/* * Copyright (c) 2020, Ali Mohammad Pur * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef SOCK_NONBLOCK # include #endif namespace TLS { void TLSv12::consume(ReadonlyBytes record) { if (m_context.critical_error) { dbgln("There has been a critical error ({}), refusing to continue", (i8)m_context.critical_error); return; } if (record.size() == 0) { return; } dbgln_if(TLS_DEBUG, "Consuming {} bytes", record.size()); if (m_context.message_buffer.try_append(record).is_error()) { dbgln("Not enough space in message buffer, dropping the record"); return; } size_t index { 0 }; size_t buffer_length = m_context.message_buffer.size(); size_t size_offset { 3 }; // read the common record header size_t header_size { 5 }; dbgln_if(TLS_DEBUG, "message buffer length {}", buffer_length); while (buffer_length >= 5) { auto length = AK::convert_between_host_and_network_endian(ByteReader::load16(m_context.message_buffer.offset_pointer(index + size_offset))) + header_size; if (length > buffer_length) { dbgln_if(TLS_DEBUG, "Need more data: {} > {}", length, buffer_length); break; } auto consumed = handle_message(m_context.message_buffer.bytes().slice(index, length)); if constexpr (TLS_DEBUG) { if (consumed > 0) dbgln("consumed {} bytes", consumed); else dbgln("error: {}", consumed); } if (consumed != (i8)Error::NeedMoreData) { if (consumed < 0) { dbgln("Consumed an error: {}", consumed); if (!m_context.critical_error) m_context.critical_error = (i8)consumed; m_context.error_code = (Error)consumed; break; } } else { continue; } index += length; buffer_length -= length; if (m_context.critical_error) { dbgln("Broken connection"); m_context.error_code = Error::BrokenConnection; break; } } if (m_context.error_code != Error::NoError && m_context.error_code != Error::NeedMoreData) { dbgln("consume error: {}", (i8)m_context.error_code); m_context.message_buffer.clear(); return; } if (index) { // FIXME: Propagate errors. m_context.message_buffer = MUST(m_context.message_buffer.slice(index, m_context.message_buffer.size() - index)); } } bool Certificate::is_valid() const { auto now = Core::DateTime::now(); if (now < not_before) { dbgln("certificate expired (not yet valid, signed for {})", not_before.to_string()); return false; } if (not_after < now) { dbgln("certificate expired (expiry date {})", not_after.to_string()); return false; } return true; } void TLSv12::try_disambiguate_error() const { dbgln("Possible failure cause(s): "); switch ((AlertDescription)m_context.critical_error) { case AlertDescription::HandshakeFailure: if (!m_context.cipher_spec_set) { dbgln("- No cipher suite in common with {}", m_context.extensions.SNI); } else { dbgln("- Unknown internal issue"); } break; case AlertDescription::InsufficientSecurity: dbgln("- No cipher suite in common with {} (the server is oh so secure)", m_context.extensions.SNI); break; case AlertDescription::ProtocolVersion: dbgln("- The server refused to negotiate with TLS 1.2 :("); break; case AlertDescription::UnexpectedMessage: dbgln("- We sent an invalid message for the state we're in."); break; case AlertDescription::BadRecordMAC: dbgln("- Bad MAC record from our side."); dbgln("- Ciphertext wasn't an even multiple of the block length."); dbgln("- Bad block cipher padding."); dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network."); break; case AlertDescription::RecordOverflow: dbgln("- Sent a ciphertext record which has a length bigger than 18432 bytes."); dbgln("- Sent record decrypted to a compressed record that has a length bigger than 18432 bytes."); dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network."); break; case AlertDescription::DecompressionFailure: dbgln("- We sent invalid input for decompression (e.g. data that would expand to excessive length)"); break; case AlertDescription::IllegalParameter: dbgln("- We sent a parameter in the handshake that is out of range or inconsistent with the other parameters."); break; case AlertDescription::DecodeError: dbgln("- The message we sent cannot be decoded because a field was out of range or the length was incorrect."); dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network."); break; case AlertDescription::DecryptError: dbgln("- A handshake crypto operation failed. This includes signature verification and validating Finished."); break; case AlertDescription::AccessDenied: dbgln("- The certificate is valid, but once access control was applied, the sender decided to stop negotiation."); break; case AlertDescription::InternalError: dbgln("- No one knows, but it isn't a protocol failure."); break; case AlertDescription::DecryptionFailed: case AlertDescription::NoCertificate: case AlertDescription::ExportRestriction: dbgln("- No one knows, the server sent a non-compliant alert."); break; default: dbgln("- No one knows."); break; } } void TLSv12::set_root_certificates(Vector certificates) { if (!m_context.root_certificates.is_empty()) { dbgln("TLS warn: resetting root certificates!"); m_context.root_certificates.clear(); } for (auto& cert : certificates) { if (!cert.is_valid()) dbgln("Certificate for {} by {} is invalid, things may or may not work!", cert.subject.subject, cert.issuer.subject); // FIXME: Figure out what we should do when our root certs are invalid. m_context.root_certificates.set(cert.subject_identifier_string(), cert); } dbgln_if(TLS_DEBUG, "{}: Set {} root certificates", this, m_context.root_certificates.size()); } static bool wildcard_matches(StringView host, StringView subject) { if (host == subject) return true; if (subject.starts_with("*."sv)) { auto maybe_first_dot_index = host.find('.'); if (maybe_first_dot_index.has_value()) { auto first_dot_index = maybe_first_dot_index.release_value(); return wildcard_matches(host.substring_view(first_dot_index + 1), subject.substring_view(2)); } } return false; } static bool certificate_subject_matches_host(Certificate& cert, StringView host) { if (wildcard_matches(host, cert.subject.subject)) return true; for (auto& san : cert.SAN) { if (wildcard_matches(host, san)) return true; } return false; } bool Context::verify_chain(StringView host) const { if (!options.validate_certificates) return true; Vector const* local_chain = nullptr; if (is_server) { dbgln("Unsupported: Server mode"); TODO(); } else { local_chain = &certificates; } if (local_chain->is_empty()) { dbgln("verify_chain: Attempting to verify an empty chain"); return false; } // RFC5246 section 7.4.2: The sender's certificate MUST come first in the list. Each following certificate // MUST directly certify the one preceding it. Because certificate validation requires that root keys be // distributed independently, the self-signed certificate that specifies the root certificate authority MAY be // omitted from the chain, under the assumption that the remote end must already possess it in order to validate // it in any case. if (!host.is_empty()) { auto first_certificate = local_chain->first(); auto subject_matches = certificate_subject_matches_host(first_certificate, host); if (!subject_matches) { dbgln("verify_chain: First certificate does not match the hostname"); return false; } } else { // FIXME: The host is taken from m_context.extensions.SNI, when is this empty? dbgln("FIXME: verify_chain called without host"); return false; } for (size_t cert_index = 0; cert_index < local_chain->size(); ++cert_index) { auto cert = local_chain->at(cert_index); auto subject_string = cert.subject_identifier_string(); auto issuer_string = cert.issuer_identifier_string(); if (!cert.is_valid()) { dbgln("verify_chain: Certificate is not valid {}", subject_string); return false; } auto maybe_root_certificate = root_certificates.get(issuer_string); if (maybe_root_certificate.has_value()) { auto& root_certificate = *maybe_root_certificate; auto verification_correct = verify_certificate_pair(cert, root_certificate); if (!verification_correct) { dbgln("verify_chain: Signature inconsistent, {} was not signed by {} (root certificate)", subject_string, issuer_string); return false; } // Root certificate reached, and correctly verified, so we can stop now return true; } if (subject_string == issuer_string) { dbgln("verify_chain: Non-root self-signed certificate"); return options.allow_self_signed_certificates; } if ((cert_index + 1) >= local_chain->size()) { dbgln("verify_chain: No trusted root certificate found before end of certificate chain"); dbgln("verify_chain: Last certificate in chain was signed by {}", issuer_string); return false; } auto parent_certificate = local_chain->at(cert_index + 1); if (issuer_string != parent_certificate.subject_identifier_string()) { dbgln("verify_chain: Next certificate in the chain is not the issuer of this certificate"); return false; } if (!(parent_certificate.is_allowed_to_sign_certificate && parent_certificate.is_certificate_authority)) { dbgln("verify_chain: {} is not marked as certificate authority", issuer_string); return false; } if (parent_certificate.path_length_constraint.has_value() && cert_index > parent_certificate.path_length_constraint.value()) { dbgln("verify_chain: Path length for certificate exceeded"); return false; } bool verification_correct = verify_certificate_pair(cert, parent_certificate); if (!verification_correct) { dbgln("verify_chain: Signature inconsistent, {} was not signed by {}", subject_string, issuer_string); return false; } } // Either a root certificate is reached, or parent validation fails as the end of the local chain is reached VERIFY_NOT_REACHED(); } bool Context::verify_certificate_pair(Certificate const& subject, Certificate const& issuer) const { Crypto::Hash::HashKind kind; switch (subject.signature_algorithm) { case CertificateKeyAlgorithm::RSA_SHA1: kind = Crypto::Hash::HashKind::SHA1; break; case CertificateKeyAlgorithm::RSA_SHA256: kind = Crypto::Hash::HashKind::SHA256; break; case CertificateKeyAlgorithm::RSA_SHA384: kind = Crypto::Hash::HashKind::SHA384; break; case CertificateKeyAlgorithm::RSA_SHA512: kind = Crypto::Hash::HashKind::SHA512; break; default: dbgln("verify_certificate_pair: Unknown signature algorithm, expected RSA with SHA1/256/384/512, got {}", (u8)subject.signature_algorithm); return false; } Crypto::PK::RSAPrivateKey dummy_private_key; Crypto::PK::RSAPublicKey public_key_copy { issuer.public_key }; auto rsa = Crypto::PK::RSA(public_key_copy, dummy_private_key); auto verification_buffer_result = ByteBuffer::create_uninitialized(subject.signature_value.size()); if (verification_buffer_result.is_error()) { dbgln("verify_certificate_pair: Unable to allocate buffer for verification"); return false; } auto verification_buffer = verification_buffer_result.release_value(); auto verification_buffer_bytes = verification_buffer.bytes(); rsa.verify(subject.signature_value, verification_buffer_bytes); // FIXME: This slice is subject hack, this will work for most certificates, but you actually have to parse // the ASN.1 data to correctly extract the signed part of the certificate. ReadonlyBytes message = subject.original_asn1.bytes().slice(4, subject.original_asn1.size() - 4 - (5 + subject.signature_value.size()) - 15); auto pkcs1 = Crypto::PK::EMSA_PKCS1_V1_5(kind); auto verification = pkcs1.verify(message, verification_buffer_bytes, subject.signature_value.size() * 8); return verification == Crypto::VerificationConsistency::Consistent; } template static void hmac_pseudorandom_function(Bytes output, ReadonlyBytes secret, u8 const* label, size_t label_length, ReadonlyBytes seed, ReadonlyBytes seed_b) { if (!secret.size()) { dbgln("null secret"); return; } auto append_label_seed = [&](auto& hmac) { hmac.update(label, label_length); hmac.update(seed); if (seed_b.size() > 0) hmac.update(seed_b); }; HMACType hmac(secret); append_label_seed(hmac); constexpr auto digest_size = hmac.digest_size(); u8 digest[digest_size]; auto digest_0 = Bytes { digest, digest_size }; digest_0.overwrite(0, hmac.digest().immutable_data(), digest_size); size_t index = 0; while (index < output.size()) { hmac.update(digest_0); append_label_seed(hmac); auto digest_1 = hmac.digest(); auto copy_size = min(digest_size, output.size() - index); output.overwrite(index, digest_1.immutable_data(), copy_size); index += copy_size; digest_0.overwrite(0, hmac.process(digest_0).immutable_data(), digest_size); } } void TLSv12::pseudorandom_function(Bytes output, ReadonlyBytes secret, u8 const* label, size_t label_length, ReadonlyBytes seed, ReadonlyBytes seed_b) { // Simplification: We only support the HMAC PRF with the hash function SHA-256 or stronger. // RFC 5246: "In this section, we define one PRF, based on HMAC. This PRF with the // SHA-256 hash function is used for all cipher suites defined in this // document and in TLS documents published prior to this document when // TLS 1.2 is negotiated. New cipher suites MUST explicitly specify a // PRF and, in general, SHOULD use the TLS PRF with SHA-256 or a // stronger standard hash function." switch (hmac_hash()) { case Crypto::Hash::HashKind::SHA512: hmac_pseudorandom_function>(output, secret, label, label_length, seed, seed_b); break; case Crypto::Hash::HashKind::SHA384: hmac_pseudorandom_function>(output, secret, label, label_length, seed, seed_b); break; case Crypto::Hash::HashKind::SHA256: hmac_pseudorandom_function>(output, secret, label, label_length, seed, seed_b); break; default: dbgln("Failed to find a suitable HMAC hash"); VERIFY_NOT_REACHED(); break; } } TLSv12::TLSv12(StreamVariantType stream, Options options) : m_stream(move(stream)) { m_context.options = move(options); m_context.is_server = false; m_context.tls_buffer = {}; set_root_certificates(m_context.options.root_certificates.has_value() ? *m_context.options.root_certificates : DefaultRootCACertificates::the().certificates()); setup_connection(); } Vector TLSv12::parse_pem_certificate(ReadonlyBytes certificate_pem_buffer, ReadonlyBytes rsa_key) // FIXME: This should not be bound to RSA { if (certificate_pem_buffer.is_empty() || rsa_key.is_empty()) { return {}; } auto decoded_certificate = Crypto::decode_pem(certificate_pem_buffer); if (decoded_certificate.is_empty()) { dbgln("Certificate not PEM"); return {}; } auto maybe_certificate = Certificate::parse_asn1(decoded_certificate); if (!maybe_certificate.has_value()) { dbgln("Invalid certificate"); return {}; } Crypto::PK::RSA rsa(rsa_key); auto certificate = maybe_certificate.release_value(); certificate.private_key = rsa.private_key(); return { move(certificate) }; } Singleton DefaultRootCACertificates::s_the; DefaultRootCACertificates::DefaultRootCACertificates() { // FIXME: This might not be the best format, find a better way to represent CA certificates. auto config_result = Core::ConfigFile::open_for_system("ca_certs"); if (config_result.is_error()) { dbgln("Failed to load CA Certificates: {}", config_result.error()); return; } auto config = config_result.release_value(); for (auto& entity : config->groups()) { for (auto& subject : config->keys(entity)) { auto certificate_base64 = config->read_entry(entity, subject); auto certificate_data_result = decode_base64(certificate_base64); if (certificate_data_result.is_error()) { dbgln("Skipping CA Certificate {} {}: out of memory", entity, subject); continue; } auto certificate_data = certificate_data_result.release_value(); auto certificate_result = Certificate::parse_asn1(certificate_data.bytes()); // If the certificate does not parse it is likely using elliptic curve keys/signatures, which are not // supported right now. Currently, ca_certs.ini should only contain certificates with RSA keys/signatures. if (!certificate_result.has_value()) { dbgln("Skipping CA Certificate {} {}: unable to parse", entity, subject); continue; } auto certificate = certificate_result.release_value(); m_ca_certificates.append(move(certificate)); } } dbgln("Loaded {} CA Certificates", m_ca_certificates.size()); } }