensContext TreeParser::get_context_for_first_token(NonZeroTokensView above_non_zero_tokens, NonZeroTokensView left_non_zero_tokens_in_block, TransformSize transform_size, u8 plane, u32 sub_block_column, u32 sub_block_row, bool is_inter, u8 band) { u8 transform_size_in_sub_blocks = transform_size_to_sub_blocks(transform_size); bool above_has_non_zero_tokens = false; for (u8 x = 0; x < transform_size_in_sub_blocks && x < above_non_zero_tokens[plane].size() - sub_block_column; x++) { if (above_non_zero_tokens[plane][sub_block_column + x]) { above_has_non_zero_tokens = true; break; } } bool left_has_non_zero_tokens = false; for (u8 y = 0; y < transform_size_in_sub_blocks && y < left_non_zero_tokens_in_block[plane].size() - sub_block_row; y++) { if (left_non_zero_tokens_in_block[plane][sub_block_row + y]) { left_has_non_zero_tokens = true; break; } } u8 context = above_has_non_zero_tokens + left_has_non_zero_tokens; return TokensContext { transform_size, plane > 0, is_inter, band, context }; } TokensContext TreeParser::get_context_for_other_tokens(Array token_cache, TransformSize transform_size, TransformSet transform_set, u8 plane, u16 token_position, bool is_inter, u8 band) { auto transform_size_in_pixels = sub_blocks_to_pixels(transform_size_to_sub_blocks(transform_size)); auto log2_of_transform_size = transform_size + 2; auto pixel_y = token_position >> log2_of_transform_size; auto pixel_x = token_position - (pixel_y << log2_of_transform_size); auto above_token_energy = pixel_y > 0 ? (pixel_y - 1) * transform_size_in_pixels + pixel_x : 0; auto left_token_energy = pixel_y * transform_size_in_pixels + pixel_x - 1; u32 neighbor_a, neighbor_b; if (pixel_y > 0 && pixel_x > 0) { if (transform_set == TransformSet { TransformType::DCT, TransformType::ADST }) { neighbor_a = above_token_energy; neighbor_b = above_token_energy; } else if (transform_set == TransformSet { TransformType::ADST, TransformType::DCT }) { neighbor_a = left_token_energy; neighbor_b = left_token_energy; } else { neighbor_a = above_token_energy; neighbor_b = left_token_energy; } } else if (pixel_y > 0) { neighbor_a = above_token_energy; neighbor_b = above_token_energy; } else { neighbor_a = left_token_energy; neighbor_b = left_token_energy; } u8 context = (1 + token_cache[neighbor_a] + token_cache[neighbor_b]) >> 1; return TokensContext { transform_size, plane > 0, is_inter, band, context }; } ErrorOr TreeParser::parse_more_coefficients(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, TokensContext const& context) { auto probability = probability_table.coef_probs()[context.m_tx_size][context.m_is_uv_plane][context.m_is_inter][context.m_band][context.m_context_index][0]; auto value = TRY(parse_tree(bit_stream, { binary_tree }, [&](u8) { return probability; })); increment_counter(counter.m_counts_more_coefs[context.m_tx_size][context.m_is_uv_plane][context.m_is_inter][context.m_band][context.m_context_index][value]); return value; } ErrorOr TreeParser::parse_token(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, TokensContext const& context) { Function probability_getter = [&](u8 node) -> u8 { auto prob = probability_table.coef_probs()[context.m_tx_size][context.m_is_uv_plane][context.m_is_inter][context.m_band][context.m_context_index][min(2, 1 + node)]; if (node < 2) return prob; auto x = (prob - 1) / 2; auto const& pareto_table = probability_table.pareto_table(); if ((prob & 1) != 0) return pareto_table[x][node - 2]; return (pareto_table[x][node - 2] + pareto_table[x + 1][node - 2]) >> 1; }; auto value = TRY(parse_tree(bit_stream, { token_tree }, probability_getter)); increment_counter(counter.m_counts_token[context.m_tx_size][context.m_is_uv_plane][context.m_is_inter][context.m_band][context.m_context_index][min(2, value)]); return value; } }