/* * Copyright (c) 2021, Hunter Salyer * Copyright (c) 2022, Gregory Bertilson * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include "Context.h" #include "Decoder.h" #include "Parser.h" #include "Utilities.h" #if defined(AK_COMPILER_GCC) # pragma GCC optimize("O3") #endif namespace Video::VP9 { #define TRY_READ(expression) DECODER_TRY(DecoderErrorCategory::Corrupted, expression) Parser::Parser(Decoder& decoder) : m_probability_tables(make()) , m_decoder(decoder) { } Parser::~Parser() { } Vector Parser::parse_superframe_sizes(ReadonlyBytes frame_data) { if (frame_data.size() < 1) return {}; // The decoder determines the presence of a superframe by: // 1. parsing the final byte of the chunk and checking that the superframe_marker equals 0b110, // If the checks in steps 1 and 3 both pass, then the chunk is determined to contain a superframe and each // frame in the superframe is passed to the decoding process in turn. // Otherwise, the chunk is determined to not contain a superframe, and the whole chunk is passed to the // decoding process. // NOTE: Reading from span data will be quicker than spinning up a BitStream. u8 superframe_byte = frame_data[frame_data.size() - 1]; // NOTE: We have to read out of the byte from the little end first, hence the padding bits in the masks below. u8 superframe_marker = superframe_byte & 0b1110'0000; if (superframe_marker == 0b1100'0000) { u8 bytes_per_framesize = ((superframe_byte >> 3) & 0b11) + 1; u8 frames_in_superframe = (superframe_byte & 0b111) + 1; // 2. setting the total size of the superframe_index SzIndex equal to 2 + NumFrames * SzBytes, size_t index_size = 2 + bytes_per_framesize * frames_in_superframe; if (index_size > frame_data.size()) return {}; auto superframe_header_data = frame_data.data() + frame_data.size() - index_size; u8 start_superframe_byte = *(superframe_header_data++); // 3. checking that the first byte of the superframe_index matches the final byte. if (superframe_byte != start_superframe_byte) return {}; Vector result; for (u8 i = 0; i < frames_in_superframe; i++) { size_t frame_size = 0; for (u8 j = 0; j < bytes_per_framesize; j++) frame_size |= (static_cast(*(superframe_header_data++)) << (j * 8)); result.append(frame_size); } return result; } return {}; } /* (6.1) */ DecoderErrorOr Parser::parse_frame(ReadonlyBytes frame_data) { m_bit_stream = make(frame_data.data(), frame_data.size()); m_syntax_element_counter = make(); auto frame_context = TRY(uncompressed_header()); if (!trailing_bits()) return DecoderError::corrupted("Trailing bits were non-zero"sv); // FIXME: This should not be an error. Spec says that we consume padding bits until the end of the sample. if (frame_context.header_size_in_bytes == 0) return DecoderError::corrupted("Frame header is zero-sized"sv); m_probability_tables->load_probs(frame_context.probability_context_index); m_probability_tables->load_probs2(frame_context.probability_context_index); m_syntax_element_counter->clear_counts(); TRY_READ(m_bit_stream->init_bool(frame_context.header_size_in_bytes)); TRY(compressed_header(frame_context)); TRY_READ(m_bit_stream->exit_bool()); TRY(m_decoder.allocate_buffers(frame_context)); TRY(decode_tiles(frame_context)); TRY(refresh_probs(frame_context)); m_previous_frame_type = frame_context.type; m_previous_frame_size = frame_context.size(); m_previous_show_frame = frame_context.shows_a_frame(); m_previous_color_config = frame_context.color_config; m_previous_loop_filter_ref_deltas = frame_context.loop_filter_reference_deltas; m_previous_loop_filter_mode_deltas = frame_context.loop_filter_mode_deltas; if (frame_context.segmentation_enabled) { m_previous_should_use_absolute_segment_base_quantizer = frame_context.should_use_absolute_segment_base_quantizer; m_previous_segmentation_features = frame_context.segmentation_features; } return frame_context; } bool Parser::trailing_bits() { while (m_bit_stream->bits_remaining() & 7u) { if (MUST(m_bit_stream->read_bit())) return false; } return true; } DecoderErrorOr Parser::refresh_probs(FrameContext const& frame_context) { if (!frame_context.error_resilient_mode && !frame_context.parallel_decoding_mode) { m_probability_tables->load_probs(frame_context.probability_context_index); TRY(m_decoder.adapt_coef_probs(frame_context.is_inter_predicted())); if (frame_context.is_inter_predicted()) { m_probability_tables->load_probs2(frame_context.probability_context_index); TRY(m_decoder.adapt_non_coef_probs(frame_context)); } } if (frame_context.should_replace_probability_context) m_probability_tables->save_probs(frame_context.probability_context_index); return {}; } DecoderErrorOr Parser::read_color_range() { if (TRY_READ(m_bit_stream->read_bit())) return ColorRange::Full; return ColorRange::Studio; } /* (6.2) */ DecoderErrorOr Parser::uncompressed_header() { // NOTE: m_reusable_frame_block_contexts does not need to retain any data between frame decodes. // This is only stored so that we don't need to allocate a frame's block contexts on each // call to this function, since it will rarely change sizes. FrameContext frame_context { m_reusable_frame_block_contexts }; frame_context.color_config = m_previous_color_config; auto frame_marker = TRY_READ(m_bit_stream->read_bits(2)); if (frame_marker != 2) return DecoderError::corrupted("uncompressed_header: Frame marker must be 2"sv); auto profile_low_bit = TRY_READ(m_bit_stream->read_bit()); auto profile_high_bit = TRY_READ(m_bit_stream->read_bit()); frame_context.profile = (profile_high_bit << 1u) + profile_low_bit; if (frame_context.profile == 3 && TRY_READ(m_bit_stream->read_bit())) return DecoderError::corrupted("uncompressed_header: Profile 3 reserved bit was non-zero"sv); if (TRY_READ(m_bit_stream->read_bit())) { frame_context.set_existing_frame_to_show(TRY_READ(m_bit_stream->read_bits(3))); return frame_context; } bool is_keyframe = !TRY_READ(m_bit_stream->read_bit()); if (!TRY_READ(m_bit_stream->read_bit())) frame_context.set_frame_hidden(); frame_context.error_resilient_mode = TRY_READ(m_bit_stream->read_bit()); FrameType type; Gfx::Size frame_size; Gfx::Size render_size; u8 reference_frames_to_update_flags = 0xFF; // Save frame to all reference indices by default. enum class ResetProbabilities : u8 { No = 0, // 1 also means No here, but we don't need to do anything with the No case. OnlyCurrent = 2, All = 3, }; ResetProbabilities reset_frame_context = ResetProbabilities::All; if (is_keyframe) { type = FrameType::KeyFrame; TRY(frame_sync_code()); frame_context.color_config = TRY(parse_color_config(frame_context)); frame_size = TRY(parse_frame_size()); render_size = TRY(parse_render_size(frame_size)); } else { if (!frame_context.shows_a_frame() && TRY_READ(m_bit_stream->read_bit())) { type = FrameType::IntraOnlyFrame; } else { type = FrameType::InterFrame; reset_frame_context = ResetProbabilities::No; } if (!frame_context.error_resilient_mode) reset_frame_context = static_cast(TRY_READ(m_bit_stream->read_bits(2))); if (type == FrameType::IntraOnlyFrame) { TRY(frame_sync_code()); frame_context.color_config = frame_context.profile > 0 ? TRY(parse_color_config(frame_context)) : ColorConfig(); reference_frames_to_update_flags = TRY_READ(m_bit_stream->read_f8()); frame_size = TRY(parse_frame_size()); render_size = TRY(parse_render_size(frame_size)); } else { reference_frames_to_update_flags = TRY_READ(m_bit_stream->read_f8()); for (auto i = 0; i < 3; i++) { frame_context.reference_frame_indices[i] = TRY_READ(m_bit_stream->read_bits(3)); frame_context.reference_frame_sign_biases[ReferenceFrameType::LastFrame + i] = TRY_READ(m_bit_stream->read_bit()); } frame_size = TRY(parse_frame_size_with_refs(frame_context.reference_frame_indices)); render_size = TRY(parse_render_size(frame_size)); frame_context.high_precision_motion_vectors_allowed = TRY_READ(m_bit_stream->read_bit()); frame_context.interpolation_filter = TRY(read_interpolation_filter()); } } bool should_replace_probability_context = false; bool parallel_decoding_mode = true; if (!frame_context.error_resilient_mode) { should_replace_probability_context = TRY_READ(m_bit_stream->read_bit()); parallel_decoding_mode = TRY_READ(m_bit_stream->read_bit()); } u8 probability_context_index = TRY_READ(m_bit_stream->read_bits(2)); switch (reset_frame_context) { case ResetProbabilities::All: setup_past_independence(); for (auto i = 0; i < 4; i++) { m_probability_tables->save_probs(i); } probability_context_index = 0; break; case ResetProbabilities::OnlyCurrent: setup_past_independence(); m_probability_tables->save_probs(probability_context_index); probability_context_index = 0; break; default: break; } frame_context.type = type; DECODER_TRY_ALLOC(frame_context.set_size(frame_size)); frame_context.render_size = render_size; TRY(compute_image_size(frame_context)); frame_context.reference_frames_to_update_flags = reference_frames_to_update_flags; frame_context.parallel_decoding_mode = parallel_decoding_mode; frame_context.should_replace_probability_context = should_replace_probability_context; frame_context.probability_context_index = probability_context_index; TRY(loop_filter_params(frame_context)); TRY(quantization_params(frame_context)); TRY(segmentation_params(frame_context)); TRY(parse_tile_counts(frame_context)); frame_context.header_size_in_bytes = TRY_READ(m_bit_stream->read_f16()); return frame_context; } DecoderErrorOr Parser::frame_sync_code() { if (TRY_READ(m_bit_stream->read_f8()) != 0x49) return DecoderError::corrupted("frame_sync_code: Byte 0 was not 0x49."sv); if (TRY_READ(m_bit_stream->read_f8()) != 0x83) return DecoderError::corrupted("frame_sync_code: Byte 1 was not 0x83."sv); if (TRY_READ(m_bit_stream->read_f8()) != 0x42) return DecoderError::corrupted("frame_sync_code: Byte 2 was not 0x42."sv); return {}; } DecoderErrorOr Parser::parse_color_config(FrameContext const& frame_context) { // (6.2.2) color_config( ) u8 bit_depth; if (frame_context.profile >= 2) { bit_depth = TRY_READ(m_bit_stream->read_bit()) ? 12 : 10; } else { bit_depth = 8; } auto color_space = static_cast(TRY_READ(m_bit_stream->read_bits(3))); VERIFY(color_space <= ColorSpace::RGB); ColorRange color_range; bool subsampling_x, subsampling_y; if (color_space != ColorSpace::RGB) { color_range = TRY(read_color_range()); if (frame_context.profile == 1 || frame_context.profile == 3) { subsampling_x = TRY_READ(m_bit_stream->read_bit()); subsampling_y = TRY_READ(m_bit_stream->read_bit()); if (TRY_READ(m_bit_stream->read_bit())) return DecoderError::corrupted("color_config: Subsampling reserved zero was set"sv); } else { subsampling_x = true; subsampling_y = true; } } else { color_range = ColorRange::Full; if (frame_context.profile == 1 || frame_context.profile == 3) { subsampling_x = false; subsampling_y = false; if (TRY_READ(m_bit_stream->read_bit())) return DecoderError::corrupted("color_config: RGB reserved zero was set"sv); } else { // FIXME: Spec does not specify the subsampling value here. Is this an error or should we set a default? VERIFY_NOT_REACHED(); } } return ColorConfig { bit_depth, color_space, color_range, subsampling_x, subsampling_y }; } DecoderErrorOr> Parser::parse_frame_size() { return Gfx::Size { TRY_READ(m_bit_stream->read_f16()) + 1, TRY_READ(m_bit_stream->read_f16()) + 1 }; } DecoderErrorOr> Parser::parse_render_size(Gfx::Size frame_size) { // FIXME: This function should save this bit as a value in the FrameContext. The bit can be // used in files where the pixel aspect ratio changes between samples in the video. // If the bit is set, the pixel aspect ratio should be recalculated, whereas if only // the frame size has changed and the render size is unadjusted, then the pixel aspect // ratio should be retained and the new render size determined based on that. // See the Firefox source code here: // https://searchfox.org/mozilla-central/source/dom/media/platforms/wrappers/MediaChangeMonitor.cpp#268-276 if (!TRY_READ(m_bit_stream->read_bit())) return frame_size; return Gfx::Size { TRY_READ(m_bit_stream->read_f16()) + 1, TRY_READ(m_bit_stream->read_f16()) + 1 }; } DecoderErrorOr> Parser::parse_frame_size_with_refs(Array const& reference_indices) { Optional> size; for (auto frame_index : reference_indices) { if (TRY_READ(m_bit_stream->read_bit())) { if (!m_reference_frames[frame_index].is_valid()) return DecoderError::corrupted("Frame size referenced a frame that does not exist"sv); size.emplace(m_reference_frames[frame_index].size); break; } } if (size.has_value()) return size.value(); return TRY(parse_frame_size()); } DecoderErrorOr Parser::compute_image_size(FrameContext& frame_context) { // 7.2.6 Compute image size semantics // When compute_image_size is invoked, the following ordered steps occur: // 1. If this is the first time compute_image_size is invoked, or if either FrameWidth or FrameHeight have // changed in value compared to the previous time this function was invoked, then the segmentation map is // cleared to all zeros by setting SegmentId[ row ][ col ] equal to 0 for row = 0..MiRows-1 and col = // 0..MiCols-1. // FIXME: What does this mean? SegmentIds is scoped to one frame, so it will not contain values here. It's // also suspicious that spec refers to this as SegmentId rather than SegmentIds (plural). Is this // supposed to refer to PrevSegmentIds? bool first_invoke = m_is_first_compute_image_size_invoke; m_is_first_compute_image_size_invoke = false; bool same_size = m_previous_frame_size == frame_context.size(); // 2. The variable UsePrevFrameMvs is set equal to 1 if all of the following conditions are true: // a. This is not the first time compute_image_size is invoked. // b. Both FrameWidth and FrameHeight have the same value compared to the previous time this function // was invoked. // c. show_frame was equal to 1 the previous time this function was invoked. // d. error_resilient_mode is equal to 0. // e. FrameIsIntra is equal to 0. // Otherwise, UsePrevFrameMvs is set equal to 0. frame_context.use_previous_frame_motion_vectors = !first_invoke && same_size && m_previous_show_frame && !frame_context.error_resilient_mode && frame_context.is_inter_predicted(); return {}; } DecoderErrorOr Parser::read_interpolation_filter() { if (TRY_READ(m_bit_stream->read_bit())) { return InterpolationFilter::Switchable; } return literal_to_type[TRY_READ(m_bit_stream->read_bits(2))]; } DecoderErrorOr Parser::loop_filter_params(FrameContext& frame_context) { frame_context.loop_filter_level = TRY_READ(m_bit_stream->read_bits(6)); frame_context.loop_filter_sharpness = TRY_READ(m_bit_stream->read_bits(3)); frame_context.loop_filter_delta_enabled = TRY_READ(m_bit_stream->read_bit()); auto reference_deltas = m_previous_loop_filter_ref_deltas; auto mode_deltas = m_previous_loop_filter_mode_deltas; if (frame_context.loop_filter_delta_enabled && TRY_READ(m_bit_stream->read_bit())) { for (auto& loop_filter_ref_delta : reference_deltas) { if (TRY_READ(m_bit_stream->read_bit())) loop_filter_ref_delta = TRY_READ(m_bit_stream->read_s(6)); } for (auto& loop_filter_mode_delta : mode_deltas) { if (TRY_READ(m_bit_stream->read_bit())) loop_filter_mode_delta = TRY_READ(m_bit_stream->read_s(6)); } } frame_context.loop_filter_reference_deltas = reference_deltas; frame_context.loop_filter_mode_deltas = mode_deltas; return {}; } DecoderErrorOr Parser::quantization_params(FrameContext& frame_context) { frame_context.base_quantizer_index = TRY_READ(m_bit_stream->read_f8()); frame_context.y_dc_quantizer_index_delta = TRY(read_delta_q()); frame_context.uv_dc_quantizer_index_delta = TRY(read_delta_q()); frame_context.uv_ac_quantizer_index_delta = TRY(read_delta_q()); return {}; } DecoderErrorOr Parser::read_delta_q() { if (TRY_READ(m_bit_stream->read_bit())) return TRY_READ(m_bit_stream->read_s(4)); return 0; } DecoderErrorOr Parser::segmentation_params(FrameContext& frame_context) { frame_context.segmentation_enabled = TRY_READ(m_bit_stream->read_bit()); if (!frame_context.segmentation_enabled) return {}; frame_context.should_use_absolute_segment_base_quantizer = m_previous_should_use_absolute_segment_base_quantizer; frame_context.segmentation_features = m_previous_segmentation_features; if (TRY_READ(m_bit_stream->read_bit())) { frame_context.use_full_segment_id_tree = true; for (auto& segmentation_tree_prob : frame_context.full_segment_id_tree_probabilities) segmentation_tree_prob = TRY(read_prob()); if (TRY_READ(m_bit_stream->read_bit())) { frame_context.use_predicted_segment_id_tree = true; for (auto& segmentation_pred_prob : frame_context.predicted_segment_id_tree_probabilities) segmentation_pred_prob = TRY(read_prob()); } } auto segmentation_update_data = (TRY_READ(m_bit_stream->read_bit())); if (!segmentation_update_data) return {}; frame_context.should_use_absolute_segment_base_quantizer = TRY_READ(m_bit_stream->read_bit()); for (auto i = 0; i < MAX_SEGMENTS; i++) { for (auto j = 0; j < SEG_LVL_MAX; j++) { auto& feature = frame_context.segmentation_features[i][j]; feature.enabled = TRY_READ(m_bit_stream->read_bit()); if (feature.enabled) { auto bits_to_read = segmentation_feature_bits[j]; feature.value = TRY_READ(m_bit_stream->read_bits(bits_to_read)); if (segmentation_feature_signed[j]) { if (TRY_READ(m_bit_stream->read_bit())) feature.value = -feature.value; } } } } return {}; } DecoderErrorOr Parser::read_prob() { if (TRY_READ(m_bit_stream->read_bit())) return TRY_READ(m_bit_stream->read_f8()); return 255; } static u16 calc_min_log2_of_tile_columns(u32 superblock_columns) { auto min_log_2 = 0u; while ((u32)(MAX_TILE_WIDTH_B64 << min_log_2) < superblock_columns) min_log_2++; return min_log_2; } static u16 calc_max_log2_tile_cols(u32 superblock_columns) { u16 max_log_2 = 1; while ((superblock_columns >> max_log_2) >= MIN_TILE_WIDTH_B64) max_log_2++; return max_log_2 - 1; } DecoderErrorOr Parser::parse_tile_counts(FrameContext& frame_context) { auto superblock_columns = frame_context.superblock_columns(); auto log2_of_tile_columns = calc_min_log2_of_tile_columns(superblock_columns); auto log2_of_tile_columns_maximum = calc_max_log2_tile_cols(superblock_columns); while (log2_of_tile_columns < log2_of_tile_columns_maximum) { if (TRY_READ(m_bit_stream->read_bit())) log2_of_tile_columns++; else break; } u16 log2_of_tile_rows = TRY_READ(m_bit_stream->read_bit()); if (log2_of_tile_rows > 0) { log2_of_tile_rows += TRY_READ(m_bit_stream->read_bit()); } frame_context.log2_of_tile_counts = Gfx::Size(log2_of_tile_columns, log2_of_tile_rows); return {}; } void Parser::setup_past_independence() { m_previous_block_contexts.reset(); m_previous_loop_filter_ref_deltas[ReferenceFrameType::None] = 1; m_previous_loop_filter_ref_deltas[ReferenceFrameType::LastFrame] = 0; m_previous_loop_filter_ref_deltas[ReferenceFrameType::GoldenFrame] = -1; m_previous_loop_filter_ref_deltas[ReferenceFrameType::AltRefFrame] = -1; m_previous_loop_filter_mode_deltas.fill(0); m_previous_should_use_absolute_segment_base_quantizer = false; for (auto& segment_levels : m_previous_segmentation_features) segment_levels.fill({ false, 0 }); m_probability_tables->reset_probs(); } DecoderErrorOr Parser::compressed_header(FrameContext& frame_context) { frame_context.transform_mode = TRY(read_tx_mode(frame_context)); if (frame_context.transform_mode == TransformMode::Select) TRY(tx_mode_probs()); TRY(read_coef_probs(frame_context.transform_mode)); TRY(read_skip_prob()); if (frame_context.is_inter_predicted()) { TRY(read_inter_mode_probs()); if (frame_context.interpolation_filter == Switchable) TRY(read_interp_filter_probs()); TRY(read_is_inter_probs()); TRY(frame_reference_mode(frame_context)); TRY(frame_reference_mode_probs(frame_context)); TRY(read_y_mode_probs()); TRY(read_partition_probs()); TRY(mv_probs(frame_context)); } return {}; } DecoderErrorOr Parser::read_tx_mode(FrameContext const& frame_context) { if (frame_context.is_lossless()) { return TransformMode::Only_4x4; } auto tx_mode = TRY_READ(m_bit_stream->read_literal(2)); if (tx_mode == to_underlying(TransformMode::Allow_32x32)) tx_mode += TRY_READ(m_bit_stream->read_literal(1)); return static_cast(tx_mode); } DecoderErrorOr Parser::tx_mode_probs() { auto& tx_probs = m_probability_tables->tx_probs(); for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) { for (auto j = 0; j < TX_SIZES - 3; j++) tx_probs[Transform_8x8][i][j] = TRY(diff_update_prob(tx_probs[Transform_8x8][i][j])); } for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) { for (auto j = 0; j < TX_SIZES - 2; j++) tx_probs[Transform_16x16][i][j] = TRY(diff_update_prob(tx_probs[Transform_16x16][i][j])); } for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) { for (auto j = 0; j < TX_SIZES - 1; j++) tx_probs[Transform_32x32][i][j] = TRY(diff_update_prob(tx_probs[Transform_32x32][i][j])); } return {}; } DecoderErrorOr Parser::diff_update_prob(u8 prob) { auto update_prob = TRY_READ(m_bit_stream->read_bool(252)); if (update_prob) { auto delta_prob = TRY(decode_term_subexp()); prob = inv_remap_prob(delta_prob, prob); } return prob; } DecoderErrorOr Parser::decode_term_subexp() { if (TRY_READ(m_bit_stream->read_literal(1)) == 0) return TRY_READ(m_bit_stream->read_literal(4)); if (TRY_READ(m_bit_stream->read_literal(1)) == 0) return TRY_READ(m_bit_stream->read_literal(4)) + 16; if (TRY_READ(m_bit_stream->read_literal(1)) == 0) return TRY_READ(m_bit_stream->read_literal(5)) + 32; auto v = TRY_READ(m_bit_stream->read_literal(7)); if (v < 65) return v + 64; return (v << 1u) - 1 + TRY_READ(m_bit_stream->read_literal(1)); } u8 Parser::inv_remap_prob(u8 delta_prob, u8 prob) { u8 m = prob - 1; auto v = inv_map_table[delta_prob]; if ((m << 1u) <= 255) return 1 + inv_recenter_nonneg(v, m); return 255 - inv_recenter_nonneg(v, 254 - m); } u8 Parser::inv_recenter_nonneg(u8 v, u8 m) { if (v > 2 * m) return v; if (v & 1u) return m - ((v + 1u) >> 1u); return m + (v >> 1u); } DecoderErrorOr Parser::read_coef_probs(TransformMode transform_mode) { auto max_tx_size = tx_mode_to_biggest_tx_size[to_underlying(transform_mode)]; for (u8 transform_size = 0; transform_size <= max_tx_size; transform_size++) { auto update_probs = TRY_READ(m_bit_stream->read_literal(1)); if (update_probs == 1) { for (auto i = 0; i < 2; i++) { for (auto j = 0; j < 2; j++) { for (auto k = 0; k < 6; k++) { auto max_l = (k == 0) ? 3 : 6; for (auto l = 0; l < max_l; l++) { for (auto m = 0; m < 3; m++) { auto& prob = m_probability_tables->coef_probs()[transform_size][i][j][k][l][m]; prob = TRY(diff_update_prob(prob)); } } } } } } } return {}; } DecoderErrorOr Parser::read_skip_prob() { for (auto i = 0; i < SKIP_CONTEXTS; i++) m_probability_tables->skip_prob()[i] = TRY(diff_update_prob(m_probability_tables->skip_prob()[i])); return {}; } DecoderErrorOr Parser::read_inter_mode_probs() { for (auto i = 0; i < INTER_MODE_CONTEXTS; i++) { for (auto j = 0; j < INTER_MODES - 1; j++) m_probability_tables->inter_mode_probs()[i][j] = TRY(diff_update_prob(m_probability_tables->inter_mode_probs()[i][j])); } return {}; } DecoderErrorOr Parser::read_interp_filter_probs() { for (auto i = 0; i < INTERP_FILTER_CONTEXTS; i++) { for (auto j = 0; j < SWITCHABLE_FILTERS - 1; j++) m_probability_tables->interp_filter_probs()[i][j] = TRY(diff_update_prob(m_probability_tables->interp_filter_probs()[i][j])); } return {}; } DecoderErrorOr Parser::read_is_inter_probs() { for (auto i = 0; i < IS_INTER_CONTEXTS; i++) m_probability_tables->is_inter_prob()[i] = TRY(diff_update_prob(m_probability_tables->is_inter_prob()[i])); return {}; } static void setup_compound_reference_mode(FrameContext& frame_context) { ReferenceFrameType fixed_reference; ReferenceFramePair variable_references; if (frame_context.reference_frame_sign_biases[ReferenceFrameType::LastFrame] == frame_context.reference_frame_sign_biases[ReferenceFrameType::GoldenFrame]) { fixed_reference = ReferenceFrameType::AltRefFrame; variable_references = { ReferenceFrameType::LastFrame, ReferenceFrameType::GoldenFrame }; } else if (frame_context.reference_frame_sign_biases[ReferenceFrameType::LastFrame] == frame_context.reference_frame_sign_biases[ReferenceFrameType::AltRefFrame]) { fixed_reference = ReferenceFrameType::GoldenFrame; variable_references = { ReferenceFrameType::LastFrame, ReferenceFrameType::AltRefFrame }; } else { fixed_reference = ReferenceFrameType::LastFrame; variable_references = { ReferenceFrameType::GoldenFrame, ReferenceFrameType::AltRefFrame }; } frame_context.fixed_reference_type = fixed_reference; frame_context.variable_reference_types = variable_references; } DecoderErrorOr Parser::frame_reference_mode(FrameContext& frame_context) { auto compound_reference_allowed = false; for (size_t i = 2; i <= REFS_PER_FRAME; i++) { if (frame_context.reference_frame_sign_biases[i] != frame_context.reference_frame_sign_biases[1]) compound_reference_allowed = true; } ReferenceMode reference_mode; if (compound_reference_allowed) { auto non_single_reference = TRY_READ(m_bit_stream->read_literal(1)); if (non_single_reference == 0) { reference_mode = SingleReference; } else { auto reference_select = TRY_READ(m_bit_stream->read_literal(1)); if (reference_select == 0) reference_mode = CompoundReference; else reference_mode = ReferenceModeSelect; } } else { reference_mode = SingleReference; } frame_context.reference_mode = reference_mode; if (reference_mode != SingleReference) setup_compound_reference_mode(frame_context); return {}; } DecoderErrorOr Parser::frame_reference_mode_probs(FrameContext const& frame_context) { if (frame_context.reference_mode == ReferenceModeSelect) { for (auto i = 0; i < COMP_MODE_CONTEXTS; i++) { auto& comp_mode_prob = m_probability_tables->comp_mode_prob(); comp_mode_prob[i] = TRY(diff_update_prob(comp_mode_prob[i])); } } if (frame_context.reference_mode != CompoundReference) { for (auto i = 0; i < REF_CONTEXTS; i++) { auto& single_ref_prob = m_probability_tables->single_ref_prob(); single_ref_prob[i][0] = TRY(diff_update_prob(single_ref_prob[i][0])); single_ref_prob[i][1] = TRY(diff_update_prob(single_ref_prob[i][1])); } } if (frame_context.reference_mode != SingleReference) { for (auto i = 0; i < REF_CONTEXTS; i++) { auto& comp_ref_prob = m_probability_tables->comp_ref_prob(); comp_ref_prob[i] = TRY(diff_update_prob(comp_ref_prob[i])); } } return {}; } DecoderErrorOr Parser::read_y_mode_probs() { for (auto i = 0; i < BLOCK_SIZE_GROUPS; i++) { for (auto j = 0; j < INTRA_MODES - 1; j++) { auto& y_mode_probs = m_probability_tables->y_mode_probs(); y_mode_probs[i][j] = TRY(diff_update_prob(y_mode_probs[i][j])); } } return {}; } DecoderErrorOr Parser::read_partition_probs() { for (auto i = 0; i < PARTITION_CONTEXTS; i++) { for (auto j = 0; j < PARTITION_TYPES - 1; j++) { auto& partition_probs = m_probability_tables->partition_probs(); partition_probs[i][j] = TRY(diff_update_prob(partition_probs[i][j])); } } return {}; } DecoderErrorOr Parser::mv_probs(FrameContext const& frame_context) { for (auto j = 0; j < MV_JOINTS - 1; j++) { auto& mv_joint_probs = m_probability_tables->mv_joint_probs(); mv_joint_probs[j] = TRY(update_mv_prob(mv_joint_probs[j])); } for (auto i = 0; i < 2; i++) { auto& mv_sign_prob = m_probability_tables->mv_sign_prob(); mv_sign_prob[i] = TRY(update_mv_prob(mv_sign_prob[i])); for (auto j = 0; j < MV_CLASSES - 1; j++) { auto& mv_class_probs = m_probability_tables->mv_class_probs(); mv_class_probs[i][j] = TRY(update_mv_prob(mv_class_probs[i][j])); } auto& mv_class0_bit_prob = m_probability_tables->mv_class0_bit_prob(); mv_class0_bit_prob[i] = TRY(update_mv_prob(mv_class0_bit_prob[i])); for (auto j = 0; j < MV_OFFSET_BITS; j++) { auto& mv_bits_prob = m_probability_tables->mv_bits_prob(); mv_bits_prob[i][j] = TRY(update_mv_prob(mv_bits_prob[i][j])); } } for (auto i = 0; i < 2; i++) { for (auto j = 0; j < CLASS0_SIZE; j++) { for (auto k = 0; k < MV_FR_SIZE - 1; k++) { auto& mv_class0_fr_probs = m_probability_tables->mv_class0_fr_probs(); mv_class0_fr_probs[i][j][k] = TRY(update_mv_prob(mv_class0_fr_probs[i][j][k])); } } for (auto k = 0; k < MV_FR_SIZE - 1; k++) { auto& mv_fr_probs = m_probability_tables->mv_fr_probs(); mv_fr_probs[i][k] = TRY(update_mv_prob(mv_fr_probs[i][k])); } } if (frame_context.high_precision_motion_vectors_allowed) { for (auto i = 0; i < 2; i++) { auto& mv_class0_hp_prob = m_probability_tables->mv_class0_hp_prob(); auto& mv_hp_prob = m_probability_tables->mv_hp_prob(); mv_class0_hp_prob[i] = TRY(update_mv_prob(mv_class0_hp_prob[i])); mv_hp_prob[i] = TRY(update_mv_prob(mv_hp_prob[i])); } } return {}; } DecoderErrorOr Parser::update_mv_prob(u8 prob) { if (TRY_READ(m_bit_stream->read_bool(252))) { return (TRY_READ(m_bit_stream->read_literal(7)) << 1u) | 1u; } return prob; } static u32 get_tile_offset(u32 tile_start, u32 frame_size_in_blocks, u32 tile_size_log2) { u32 superblocks = blocks_ceiled_to_superblocks(frame_size_in_blocks); u32 offset = superblocks_to_blocks((tile_start * superblocks) >> tile_size_log2); return min(offset, frame_size_in_blocks); } DecoderErrorOr Parser::decode_tiles(FrameContext& frame_context) { auto log2_dimensions = frame_context.log2_of_tile_counts; auto tile_cols = 1 << log2_dimensions.width(); auto tile_rows = 1 << log2_dimensions.height(); PartitionContext above_partition_context = DECODER_TRY_ALLOC(PartitionContext::try_create(superblocks_to_blocks(frame_context.superblock_columns()))); NonZeroTokens above_non_zero_tokens = DECODER_TRY_ALLOC(create_non_zero_tokens(blocks_to_sub_blocks(frame_context.columns()), frame_context.color_config.subsampling_x)); SegmentationPredictionContext above_segmentation_ids = DECODER_TRY_ALLOC(SegmentationPredictionContext::try_create(frame_context.columns())); // FIXME: To implement tiled decoding, we'll need to pre-parse the tile positions and sizes into a 2D vector of ReadonlyBytes, // then run through each column of tiles in top to bottom order afterward. Each column can be sent to a worker thread // for execution. Each worker thread will want to create a set of above contexts sized to its tile width, then provide // those to each tile as it decodes them. for (auto tile_row = 0; tile_row < tile_rows; tile_row++) { for (auto tile_col = 0; tile_col < tile_cols; tile_col++) { auto last_tile = (tile_row == tile_rows - 1) && (tile_col == tile_cols - 1); size_t tile_size; if (last_tile) tile_size = m_bit_stream->bytes_remaining(); else tile_size = TRY_READ(m_bit_stream->read_bits(32)); auto rows_start = get_tile_offset(tile_row, frame_context.rows(), log2_dimensions.height()); auto rows_end = get_tile_offset(tile_row + 1, frame_context.rows(), log2_dimensions.height()); auto columns_start = get_tile_offset(tile_col, frame_context.columns(), log2_dimensions.width()); auto columns_end = get_tile_offset(tile_col + 1, frame_context.columns(), log2_dimensions.width()); auto width = columns_end - columns_start; auto above_partition_context_for_tile = above_partition_context.span().slice(columns_start, superblocks_to_blocks(blocks_ceiled_to_superblocks(width))); auto above_non_zero_tokens_view = create_non_zero_tokens_view(above_non_zero_tokens, blocks_to_sub_blocks(columns_start), blocks_to_sub_blocks(columns_end - columns_start), frame_context.color_config.subsampling_x); auto above_segmentation_ids_for_tile = safe_slice(above_segmentation_ids.span(), columns_start, columns_end - columns_start); auto tile_context = DECODER_TRY_ALLOC(TileContext::try_create(frame_context, rows_start, rows_end, columns_start, columns_end, above_partition_context_for_tile, above_non_zero_tokens_view, above_segmentation_ids_for_tile)); TRY_READ(m_bit_stream->init_bool(tile_size)); TRY(decode_tile(tile_context)); TRY_READ(m_bit_stream->exit_bool()); } } return {}; } DecoderErrorOr Parser::decode_tile(TileContext& tile_context) { for (auto row = tile_context.rows_start; row < tile_context.rows_end; row += 8) { clear_left_context(tile_context); for (auto col = tile_context.columns_start; col < tile_context.columns_end; col += 8) { TRY(decode_partition(tile_context, row, col, Block_64x64)); } } return {}; } void Parser::clear_left_context(TileContext& tile_context) { for (auto& context_for_plane : tile_context.left_non_zero_tokens) context_for_plane.fill_with(false); tile_context.left_segmentation_ids.fill_with(0); tile_context.left_partition_context.fill_with(0); } DecoderErrorOr Parser::decode_partition(TileContext& tile_context, u32 row, u32 column, BlockSubsize subsize) { if (row >= tile_context.frame_context.rows() || column >= tile_context.frame_context.columns()) return {}; u8 num_8x8 = num_8x8_blocks_wide_lookup[subsize]; auto half_block_8x8 = num_8x8 >> 1; bool has_rows = (row + half_block_8x8) < tile_context.frame_context.rows(); bool has_cols = (column + half_block_8x8) < tile_context.frame_context.columns(); u32 row_in_tile = row - tile_context.rows_start; u32 column_in_tile = column - tile_context.columns_start; auto partition = TRY_READ(TreeParser::parse_partition(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, has_rows, has_cols, subsize, num_8x8, tile_context.above_partition_context, tile_context.left_partition_context.span(), row_in_tile, column_in_tile, !tile_context.frame_context.is_inter_predicted())); auto child_subsize = subsize_lookup[partition][subsize]; if (child_subsize < Block_8x8 || partition == PartitionNone) { TRY(decode_block(tile_context, row, column, child_subsize)); } else if (partition == PartitionHorizontal) { TRY(decode_block(tile_context, row, column, child_subsize)); if (has_rows) TRY(decode_block(tile_context, row + half_block_8x8, column, child_subsize)); } else if (partition == PartitionVertical) { TRY(decode_block(tile_context, row, column, child_subsize)); if (has_cols) TRY(decode_block(tile_context, row, column + half_block_8x8, child_subsize)); } else { TRY(decode_partition(tile_context, row, column, child_subsize)); TRY(decode_partition(tile_context, row, column + half_block_8x8, child_subsize)); TRY(decode_partition(tile_context, row + half_block_8x8, column, child_subsize)); TRY(decode_partition(tile_context, row + half_block_8x8, column + half_block_8x8, child_subsize)); } if (subsize == Block_8x8 || partition != PartitionSplit) { auto above_context = 15 >> b_width_log2_lookup[child_subsize]; auto left_context = 15 >> b_height_log2_lookup[child_subsize]; for (size_t i = 0; i < num_8x8; i++) { tile_context.above_partition_context[column_in_tile + i] = above_context; tile_context.left_partition_context[row_in_tile + i] = left_context; } } return {}; } size_t Parser::get_image_index(FrameContext const& frame_context, u32 row, u32 column) const { VERIFY(row < frame_context.rows() && column < frame_context.columns()); return row * frame_context.columns() + column; } DecoderErrorOr Parser::decode_block(TileContext& tile_context, u32 row, u32 column, BlockSubsize subsize) { auto above_context = row > 0 ? tile_context.frame_block_contexts().at(row - 1, column) : FrameBlockContext(); auto left_context = column > tile_context.columns_start ? tile_context.frame_block_contexts().at(row, column - 1) : FrameBlockContext(); auto block_context = BlockContext::create(tile_context, row, column, subsize); TRY(mode_info(block_context, above_context, left_context)); auto had_residual_tokens = TRY(residual(block_context, above_context.is_available, left_context.is_available)); if (block_context.is_inter_predicted() && subsize >= Block_8x8 && !had_residual_tokens) block_context.should_skip_residuals = true; for (size_t y = 0; y < block_context.contexts_view.height(); y++) { for (size_t x = 0; x < block_context.contexts_view.width(); x++) { auto sub_block_context = FrameBlockContext { true, block_context.should_skip_residuals, block_context.transform_size, block_context.y_prediction_mode(), block_context.sub_block_prediction_modes, block_context.interpolation_filter, block_context.reference_frame_types, block_context.sub_block_motion_vectors, block_context.segment_id }; block_context.contexts_view.at(y, x) = sub_block_context; VERIFY(block_context.frame_block_contexts().at(row + y, column + x).transform_size == sub_block_context.transform_size); } } return {}; } DecoderErrorOr Parser::mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { if (block_context.frame_context.is_inter_predicted()) TRY(inter_frame_mode_info(block_context, above_context, left_context)); else TRY(intra_frame_mode_info(block_context, above_context, left_context)); return {}; } DecoderErrorOr Parser::intra_frame_mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { block_context.reference_frame_types = { ReferenceFrameType::None, ReferenceFrameType::None }; VERIFY(!block_context.is_inter_predicted()); TRY(set_intra_segment_id(block_context)); block_context.should_skip_residuals = TRY(read_should_skip_residuals(block_context, above_context, left_context)); block_context.transform_size = TRY(read_tx_size(block_context, above_context, left_context, true)); // FIXME: This if statement is also present in parse_default_intra_mode. The selection of parameters for // the probability table lookup should be inlined here. if (block_context.size >= Block_8x8) { auto mode = TRY_READ(TreeParser::parse_default_intra_mode(*m_bit_stream, *m_probability_tables, block_context.size, above_context, left_context, block_context.sub_block_prediction_modes, 0, 0)); for (auto& block_sub_mode : block_context.sub_block_prediction_modes) block_sub_mode = mode; } else { auto size_in_sub_blocks = block_context.get_size_in_sub_blocks(); for (auto idy = 0; idy < 2; idy += size_in_sub_blocks.height()) { for (auto idx = 0; idx < 2; idx += size_in_sub_blocks.width()) { auto sub_mode = TRY_READ(TreeParser::parse_default_intra_mode(*m_bit_stream, *m_probability_tables, block_context.size, above_context, left_context, block_context.sub_block_prediction_modes, idx, idy)); for (auto y = 0; y < size_in_sub_blocks.height(); y++) { for (auto x = 0; x < size_in_sub_blocks.width(); x++) { auto index = (idy + y) * 2 + idx + x; block_context.sub_block_prediction_modes[index] = sub_mode; } } } } } block_context.uv_prediction_mode = TRY_READ(TreeParser::parse_default_uv_mode(*m_bit_stream, *m_probability_tables, block_context.y_prediction_mode())); return {}; } DecoderErrorOr Parser::set_intra_segment_id(BlockContext& block_context) { if (block_context.frame_context.segmentation_enabled && block_context.frame_context.use_full_segment_id_tree) block_context.segment_id = TRY_READ(TreeParser::parse_segment_id(*m_bit_stream, block_context.frame_context.full_segment_id_tree_probabilities)); else block_context.segment_id = 0; return {}; } DecoderErrorOr Parser::read_should_skip_residuals(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { if (seg_feature_active(block_context, SEG_LVL_SKIP)) return true; return TRY_READ(TreeParser::parse_skip(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_context, left_context)); } bool Parser::seg_feature_active(BlockContext const& block_context, u8 feature) { return block_context.frame_context.segmentation_features[block_context.segment_id][feature].enabled; } DecoderErrorOr Parser::read_tx_size(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context, bool allow_select) { auto max_tx_size = max_txsize_lookup[block_context.size]; if (allow_select && block_context.frame_context.transform_mode == TransformMode::Select && block_context.size >= Block_8x8) return (TRY_READ(TreeParser::parse_tx_size(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, max_tx_size, above_context, left_context))); return min(max_tx_size, tx_mode_to_biggest_tx_size[to_underlying(block_context.frame_context.transform_mode)]); } DecoderErrorOr Parser::inter_frame_mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { TRY(set_inter_segment_id(block_context)); block_context.should_skip_residuals = TRY(read_should_skip_residuals(block_context, above_context, left_context)); auto is_inter = TRY(read_is_inter(block_context, above_context, left_context)); block_context.transform_size = TRY(read_tx_size(block_context, above_context, left_context, !block_context.should_skip_residuals || !is_inter)); if (is_inter) { TRY(inter_block_mode_info(block_context, above_context, left_context)); } else { TRY(intra_block_mode_info(block_context)); } return {}; } DecoderErrorOr Parser::set_inter_segment_id(BlockContext& block_context) { if (!block_context.frame_context.segmentation_enabled) { block_context.segment_id = 0; return {}; } auto predicted_segment_id = get_segment_id(block_context); if (!block_context.frame_context.use_full_segment_id_tree) { block_context.segment_id = predicted_segment_id; return {}; } if (!block_context.frame_context.use_predicted_segment_id_tree) { block_context.segment_id = TRY_READ(TreeParser::parse_segment_id(*m_bit_stream, block_context.frame_context.full_segment_id_tree_probabilities)); return {}; } auto above_segmentation_id = block_context.tile_context.above_segmentation_ids[block_context.row - block_context.tile_context.rows_start]; auto left_segmentation_id = block_context.tile_context.left_segmentation_ids[block_context.column - block_context.tile_context.columns_start]; auto seg_id_predicted = TRY_READ(TreeParser::parse_segment_id_predicted(*m_bit_stream, block_context.frame_context.predicted_segment_id_tree_probabilities, above_segmentation_id, left_segmentation_id)); if (seg_id_predicted) block_context.segment_id = predicted_segment_id; else block_context.segment_id = TRY_READ(TreeParser::parse_segment_id(*m_bit_stream, block_context.frame_context.full_segment_id_tree_probabilities)); // (7.4.1) AboveSegPredContext[ i ] only needs to be set to 0 for i = 0..MiCols-1. // This is taken care of by the slicing in BlockContext. block_context.above_segmentation_ids.fill(seg_id_predicted); // (7.4.1) LeftSegPredContext[ i ] only needs to be set to 0 for i = 0..MiRows-1. // This is taken care of by the slicing in BlockContext. block_context.left_segmentation_ids.fill(seg_id_predicted); return {}; } u8 Parser::get_segment_id(BlockContext const& block_context) { auto bw = num_8x8_blocks_wide_lookup[block_context.size]; auto bh = num_8x8_blocks_high_lookup[block_context.size]; auto xmis = min(block_context.frame_context.columns() - block_context.column, (u32)bw); auto ymis = min(block_context.frame_context.rows() - block_context.row, (u32)bh); u8 segment = 7; for (size_t y = 0; y < ymis; y++) { for (size_t x = 0; x < xmis; x++) { segment = min(segment, m_previous_block_contexts.index_at(block_context.row + y, block_context.column + x)); } } return segment; } DecoderErrorOr Parser::read_is_inter(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { if (seg_feature_active(block_context, SEG_LVL_REF_FRAME)) return block_context.frame_context.segmentation_features[block_context.segment_id][SEG_LVL_REF_FRAME].value != ReferenceFrameType::None; return TRY_READ(TreeParser::parse_block_is_inter_predicted(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_context, left_context)); } DecoderErrorOr Parser::intra_block_mode_info(BlockContext& block_context) { block_context.reference_frame_types = { ReferenceFrameType::None, ReferenceFrameType::None }; VERIFY(!block_context.is_inter_predicted()); auto& sub_modes = block_context.sub_block_prediction_modes; if (block_context.size >= Block_8x8) { auto mode = TRY_READ(TreeParser::parse_intra_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, block_context.size)); for (auto& block_sub_mode : sub_modes) block_sub_mode = mode; } else { auto size_in_sub_blocks = block_context.get_size_in_sub_blocks(); for (auto idy = 0; idy < 2; idy += size_in_sub_blocks.height()) { for (auto idx = 0; idx < 2; idx += size_in_sub_blocks.width()) { auto sub_intra_mode = TRY_READ(TreeParser::parse_sub_intra_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter)); for (auto y = 0; y < size_in_sub_blocks.height(); y++) { for (auto x = 0; x < size_in_sub_blocks.width(); x++) sub_modes[(idy + y) * 2 + idx + x] = sub_intra_mode; } } } } block_context.uv_prediction_mode = TRY_READ(TreeParser::parse_uv_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, block_context.y_prediction_mode())); return {}; } static void select_best_reference_motion_vectors(BlockContext& block_context, MotionVectorPair reference_motion_vectors, BlockMotionVectorCandidates& candidates, ReferenceIndex); DecoderErrorOr Parser::inter_block_mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { TRY(read_ref_frames(block_context, above_context, left_context)); VERIFY(block_context.is_inter_predicted()); BlockMotionVectorCandidates motion_vector_candidates; auto reference_motion_vectors = find_reference_motion_vectors(block_context, block_context.reference_frame_types.primary, -1); select_best_reference_motion_vectors(block_context, reference_motion_vectors, motion_vector_candidates, ReferenceIndex::Primary); if (block_context.is_compound()) { auto reference_motion_vectors = find_reference_motion_vectors(block_context, block_context.reference_frame_types.secondary, -1); select_best_reference_motion_vectors(block_context, reference_motion_vectors, motion_vector_candidates, ReferenceIndex::Secondary); } if (seg_feature_active(block_context, SEG_LVL_SKIP)) { block_context.y_prediction_mode() = PredictionMode::ZeroMv; } else if (block_context.size >= Block_8x8) { block_context.y_prediction_mode() = TRY_READ(TreeParser::parse_inter_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, block_context.mode_context[block_context.reference_frame_types.primary])); } if (block_context.frame_context.interpolation_filter == Switchable) block_context.interpolation_filter = TRY_READ(TreeParser::parse_interpolation_filter(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_context, left_context)); else block_context.interpolation_filter = block_context.frame_context.interpolation_filter; if (block_context.size < Block_8x8) { auto size_in_sub_blocks = block_context.get_size_in_sub_blocks(); for (auto idy = 0; idy < 2; idy += size_in_sub_blocks.height()) { for (auto idx = 0; idx < 2; idx += size_in_sub_blocks.width()) { block_context.y_prediction_mode() = TRY_READ(TreeParser::parse_inter_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, block_context.mode_context[block_context.reference_frame_types.primary])); if (block_context.y_prediction_mode() == PredictionMode::NearestMv || block_context.y_prediction_mode() == PredictionMode::NearMv) { select_best_sub_block_reference_motion_vectors(block_context, motion_vector_candidates, idy * 2 + idx, ReferenceIndex::Primary); if (block_context.is_compound()) select_best_sub_block_reference_motion_vectors(block_context, motion_vector_candidates, idy * 2 + idx, ReferenceIndex::Secondary); } auto new_motion_vector_pair = TRY(get_motion_vector(block_context, motion_vector_candidates)); for (auto y = 0; y < size_in_sub_blocks.height(); y++) { for (auto x = 0; x < size_in_sub_blocks.width(); x++) { auto sub_block_index = (idy + y) * 2 + idx + x; block_context.sub_block_motion_vectors[sub_block_index] = new_motion_vector_pair; } } } } return {}; } auto new_motion_vector_pair = TRY(get_motion_vector(block_context, motion_vector_candidates)); for (auto block = 0; block < 4; block++) block_context.sub_block_motion_vectors[block] = new_motion_vector_pair; return {}; } DecoderErrorOr Parser::read_ref_frames(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { if (seg_feature_active(block_context, SEG_LVL_REF_FRAME)) { block_context.reference_frame_types = { static_cast(block_context.frame_context.segmentation_features[block_context.segment_id][SEG_LVL_REF_FRAME].value), ReferenceFrameType::None }; return {}; } ReferenceMode compound_mode = block_context.frame_context.reference_mode; auto fixed_reference = block_context.frame_context.fixed_reference_type; if (compound_mode == ReferenceModeSelect) compound_mode = TRY_READ(TreeParser::parse_comp_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, fixed_reference, above_context, left_context)); if (compound_mode == CompoundReference) { auto variable_references = block_context.frame_context.variable_reference_types; auto fixed_reference_index = ReferenceIndex::Primary; auto variable_reference_index = ReferenceIndex::Secondary; if (block_context.frame_context.reference_frame_sign_biases[fixed_reference]) swap(fixed_reference_index, variable_reference_index); auto variable_reference_selection = TRY_READ(TreeParser::parse_comp_ref(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, fixed_reference, variable_references, variable_reference_index, above_context, left_context)); block_context.reference_frame_types[fixed_reference_index] = fixed_reference; block_context.reference_frame_types[variable_reference_index] = variable_references[variable_reference_selection]; return {}; } // FIXME: Maybe consolidate this into a tree. Context is different between part 1 and 2 but still, it would look nice here. ReferenceFrameType primary_type = ReferenceFrameType::LastFrame; auto single_ref_p1 = TRY_READ(TreeParser::parse_single_ref_part_1(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_context, left_context)); if (single_ref_p1) { auto single_ref_p2 = TRY_READ(TreeParser::parse_single_ref_part_2(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_context, left_context)); primary_type = single_ref_p2 ? ReferenceFrameType::AltRefFrame : ReferenceFrameType::GoldenFrame; } block_context.reference_frame_types = { primary_type, ReferenceFrameType::None }; return {}; } // assign_mv( isCompound ) in the spec. DecoderErrorOr Parser::get_motion_vector(BlockContext const& block_context, BlockMotionVectorCandidates const& candidates) { MotionVectorPair result; auto read_one = [&](ReferenceIndex index) -> DecoderErrorOr { switch (block_context.y_prediction_mode()) { case PredictionMode::NewMv: result[index] = TRY(read_motion_vector(block_context, candidates, index)); break; case PredictionMode::NearestMv: result[index] = candidates[index].nearest_vector; break; case PredictionMode::NearMv: result[index] = candidates[index].near_vector; break; default: result[index] = {}; break; } return {}; }; TRY(read_one(ReferenceIndex::Primary)); if (block_context.is_compound()) TRY(read_one(ReferenceIndex::Secondary)); return result; } // use_mv_hp( deltaMv ) in the spec. static bool should_use_high_precision_motion_vector(MotionVector const& delta_vector) { return (abs(delta_vector.row()) >> 3) < COMPANDED_MVREF_THRESH && (abs(delta_vector.column()) >> 3) < COMPANDED_MVREF_THRESH; } // read_mv( ref ) in the spec. DecoderErrorOr Parser::read_motion_vector(BlockContext const& block_context, BlockMotionVectorCandidates const& candidates, ReferenceIndex reference_index) { auto use_high_precision = block_context.frame_context.high_precision_motion_vectors_allowed && should_use_high_precision_motion_vector(candidates[reference_index].best_vector); MotionVector delta_vector; auto joint = TRY_READ(TreeParser::parse_motion_vector_joint(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter)); if ((joint & MotionVectorNonZeroRow) != 0) delta_vector.set_row(TRY(read_single_motion_vector_component(0, use_high_precision))); if ((joint & MotionVectorNonZeroColumn) != 0) delta_vector.set_column(TRY(read_single_motion_vector_component(1, use_high_precision))); return candidates[reference_index].best_vector + delta_vector; } // read_mv_component( comp ) in the spec. DecoderErrorOr Parser::read_single_motion_vector_component(u8 component, bool use_high_precision) { auto mv_sign = TRY_READ(TreeParser::parse_motion_vector_sign(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component)); auto mv_class = TRY_READ(TreeParser::parse_motion_vector_class(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component)); u32 magnitude; if (mv_class == MvClass0) { auto mv_class0_bit = TRY_READ(TreeParser::parse_motion_vector_class0_bit(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component)); auto mv_class0_fr = TRY_READ(TreeParser::parse_motion_vector_class0_fr(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component, mv_class0_bit)); auto mv_class0_hp = TRY_READ(TreeParser::parse_motion_vector_class0_hp(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component, use_high_precision)); magnitude = ((mv_class0_bit << 3) | (mv_class0_fr << 1) | mv_class0_hp) + 1; } else { u32 bits = 0; for (u8 i = 0; i < mv_class; i++) { auto mv_bit = TRY_READ(TreeParser::parse_motion_vector_bit(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component, i)); bits |= mv_bit << i; } magnitude = CLASS0_SIZE << (mv_class + 2); auto mv_fr = TRY_READ(TreeParser::parse_motion_vector_fr(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component)); auto mv_hp = TRY_READ(TreeParser::parse_motion_vector_hp(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component, use_high_precision)); magnitude += ((bits << 3) | (mv_fr << 1) | mv_hp) + 1; } return (mv_sign ? -1 : 1) * static_cast(magnitude); } Gfx::Point Parser::get_decoded_point_for_plane(FrameContext const& frame_context, u32 column, u32 row, u8 plane) { (void)frame_context; if (plane == 0) return { column * 8, row * 8 }; return { (column * 8) >> frame_context.color_config.subsampling_x, (row * 8) >> frame_context.color_config.subsampling_y }; } Gfx::Size Parser::get_decoded_size_for_plane(FrameContext const& frame_context, u8 plane) { auto point = get_decoded_point_for_plane(frame_context, frame_context.columns(), frame_context.rows(), plane); return { point.x(), point.y() }; } static TransformSize get_uv_transform_size(TransformSize transform_size, BlockSubsize size_for_plane) { return min(transform_size, max_txsize_lookup[size_for_plane]); } static TransformSet select_transform_type(BlockContext const& block_context, u8 plane, TransformSize transform_size, u32 block_index) { if (plane > 0 || transform_size == Transform_32x32) return TransformSet { TransformType::DCT, TransformType::DCT }; if (transform_size == Transform_4x4) { if (block_context.frame_context.is_lossless() || block_context.is_inter_predicted()) return TransformSet { TransformType::DCT, TransformType::DCT }; return mode_to_txfm_map[to_underlying(block_context.size < Block_8x8 ? block_context.sub_block_prediction_modes[block_index] : block_context.y_prediction_mode())]; } return mode_to_txfm_map[to_underlying(block_context.y_prediction_mode())]; } DecoderErrorOr Parser::residual(BlockContext& block_context, bool has_block_above, bool has_block_left) { bool block_had_non_zero_tokens = false; Array token_cache; for (u8 plane = 0; plane < 3; plane++) { auto plane_subsampling_x = (plane > 0) ? block_context.frame_context.color_config.subsampling_x : false; auto plane_subsampling_y = (plane > 0) ? block_context.frame_context.color_config.subsampling_y : false; auto plane_size = get_subsampled_block_size(block_context.size, plane_subsampling_x, plane_subsampling_y); auto transform_size = get_uv_transform_size(block_context.transform_size, plane_size); auto transform_size_in_sub_blocks = transform_size_to_sub_blocks(transform_size); auto block_size_in_sub_blocks = block_size_to_sub_blocks(plane_size); auto base_x_in_pixels = (blocks_to_pixels(block_context.column)) >> plane_subsampling_x; auto base_y_in_pixels = (blocks_to_pixels(block_context.row)) >> plane_subsampling_y; if (block_context.is_inter_predicted()) { if (block_context.size < Block_8x8) { for (auto y = 0; y < block_size_in_sub_blocks.height(); y++) { for (auto x = 0; x < block_size_in_sub_blocks.width(); x++) { TRY(m_decoder.predict_inter(plane, block_context, base_x_in_pixels + sub_blocks_to_pixels(x), base_y_in_pixels + sub_blocks_to_pixels(y), sub_blocks_to_pixels(1), sub_blocks_to_pixels(1), (y * block_size_in_sub_blocks.width()) + x)); } } } else { TRY(m_decoder.predict_inter(plane, block_context, base_x_in_pixels, base_y_in_pixels, sub_blocks_to_pixels(block_size_in_sub_blocks.width()), sub_blocks_to_pixels(block_size_in_sub_blocks.height()), 0)); } } auto frame_right_in_pixels = (blocks_to_pixels(block_context.frame_context.columns())) >> plane_subsampling_x; auto frame_bottom_in_pixels = (blocks_to_pixels(block_context.frame_context.rows())) >> plane_subsampling_y; auto sub_block_index = 0; for (u32 y = 0; y < block_size_in_sub_blocks.height(); y += transform_size_in_sub_blocks) { for (u32 x = 0; x < block_size_in_sub_blocks.width(); x += transform_size_in_sub_blocks) { auto transform_x_in_px = base_x_in_pixels + sub_blocks_to_pixels(x); auto transform_y_in_px = base_y_in_pixels + sub_blocks_to_pixels(y); auto sub_block_had_non_zero_tokens = false; if (transform_x_in_px < frame_right_in_pixels && transform_y_in_px < frame_bottom_in_pixels) { if (!block_context.is_inter_predicted()) TRY(m_decoder.predict_intra(plane, block_context, transform_x_in_px, transform_y_in_px, has_block_left || x > 0, has_block_above || y > 0, (x + transform_size_in_sub_blocks) < block_size_in_sub_blocks.width(), transform_size, sub_block_index)); if (!block_context.should_skip_residuals) { auto transform_set = select_transform_type(block_context, plane, transform_size, sub_block_index); sub_block_had_non_zero_tokens = TRY(tokens(block_context, plane, x, y, transform_size, transform_set, token_cache)); block_had_non_zero_tokens = block_had_non_zero_tokens || sub_block_had_non_zero_tokens; TRY(m_decoder.reconstruct(plane, block_context, transform_x_in_px, transform_y_in_px, transform_size, transform_set)); } } auto& above_sub_block_tokens = block_context.above_non_zero_tokens[plane]; auto transform_right_in_sub_blocks = min(x + transform_size_in_sub_blocks, above_sub_block_tokens.size()); for (size_t inside_x = x; inside_x < transform_right_in_sub_blocks; inside_x++) above_sub_block_tokens[inside_x] = sub_block_had_non_zero_tokens; auto& left_sub_block_context = block_context.left_non_zero_tokens[plane]; auto transform_bottom_in_sub_blocks = min(y + transform_size_in_sub_blocks, left_sub_block_context.size()); for (size_t inside_y = y; inside_y < transform_bottom_in_sub_blocks; inside_y++) left_sub_block_context[inside_y] = sub_block_had_non_zero_tokens; sub_block_index++; } } } return block_had_non_zero_tokens; } static u16 const* get_scan(TransformSize transform_size, TransformSet transform_set) { constexpr TransformSet adst_dct { TransformType::ADST, TransformType::DCT }; constexpr TransformSet dct_adst { TransformType::DCT, TransformType::ADST }; if (transform_size == Transform_4x4) { if (transform_set == adst_dct) return row_scan_4x4; if (transform_set == dct_adst) return col_scan_4x4; return default_scan_4x4; } if (transform_size == Transform_8x8) { if (transform_set == adst_dct) return row_scan_8x8; if (transform_set == dct_adst) return col_scan_8x8; return default_scan_8x8; } if (transform_size == Transform_16x16) { if (transform_set == adst_dct) return row_scan_16x16; if (transform_set == dct_adst) return col_scan_16x16; return default_scan_16x16; } return default_scan_32x32; } DecoderErrorOr Parser::tokens(BlockContext& block_context, size_t plane, u32 sub_block_column, u32 sub_block_row, TransformSize transform_size, TransformSet transform_set, Array token_cache) { block_context.residual_tokens.fill(0); auto const* scan = get_scan(transform_size, transform_set); auto check_for_more_coefficients = true; u16 coef_index = 0; u16 transform_pixel_count = 16 << (transform_size << 1); for (; coef_index < transform_pixel_count; coef_index++) { auto band = (transform_size == Transform_4x4) ? coefband_4x4[coef_index] : coefband_8x8plus[coef_index]; auto token_position = scan[coef_index]; TokensContext tokens_context; if (coef_index == 0) tokens_context = TreeParser::get_context_for_first_token(block_context.above_non_zero_tokens, block_context.left_non_zero_tokens, transform_size, plane, sub_block_column, sub_block_row, block_context.is_inter_predicted(), band); else tokens_context = TreeParser::get_context_for_other_tokens(token_cache, transform_size, transform_set, plane, token_position, block_context.is_inter_predicted(), band); if (check_for_more_coefficients && !TRY_READ(TreeParser::parse_more_coefficients(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, tokens_context))) break; auto token = TRY_READ(TreeParser::parse_token(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, tokens_context)); token_cache[token_position] = energy_class[token]; i32 coef; if (token == ZeroToken) { coef = 0; check_for_more_coefficients = false; } else { coef = TRY(read_coef(block_context.frame_context.color_config.bit_depth, token)); check_for_more_coefficients = true; } block_context.residual_tokens[token_position] = coef; } return coef_index > 0; } DecoderErrorOr Parser::read_coef(u8 bit_depth, Token token) { auto cat = extra_bits[token][0]; auto num_extra = extra_bits[token][1]; i32 coef = extra_bits[token][2]; if (token == DctValCat6) { for (size_t e = 0; e < (u8)(bit_depth - 8); e++) { auto high_bit = TRY_READ(m_bit_stream->read_bool(255)); coef += high_bit << (5 + bit_depth - e); } } for (size_t e = 0; e < num_extra; e++) { auto coef_bit = TRY_READ(m_bit_stream->read_bool(cat_probs[cat][e])); coef += coef_bit << (num_extra - 1 - e); } bool sign_bit = TRY_READ(m_bit_stream->read_literal(1)); coef = sign_bit ? -coef : coef; return coef; } // is_inside( candidateR, candidateC ) in the spec. static bool motion_vector_is_inside_tile(TileContext const& tile_context, MotionVector vector) { if (vector.row() < 0) return false; if (vector.column() < 0) return false; u32 row_positive = vector.row(); u32 column_positive = vector.column(); return row_positive < tile_context.frame_context.rows() && column_positive >= tile_context.columns_start && column_positive < tile_context.columns_end; } // add_mv_ref_list( refList ) in the spec. static void add_motion_vector_to_list_deduped(MotionVector const& vector, Vector& list) { if (list.size() >= 2) return; if (list.size() == 1 && vector == list[0]) return; list.append(vector); } // get_block_mv( candidateR, candidateC, refList, usePrev ) in the spec. MotionVectorCandidate Parser::get_motion_vector_from_current_or_previous_frame(BlockContext const& block_context, MotionVector candidate_vector, ReferenceIndex reference_index, bool use_prev) { if (use_prev) { auto const& prev_context = m_previous_block_contexts.at(candidate_vector.row(), candidate_vector.column()); return { prev_context.ref_frames[reference_index], prev_context.primary_motion_vector_pair[reference_index] }; } auto const& current_context = block_context.frame_block_contexts().at(candidate_vector.row(), candidate_vector.column()); return { current_context.ref_frames[reference_index], current_context.primary_motion_vector_pair()[reference_index] }; } // if_same_ref_frame_add_mv( candidateR, candidateC, refFrame, usePrev ) in the spec. void Parser::add_motion_vector_if_reference_frame_type_is_same(BlockContext const& block_context, MotionVector candidate_vector, ReferenceFrameType ref_frame, Vector& list, bool use_prev) { for (auto i = 0u; i < 2; i++) { auto candidate = get_motion_vector_from_current_or_previous_frame(block_context, candidate_vector, static_cast(i), use_prev); if (candidate.type == ref_frame) { add_motion_vector_to_list_deduped(candidate.vector, list); return; } } } // scale_mv( refList, refFrame ) in the spec. static void apply_sign_bias_to_motion_vector(FrameContext const& frame_context, MotionVectorCandidate& candidate, ReferenceFrameType ref_frame) { if (frame_context.reference_frame_sign_biases[candidate.type] != frame_context.reference_frame_sign_biases[ref_frame]) candidate.vector *= -1; } // if_diff_ref_frame_add_mv( candidateR, candidateC, refFrame, usePrev ) in the spec. void Parser::add_motion_vector_if_reference_frame_type_is_different(BlockContext const& block_context, MotionVector candidate_vector, ReferenceFrameType ref_frame, Vector& list, bool use_prev) { auto first_candidate = get_motion_vector_from_current_or_previous_frame(block_context, candidate_vector, ReferenceIndex::Primary, use_prev); if (first_candidate.type > ReferenceFrameType::None && first_candidate.type != ref_frame) { apply_sign_bias_to_motion_vector(block_context.frame_context, first_candidate, ref_frame); add_motion_vector_to_list_deduped(first_candidate.vector, list); } auto second_candidate = get_motion_vector_from_current_or_previous_frame(block_context, candidate_vector, ReferenceIndex::Secondary, use_prev); auto mvs_are_same = first_candidate.vector == second_candidate.vector; if (second_candidate.type > ReferenceFrameType::None && second_candidate.type != ref_frame && !mvs_are_same) { apply_sign_bias_to_motion_vector(block_context.frame_context, second_candidate, ref_frame); add_motion_vector_to_list_deduped(second_candidate.vector, list); } } // This function handles both clamp_mv_row( mvec, border ) and clamp_mv_col( mvec, border ) in the spec. static MotionVector clamp_motion_vector(BlockContext const& block_context, MotionVector vector, i32 border) { i32 blocks_high = num_8x8_blocks_high_lookup[block_context.size]; // Casts must be done here to prevent subtraction underflow from wrapping the values. i32 mb_to_top_edge = -8 * (static_cast(block_context.row) * MI_SIZE); i32 mb_to_bottom_edge = 8 * ((static_cast(block_context.frame_context.rows()) - blocks_high - static_cast(block_context.row)) * MI_SIZE); i32 blocks_wide = num_8x8_blocks_wide_lookup[block_context.size]; i32 mb_to_left_edge = -8 * (static_cast(block_context.column) * MI_SIZE); i32 mb_to_right_edge = 8 * ((static_cast(block_context.frame_context.columns()) - blocks_wide - static_cast(block_context.column)) * MI_SIZE); return { clip_3(mb_to_top_edge - border, mb_to_bottom_edge + border, vector.row()), clip_3(mb_to_left_edge - border, mb_to_right_edge + border, vector.column()) }; } // 6.5.1 Find MV refs syntax // find_mv_refs( refFrame, block ) in the spec. MotionVectorPair Parser::find_reference_motion_vectors(BlockContext& block_context, ReferenceFrameType reference_frame, i32 block) { bool different_ref_found = false; u8 context_counter = 0; Vector list; MotionVector base_coordinates = MotionVector(block_context.row, block_context.column); for (auto i = 0u; i < 2; i++) { auto offset_vector = mv_ref_blocks[block_context.size][i]; auto candidate = base_coordinates + offset_vector; if (motion_vector_is_inside_tile(block_context.tile_context, candidate)) { different_ref_found = true; auto context = block_context.frame_block_contexts().at(candidate.row(), candidate.column()); context_counter += mode_2_counter[to_underlying(context.y_mode)]; for (auto i = 0u; i < 2; i++) { auto reference_index = static_cast(i); if (context.ref_frames[reference_index] == reference_frame) { // This section up until add_mv_ref_list() is defined in spec as get_sub_block_mv(). constexpr u8 idx_n_column_to_subblock[4][2] = { { 1, 2 }, { 1, 3 }, { 3, 2 }, { 3, 3 } }; auto index = block >= 0 ? idx_n_column_to_subblock[block][offset_vector.column() == 0] : 3; add_motion_vector_to_list_deduped(context.sub_block_motion_vectors[index][reference_index], list); break; } } } } block_context.mode_context[reference_frame] = counter_to_context[context_counter]; for (auto i = 2u; i < MVREF_NEIGHBOURS; i++) { MotionVector candidate = base_coordinates + mv_ref_blocks[block_context.size][i]; if (motion_vector_is_inside_tile(block_context.tile_context, candidate)) { different_ref_found = true; add_motion_vector_if_reference_frame_type_is_same(block_context, candidate, reference_frame, list, false); } } if (block_context.frame_context.use_previous_frame_motion_vectors) add_motion_vector_if_reference_frame_type_is_same(block_context, base_coordinates, reference_frame, list, true); if (different_ref_found) { for (auto i = 0u; i < MVREF_NEIGHBOURS; i++) { MotionVector candidate = base_coordinates + mv_ref_blocks[block_context.size][i]; if (motion_vector_is_inside_tile(block_context.tile_context, candidate)) add_motion_vector_if_reference_frame_type_is_different(block_context, candidate, reference_frame, list, false); } } if (block_context.frame_context.use_previous_frame_motion_vectors) add_motion_vector_if_reference_frame_type_is_different(block_context, base_coordinates, reference_frame, list, true); for (auto i = 0u; i < list.size(); i++) { // clamp_mv_ref( i ) in the spec. list[i] = clamp_motion_vector(block_context, list[i], MV_BORDER); } MotionVectorPair result; for (auto i = 0u; i < list.size(); i++) result[static_cast(i)] = list[i]; return result; } // find_best_ref_mvs( refList ) in the spec. static void select_best_reference_motion_vectors(BlockContext& block_context, MotionVectorPair reference_motion_vectors, BlockMotionVectorCandidates& candidates, ReferenceIndex reference_index) { auto adjust_and_clamp_vector = [&](MotionVector& vector) { auto delta_row = vector.row(); auto delta_column = vector.column(); if (!block_context.frame_context.high_precision_motion_vectors_allowed || !should_use_high_precision_motion_vector(vector)) { if ((delta_row & 1) != 0) delta_row += delta_row > 0 ? -1 : 1; if ((delta_column & 1) != 0) delta_column += delta_column > 0 ? -1 : 1; } vector = { delta_row, delta_column }; vector = clamp_motion_vector(block_context, vector, (BORDERINPIXELS - INTERP_EXTEND) << 3); }; adjust_and_clamp_vector(reference_motion_vectors.primary); adjust_and_clamp_vector(reference_motion_vectors.secondary); candidates[reference_index].nearest_vector = reference_motion_vectors.primary; candidates[reference_index].near_vector = reference_motion_vectors.secondary; candidates[reference_index].best_vector = reference_motion_vectors.primary; } // append_sub8x8_mvs( block, refList ) in the spec. void Parser::select_best_sub_block_reference_motion_vectors(BlockContext& block_context, BlockMotionVectorCandidates& candidates, i32 block, ReferenceIndex reference_index) { Array sub_8x8_mvs; MotionVectorPair reference_motion_vectors = find_reference_motion_vectors(block_context, block_context.reference_frame_types[reference_index], block); auto destination_index = 0; if (block == 0) { sub_8x8_mvs[destination_index++] = reference_motion_vectors.primary; sub_8x8_mvs[destination_index++] = reference_motion_vectors.secondary; } else if (block <= 2) { sub_8x8_mvs[destination_index++] = block_context.sub_block_motion_vectors[0][reference_index]; } else { sub_8x8_mvs[destination_index++] = block_context.sub_block_motion_vectors[2][reference_index]; for (auto index = 1; index >= 0 && destination_index < 2; index--) { auto block_vector = block_context.sub_block_motion_vectors[index][reference_index]; if (block_vector != sub_8x8_mvs[0]) sub_8x8_mvs[destination_index++] = block_vector; } } for (auto n = 0u; n < 2 && destination_index < 2; n++) { auto ref_list_vector = reference_motion_vectors[static_cast(n)]; if (ref_list_vector != sub_8x8_mvs[0]) sub_8x8_mvs[destination_index++] = ref_list_vector; } if (destination_index < 2) sub_8x8_mvs[destination_index++] = {}; candidates[reference_index].nearest_vector = sub_8x8_mvs[0]; candidates[reference_index].near_vector = sub_8x8_mvs[1]; } }