/* * Copyright (c) 2021, Stephan Unverwerth * Copyright (c) 2021, Jesse Buhagiar * Copyright (c) 2022-2023, Jelle Raaijmakers * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace SoftGPU { static i64 g_num_rasterized_triangles; static i64 g_num_pixels; static i64 g_num_pixels_shaded; static i64 g_num_pixels_blended; static i64 g_num_sampler_calls; static i64 g_num_stencil_writes; static i64 g_num_quads; using AK::abs; using AK::SIMD::any; using AK::SIMD::exp_approximate; using AK::SIMD::expand4; using AK::SIMD::f32x4; using AK::SIMD::i32x4; using AK::SIMD::load4_masked; using AK::SIMD::maskbits; using AK::SIMD::maskcount; using AK::SIMD::store4_masked; using AK::SIMD::to_f32x4; using AK::SIMD::to_u32x4; using AK::SIMD::u32x4; static constexpr int subpixel_factor = 1 << SUBPIXEL_BITS; // Returns positive values for counter-clockwise rotation of vertices. Note that it returns the // area of a parallelogram with sides {a, b} and {b, c}, so _double_ the area of the triangle {a, b, c}. constexpr static i32 edge_function(IntVector2 const& a, IntVector2 const& b, IntVector2 const& c) { return (c.y() - a.y()) * (b.x() - a.x()) - (c.x() - a.x()) * (b.y() - a.y()); } constexpr static i32x4 edge_function4(IntVector2 const& a, IntVector2 const& b, Vector2 const& c) { return (c.y() - a.y()) * (b.x() - a.x()) - (c.x() - a.x()) * (b.y() - a.y()); } template constexpr static auto interpolate(T const& v0, T const& v1, T const& v2, Vector3 const& barycentric_coords) { return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z(); } static GPU::ColorType to_argb32(FloatVector4 const& color) { auto clamped = color.clamped(0.0f, 1.0f); auto r = static_cast(clamped.x() * 255); auto g = static_cast(clamped.y() * 255); auto b = static_cast(clamped.z() * 255); auto a = static_cast(clamped.w() * 255); return a << 24 | r << 16 | g << 8 | b; } ALWAYS_INLINE static u32x4 to_argb32(Vector4 const& color) { auto clamped = color.clamped(expand4(0.0f), expand4(1.0f)); auto r = to_u32x4(clamped.x() * 255); auto g = to_u32x4(clamped.y() * 255); auto b = to_u32x4(clamped.z() * 255); auto a = to_u32x4(clamped.w() * 255); return a << 24 | r << 16 | g << 8 | b; } static Vector4 to_vec4(u32x4 bgra) { auto constexpr one_over_255 = expand4(1.0f / 255); return { to_f32x4((bgra >> 16) & 0xff) * one_over_255, to_f32x4((bgra >> 8) & 0xff) * one_over_255, to_f32x4(bgra & 0xff) * one_over_255, to_f32x4((bgra >> 24) & 0xff) * one_over_255, }; } ALWAYS_INLINE static void test_alpha(PixelQuad& quad, GPU::AlphaTestFunction alpha_test_function, f32x4 const& reference_value) { auto const alpha = quad.get_output_float(SHADER_OUTPUT_FIRST_COLOR + 3); switch (alpha_test_function) { case GPU::AlphaTestFunction::Always: quad.mask &= expand4(~0); break; case GPU::AlphaTestFunction::Equal: quad.mask &= alpha == reference_value; break; case GPU::AlphaTestFunction::Greater: quad.mask &= alpha > reference_value; break; case GPU::AlphaTestFunction::GreaterOrEqual: quad.mask &= alpha >= reference_value; break; case GPU::AlphaTestFunction::Less: quad.mask &= alpha < reference_value; break; case GPU::AlphaTestFunction::LessOrEqual: quad.mask &= alpha <= reference_value; break; case GPU::AlphaTestFunction::NotEqual: quad.mask &= alpha != reference_value; break; case GPU::AlphaTestFunction::Never: default: VERIFY_NOT_REACHED(); } } ALWAYS_INLINE static bool is_blend_factor_constant(GPU::BlendFactor blend_factor) { return (blend_factor == GPU::BlendFactor::One || blend_factor == GPU::BlendFactor::Zero); } // OpenGL 1.5 § 4.1.8, table 4.1 ALWAYS_INLINE static Vector4 get_blend_factor(GPU::BlendFactor blend_factor, Vector4 const& source_color, Vector4 const& destination_color) { switch (blend_factor) { case GPU::BlendFactor::DstAlpha: return to_vec4(destination_color.w()); case GPU::BlendFactor::DstColor: return destination_color; case GPU::BlendFactor::One: return to_vec4(expand4(1.f)); case GPU::BlendFactor::OneMinusDstAlpha: return to_vec4(1.f - destination_color.w()); case GPU::BlendFactor::OneMinusDstColor: return to_vec4(expand4(1.f)) - destination_color; case GPU::BlendFactor::OneMinusSrcAlpha: return to_vec4(1.f - source_color.w()); case GPU::BlendFactor::OneMinusSrcColor: return to_vec4(expand4(1.f)) - source_color; case GPU::BlendFactor::SrcAlpha: return to_vec4(source_color.w()); case GPU::BlendFactor::SrcAlphaSaturate: { auto saturated = min(source_color.w(), 1.f - destination_color.w()); return { saturated, saturated, saturated, expand4(1.f) }; } case GPU::BlendFactor::SrcColor: return source_color; case GPU::BlendFactor::Zero: return to_vec4(expand4(0.f)); default: VERIFY_NOT_REACHED(); } } template ALWAYS_INLINE void Device::rasterize(Gfx::IntRect& render_bounds, CB1 set_coverage_mask, CB2 set_quad_depth, CB3 set_quad_attributes) { // Return if alpha testing is a no-op if (m_options.enable_alpha_test && m_options.alpha_test_func == GPU::AlphaTestFunction::Never) return; auto const alpha_test_ref_value = expand4(m_options.alpha_test_ref_value); // Buffers auto color_buffer = m_frame_buffer->color_buffer(); auto depth_buffer = m_frame_buffer->depth_buffer(); auto stencil_buffer = m_frame_buffer->stencil_buffer(); // Stencil configuration and writing auto const& stencil_configuration = m_stencil_configuration[GPU::Face::Front]; auto const stencil_reference_value = stencil_configuration.reference_value & stencil_configuration.test_mask; auto write_to_stencil = [](GPU::StencilType* stencil_ptrs[4], i32x4 stencil_value, GPU::StencilOperation op, GPU::StencilType reference_value, GPU::StencilType write_mask, i32x4 pixel_mask) { if (write_mask == 0 || op == GPU::StencilOperation::Keep) return; switch (op) { case GPU::StencilOperation::Decrement: stencil_value = (stencil_value & ~write_mask) | (max(stencil_value - 1, expand4(0)) & write_mask); break; case GPU::StencilOperation::DecrementWrap: stencil_value = (stencil_value & ~write_mask) | (((stencil_value - 1) & 0xFF) & write_mask); break; case GPU::StencilOperation::Increment: stencil_value = (stencil_value & ~write_mask) | (min(stencil_value + 1, expand4(0xFF)) & write_mask); break; case GPU::StencilOperation::IncrementWrap: stencil_value = (stencil_value & ~write_mask) | (((stencil_value + 1) & 0xFF) & write_mask); break; case GPU::StencilOperation::Invert: stencil_value ^= write_mask; break; case GPU::StencilOperation::Replace: stencil_value = (stencil_value & ~write_mask) | (reference_value & write_mask); break; case GPU::StencilOperation::Zero: stencil_value &= ~write_mask; break; default: VERIFY_NOT_REACHED(); } INCREASE_STATISTICS_COUNTER(g_num_stencil_writes, maskcount(pixel_mask)); store4_masked(stencil_value, stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], pixel_mask); }; // Limit rendering to framebuffer and scissor rects render_bounds.intersect(m_frame_buffer->rect()); if (m_options.scissor_enabled) render_bounds.intersect(m_options.scissor_box); // Quad bounds auto const render_bounds_left = render_bounds.left(); auto const render_bounds_right = render_bounds.right() - 1; auto const render_bounds_top = render_bounds.top(); auto const render_bounds_bottom = render_bounds.bottom() - 1; auto const qx0 = render_bounds_left & ~1; auto const qx1 = render_bounds_right & ~1; auto const qy0 = render_bounds_top & ~1; auto const qy1 = render_bounds_bottom & ~1; // Blend factors Vector4 src_factor; Vector4 dst_factor; auto const src_factor_is_constant = is_blend_factor_constant(m_options.blend_source_factor); auto const dst_factor_is_constant = is_blend_factor_constant(m_options.blend_destination_factor); if (m_options.enable_blending) { if (src_factor_is_constant) src_factor = get_blend_factor(m_options.blend_source_factor, {}, {}); if (dst_factor_is_constant) dst_factor = get_blend_factor(m_options.blend_destination_factor, {}, {}); } // Rasterize all quads // FIXME: this could be embarrassingly parallel for (int qy = qy0; qy <= qy1; qy += 2) { for (int qx = qx0; qx <= qx1; qx += 2) { PixelQuad quad; quad.screen_coordinates = { i32x4 { qx, qx + 1, qx, qx + 1 }, i32x4 { qy, qy, qy + 1, qy + 1 }, }; // Set coverage mask and test against render bounds set_coverage_mask(quad); quad.mask &= quad.screen_coordinates.x() >= render_bounds_left && quad.screen_coordinates.x() <= render_bounds_right && quad.screen_coordinates.y() >= render_bounds_top && quad.screen_coordinates.y() <= render_bounds_bottom; auto coverage_bits = maskbits(quad.mask); if (coverage_bits == 0) continue; INCREASE_STATISTICS_COUNTER(g_num_quads, 1); INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask)); // Stencil testing GPU::StencilType* stencil_ptrs[4]; i32x4 stencil_value; if (m_options.enable_stencil_test) { stencil_ptrs[0] = coverage_bits & 1 ? &stencil_buffer->scanline(qy)[qx] : nullptr; stencil_ptrs[1] = coverage_bits & 2 ? &stencil_buffer->scanline(qy)[qx + 1] : nullptr; stencil_ptrs[2] = coverage_bits & 4 ? &stencil_buffer->scanline(qy + 1)[qx] : nullptr; stencil_ptrs[3] = coverage_bits & 8 ? &stencil_buffer->scanline(qy + 1)[qx + 1] : nullptr; stencil_value = load4_masked(stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], quad.mask); stencil_value &= stencil_configuration.test_mask; i32x4 stencil_test_passed; switch (stencil_configuration.test_function) { case GPU::StencilTestFunction::Always: stencil_test_passed = expand4(~0); break; case GPU::StencilTestFunction::Equal: stencil_test_passed = stencil_value == stencil_reference_value; break; case GPU::StencilTestFunction::Greater: stencil_test_passed = stencil_value > stencil_reference_value; break; case GPU::StencilTestFunction::GreaterOrEqual: stencil_test_passed = stencil_value >= stencil_reference_value; break; case GPU::StencilTestFunction::Less: stencil_test_passed = stencil_value < stencil_reference_value; break; case GPU::StencilTestFunction::LessOrEqual: stencil_test_passed = stencil_value <= stencil_reference_value; break; case GPU::StencilTestFunction::Never: stencil_test_passed = expand4(0); break; case GPU::StencilTestFunction::NotEqual: stencil_test_passed = stencil_value != stencil_reference_value; break; default: VERIFY_NOT_REACHED(); } // Update stencil buffer for pixels that failed the stencil test write_to_stencil( stencil_ptrs, stencil_value, stencil_configuration.on_stencil_test_fail, stencil_reference_value, stencil_configuration.write_mask, quad.mask & ~stencil_test_passed); // Update coverage mask + early quad rejection quad.mask &= stencil_test_passed; coverage_bits = maskbits(quad.mask); if (coverage_bits == 0) continue; } // Depth testing GPU::DepthType* depth_ptrs[4] = { coverage_bits & 1 ? &depth_buffer->scanline(qy)[qx] : nullptr, coverage_bits & 2 ? &depth_buffer->scanline(qy)[qx + 1] : nullptr, coverage_bits & 4 ? &depth_buffer->scanline(qy + 1)[qx] : nullptr, coverage_bits & 8 ? &depth_buffer->scanline(qy + 1)[qx + 1] : nullptr, }; if (m_options.enable_depth_test) { set_quad_depth(quad); auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask); i32x4 depth_test_passed; switch (m_options.depth_func) { case GPU::DepthTestFunction::Always: depth_test_passed = expand4(~0); break; case GPU::DepthTestFunction::Never: depth_test_passed = expand4(0); break; case GPU::DepthTestFunction::Greater: depth_test_passed = quad.depth > depth; break; case GPU::DepthTestFunction::GreaterOrEqual: depth_test_passed = quad.depth >= depth; break; case GPU::DepthTestFunction::NotEqual: depth_test_passed = quad.depth != depth; break; case GPU::DepthTestFunction::Equal: depth_test_passed = quad.depth == depth; break; case GPU::DepthTestFunction::LessOrEqual: depth_test_passed = quad.depth <= depth; break; case GPU::DepthTestFunction::Less: depth_test_passed = quad.depth < depth; break; default: VERIFY_NOT_REACHED(); } // Update stencil buffer for pixels that failed the depth test if (m_options.enable_stencil_test) { write_to_stencil( stencil_ptrs, stencil_value, stencil_configuration.on_depth_test_fail, stencil_reference_value, stencil_configuration.write_mask, quad.mask & ~depth_test_passed); } // Update coverage mask + early quad rejection quad.mask &= depth_test_passed; coverage_bits = maskbits(quad.mask); if (coverage_bits == 0) continue; } // Update stencil buffer for passed pixels if (m_options.enable_stencil_test) { write_to_stencil( stencil_ptrs, stencil_value, stencil_configuration.on_pass, stencil_reference_value, stencil_configuration.write_mask, quad.mask); } INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask)); set_quad_attributes(quad); shade_fragments(quad); // Alpha testing if (m_options.enable_alpha_test) { test_alpha(quad, m_options.alpha_test_func, alpha_test_ref_value); coverage_bits = maskbits(quad.mask); if (coverage_bits == 0) continue; } // Write to depth buffer if (m_options.enable_depth_test && m_options.enable_depth_write) store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask); // We will not update the color buffer at all if ((m_options.color_mask == 0) || !m_options.enable_color_write) continue; GPU::ColorType* color_ptrs[4] = { coverage_bits & 1 ? &color_buffer->scanline(qy)[qx] : nullptr, coverage_bits & 2 ? &color_buffer->scanline(qy)[qx + 1] : nullptr, coverage_bits & 4 ? &color_buffer->scanline(qy + 1)[qx] : nullptr, coverage_bits & 8 ? &color_buffer->scanline(qy + 1)[qx + 1] : nullptr, }; u32x4 dst_u32; if (m_options.enable_blending || m_options.color_mask != 0xffffffff) dst_u32 = load4_masked(color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask); auto out_color = quad.get_output_vector4(SHADER_OUTPUT_FIRST_COLOR); if (m_options.enable_blending) { INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask)); // Blend color values from pixel_staging into color_buffer auto const& src = out_color; auto const dst = to_vec4(dst_u32); if (!src_factor_is_constant) src_factor = get_blend_factor(m_options.blend_source_factor, src, dst); if (!dst_factor_is_constant) dst_factor = get_blend_factor(m_options.blend_destination_factor, src, dst); out_color = src * src_factor + dst * dst_factor; } auto const argb32_color = to_argb32(out_color); if (m_options.color_mask == 0xffffffff) store4_masked(argb32_color, color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask); else store4_masked((argb32_color & m_options.color_mask) | (dst_u32 & ~m_options.color_mask), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask); } } } void Device::rasterize_line_aliased(GPU::Vertex& from, GPU::Vertex& to) { // FIXME: implement aliased lines; for now we fall back to anti-aliased logic rasterize_line_antialiased(from, to); } void Device::rasterize_line_antialiased(GPU::Vertex& from, GPU::Vertex& to) { auto const from_coords = from.window_coordinates.xy(); auto const to_coords = to.window_coordinates.xy(); auto const line_width = ceilf(m_options.line_width); auto const line_radius = line_width / 2; auto render_bounds = Gfx::IntRect { min(from_coords.x(), to_coords.x()), min(from_coords.y(), to_coords.y()), abs(from_coords.x() - to_coords.x()) + 1, abs(from_coords.y() - to_coords.y()) + 1, }; render_bounds.inflate(line_width, line_width); auto const from_coords4 = expand4(from_coords); auto const line_vector = to_coords - from_coords; auto const line_vector4 = expand4(line_vector); auto const line_dot4 = expand4(line_vector.dot(line_vector)); auto const from_depth4 = expand4(from.window_coordinates.z()); auto const to_depth4 = expand4(to.window_coordinates.z()); auto const from_color4 = expand4(from.color); auto const from_fog_depth4 = expand4(abs(from.eye_coordinates.z())); // Rasterize using a 2D signed distance field for a line segment // FIXME: performance-wise, this might be the absolute worst way to draw an anti-aliased line f32x4 distance_along_line; rasterize( render_bounds, [&from_coords4, &distance_along_line, &line_vector4, &line_dot4, &line_radius](auto& quad) { auto const screen_coordinates4 = to_vec2_f32x4(quad.screen_coordinates); auto const pixel_vector = screen_coordinates4 - from_coords4; distance_along_line = AK::SIMD::clamp(pixel_vector.dot(line_vector4) / line_dot4, 0.f, 1.f); auto distance_to_line = length(pixel_vector - line_vector4 * distance_along_line) - line_radius; // Add .5f to the distance so coverage transitions half a pixel before the actual border quad.coverage = 1.f - AK::SIMD::clamp(distance_to_line + 0.5f, 0.f, 1.f); quad.mask = quad.coverage > 0.f; }, [&from_depth4, &to_depth4, &distance_along_line](auto& quad) { quad.depth = mix(from_depth4, to_depth4, distance_along_line); }, [&from_color4, &from, &from_fog_depth4](auto& quad) { // FIXME: interpolate color, tex coords and fog depth along the distance of the line // in clip space (i.e. NOT distance_from_line) quad.set_input(SHADER_INPUT_VERTEX_COLOR, from_color4); for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, expand4(from.tex_coords[i])); quad.fog_depth = from_fog_depth4; }); } void Device::rasterize_line(GPU::Vertex& from, GPU::Vertex& to) { if (m_options.line_smooth) rasterize_line_antialiased(from, to); else rasterize_line_aliased(from, to); } void Device::rasterize_point_aliased(GPU::Vertex& point) { // Determine aliased point width constexpr size_t maximum_aliased_point_size = 64; auto point_width = clamp(round_to(m_options.point_size), 1, maximum_aliased_point_size); // Determine aliased center coordinates IntVector2 point_center; if (point_width % 2 == 1) point_center = point.window_coordinates.xy().to_type(); else point_center = (point.window_coordinates.xy() + FloatVector2 { .5f, .5f }).to_type(); // Aliased points are rects; calculate boundaries around center auto point_rect = Gfx::IntRect { point_center.x() - point_width / 2, point_center.y() - point_width / 2, point_width, point_width, }; // Rasterize the point as a rect rasterize( point_rect, [](auto& quad) { // We already passed in point_rect, so this doesn't matter quad.mask = expand4(~0); }, [&point](auto& quad) { quad.depth = expand4(point.window_coordinates.z()); }, [&point](auto& quad) { quad.set_input(SHADER_INPUT_VERTEX_COLOR, expand4(point.color)); for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, expand4(point.tex_coords[i])); quad.fog_depth = expand4(abs(point.eye_coordinates.z())); }); } void Device::rasterize_point_antialiased(GPU::Vertex& point) { auto const center = point.window_coordinates.xy(); auto const center4 = expand4(center); auto const radius = m_options.point_size / 2; auto render_bounds = Gfx::IntRect { center.x() - radius, center.y() - radius, radius * 2 + 1, radius * 2 + 1, }; // Rasterize using a 2D signed distance field for a circle rasterize( render_bounds, [¢er4, &radius](auto& quad) { auto screen_coords = to_vec2_f32x4(quad.screen_coordinates); auto distance_to_point = length(center4 - screen_coords) - radius; // Add .5f to the distance so coverage transitions half a pixel before the actual border quad.coverage = 1.f - AK::SIMD::clamp(distance_to_point + .5f, 0.f, 1.f); quad.mask = quad.coverage > 0.f; }, [&point](auto& quad) { quad.depth = expand4(point.window_coordinates.z()); }, [&point](auto& quad) { quad.set_input(SHADER_INPUT_VERTEX_COLOR, expand4(point.color)); for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, expand4(point.tex_coords[i])); quad.fog_depth = expand4(abs(point.eye_coordinates.z())); }); } void Device::rasterize_point(GPU::Vertex& point) { if (m_options.point_smooth) rasterize_point_antialiased(point); else rasterize_point_aliased(point); } void Device::rasterize_triangle(Triangle& triangle) { INCREASE_STATISTICS_COUNTER(g_num_rasterized_triangles, 1); auto v0 = (triangle.vertices[0].window_coordinates.xy() * subpixel_factor).to_rounded(); auto v1 = (triangle.vertices[1].window_coordinates.xy() * subpixel_factor).to_rounded(); auto v2 = (triangle.vertices[2].window_coordinates.xy() * subpixel_factor).to_rounded(); auto triangle_area = edge_function(v0, v1, v2); if (triangle_area == 0) return; // Perform face culling if (m_options.enable_culling) { bool is_front = (m_options.front_face == GPU::WindingOrder::CounterClockwise ? triangle_area > 0 : triangle_area < 0); if (!is_front && m_options.cull_back) return; if (is_front && m_options.cull_front) return; } // Force counter-clockwise ordering of vertices if (triangle_area < 0) { swap(triangle.vertices[0], triangle.vertices[1]); swap(v0, v1); triangle_area *= -1; } auto const& vertex0 = triangle.vertices[0]; auto const& vertex1 = triangle.vertices[1]; auto const& vertex2 = triangle.vertices[2]; auto const one_over_area = 1.0f / triangle_area; // This function calculates the 3 edge values for the pixel relative to the triangle. auto calculate_edge_values4 = [v0, v1, v2](Vector2 const& p) -> Vector3 { return { edge_function4(v1, v2, p), edge_function4(v2, v0, p), edge_function4(v0, v1, p), }; }; // Zero is used in testing against edge values below, applying the "top-left rule". If a pixel // lies exactly on an edge shared by two triangles, we only render that pixel if the edge in // question is a "top" or "left" edge. By setting either a 1 or 0, we effectively change the // comparisons against the edge values below from "> 0" into ">= 0". IntVector3 const zero { (v2.y() < v1.y() || (v2.y() == v1.y() && v2.x() < v1.x())) ? 0 : 1, (v0.y() < v2.y() || (v0.y() == v2.y() && v0.x() < v2.x())) ? 0 : 1, (v1.y() < v0.y() || (v1.y() == v0.y() && v1.x() < v0.x())) ? 0 : 1, }; // This function tests whether a point as identified by its 3 edge values lies within the triangle auto test_point4 = [zero](Vector3 const& edges) -> i32x4 { return edges.x() >= zero.x() && edges.y() >= zero.y() && edges.z() >= zero.z(); }; // Calculate render bounds based on the triangle's vertices Gfx::IntRect render_bounds; render_bounds.set_left(min(min(v0.x(), v1.x()), v2.x()) / subpixel_factor); render_bounds.set_right(max(max(v0.x(), v1.x()), v2.x()) / subpixel_factor + 1); render_bounds.set_top(min(min(v0.y(), v1.y()), v2.y()) / subpixel_factor); render_bounds.set_bottom(max(max(v0.y(), v1.y()), v2.y()) / subpixel_factor + 1); // Calculate depth of fragment for fog; // OpenGL 1.5 chapter 3.10: "An implementation may choose to approximate the // eye-coordinate distance from the eye to each fragment center by |Ze|." Vector3 fog_depth; if (m_options.fog_enabled) { fog_depth = { expand4(abs(vertex0.eye_coordinates.z())), expand4(abs(vertex1.eye_coordinates.z())), expand4(abs(vertex2.eye_coordinates.z())), }; } auto const half_pixel_offset = Vector2 { expand4(subpixel_factor / 2), expand4(subpixel_factor / 2) }; auto const window_w_coordinates = Vector3 { expand4(vertex0.window_coordinates.w()), expand4(vertex1.window_coordinates.w()), expand4(vertex2.window_coordinates.w()), }; // Calculate depth offset to apply float depth_offset = 0.f; if (m_options.depth_offset_enabled) { // OpenGL 2.0 § 3.5.5 allows us to approximate the maximum slope auto delta_z = max( max( abs(vertex0.window_coordinates.z() - vertex1.window_coordinates.z()), abs(vertex1.window_coordinates.z() - vertex2.window_coordinates.z())), abs(vertex2.window_coordinates.z() - vertex0.window_coordinates.z())); auto depth_max_slope = max(delta_z / render_bounds.width(), delta_z / render_bounds.height()); // Calculate total depth offset depth_offset = depth_max_slope * m_options.depth_offset_factor + NumericLimits::epsilon() * m_options.depth_offset_constant; } auto const window_z_coordinates = Vector3 { expand4(vertex0.window_coordinates.z() + depth_offset), expand4(vertex1.window_coordinates.z() + depth_offset), expand4(vertex2.window_coordinates.z() + depth_offset), }; rasterize( render_bounds, [&](auto& quad) { auto edge_values = calculate_edge_values4(quad.screen_coordinates * subpixel_factor + half_pixel_offset); quad.mask = test_point4(edge_values); quad.barycentrics = { to_f32x4(edge_values.x()), to_f32x4(edge_values.y()), to_f32x4(edge_values.z()), }; }, [&](auto& quad) { // Determine each edge's ratio to the total area quad.barycentrics = quad.barycentrics * one_over_area; // Because the Z coordinates were divided by W, we can interpolate between them quad.depth = AK::SIMD::clamp(window_z_coordinates.dot(quad.barycentrics), 0.f, 1.f); }, [&](auto& quad) { auto const interpolated_reciprocal_w = window_w_coordinates.dot(quad.barycentrics); quad.barycentrics = quad.barycentrics * window_w_coordinates / interpolated_reciprocal_w; // FIXME: make this more generic. We want to interpolate more than just color and uv if (m_options.shade_smooth) quad.set_input(SHADER_INPUT_VERTEX_COLOR, interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics)); else quad.set_input(SHADER_INPUT_VERTEX_COLOR, expand4(vertex0.color)); for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, interpolate(expand4(vertex0.tex_coords[i]), expand4(vertex1.tex_coords[i]), expand4(vertex2.tex_coords[i]), quad.barycentrics)); if (m_options.fog_enabled) quad.fog_depth = fog_depth.dot(quad.barycentrics); }); } Device::Device(Gfx::IntSize size) : m_frame_buffer(FrameBuffer::try_create(size).release_value_but_fixme_should_propagate_errors()) , m_shader_processor(m_samplers) { m_options.scissor_box = m_frame_buffer->rect(); m_options.viewport = m_frame_buffer->rect(); } GPU::DeviceInfo Device::info() const { return { .vendor_name = "SerenityOS", .device_name = "SoftGPU", .num_texture_units = GPU::NUM_TEXTURE_UNITS, .num_lights = NUM_LIGHTS, .max_clip_planes = MAX_CLIP_PLANES, .max_texture_size = MAX_TEXTURE_SIZE, .max_texture_lod_bias = MAX_TEXTURE_LOD_BIAS, .stencil_bits = sizeof(GPU::StencilType) * 8, .supports_npot_textures = true, .supports_texture_clamp_to_edge = true, .supports_texture_env_add = true, }; } static void generate_texture_coordinates(GPU::Vertex const& vertex, FloatVector4& tex_coord, GPU::TextureUnitConfiguration const& texture_unit_configuration) { auto generate_coordinate = [&](size_t config_index) -> float { auto const& tex_coord_generation = texture_unit_configuration.tex_coord_generation[config_index]; switch (tex_coord_generation.mode) { case GPU::TexCoordGenerationMode::ObjectLinear: { auto coefficients = tex_coord_generation.coefficients; return coefficients.dot(vertex.position); } case GPU::TexCoordGenerationMode::EyeLinear: { auto coefficients = tex_coord_generation.coefficients; return coefficients.dot(vertex.eye_coordinates); } case GPU::TexCoordGenerationMode::SphereMap: { auto const eye_unit = vertex.eye_coordinates.normalized(); FloatVector3 const eye_unit_xyz = eye_unit.xyz(); auto const normal = vertex.normal; auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz); reflection.set_z(reflection.z() + 1); auto const reflection_value = reflection[config_index]; return reflection_value / (2 * reflection.length()) + 0.5f; } case GPU::TexCoordGenerationMode::ReflectionMap: { auto const eye_unit = vertex.eye_coordinates.normalized(); FloatVector3 const eye_unit_xyz = eye_unit.xyz(); auto const normal = vertex.normal; auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz); return reflection[config_index]; } case GPU::TexCoordGenerationMode::NormalMap: { return vertex.normal[config_index]; } } VERIFY_NOT_REACHED(); }; auto const enabled_coords = texture_unit_configuration.tex_coord_generation_enabled; if (enabled_coords == GPU::TexCoordGenerationCoordinate::None) return; tex_coord = { ((enabled_coords & GPU::TexCoordGenerationCoordinate::S) > 0) ? generate_coordinate(0) : tex_coord.x(), ((enabled_coords & GPU::TexCoordGenerationCoordinate::T) > 0) ? generate_coordinate(1) : tex_coord.y(), ((enabled_coords & GPU::TexCoordGenerationCoordinate::R) > 0) ? generate_coordinate(2) : tex_coord.z(), ((enabled_coords & GPU::TexCoordGenerationCoordinate::Q) > 0) ? generate_coordinate(3) : tex_coord.w(), }; } void Device::calculate_vertex_lighting(GPU::Vertex& vertex) const { if (!m_options.lighting_enabled) return; auto const& material = m_materials.at(0); auto ambient = material.ambient; auto diffuse = material.diffuse; auto emissive = material.emissive; auto specular = material.specular; if (m_options.color_material_enabled && (m_options.color_material_face == GPU::ColorMaterialFace::Front || m_options.color_material_face == GPU::ColorMaterialFace::FrontAndBack)) { switch (m_options.color_material_mode) { case GPU::ColorMaterialMode::Ambient: ambient = vertex.color; break; case GPU::ColorMaterialMode::AmbientAndDiffuse: ambient = vertex.color; diffuse = vertex.color; break; case GPU::ColorMaterialMode::Diffuse: diffuse = vertex.color; break; case GPU::ColorMaterialMode::Emissive: emissive = vertex.color; break; case GPU::ColorMaterialMode::Specular: specular = vertex.color; break; } } FloatVector4 result_color = emissive + ambient * m_lighting_model.scene_ambient_color; for (auto const& light : m_lights) { if (!light.is_enabled) continue; // We need to save the length here because the attenuation factor requires a non-normalized vector! auto sgi_arrow_operator = [](FloatVector4 const& p1, FloatVector4 const& p2, float& output_length) { FloatVector3 light_vector; if ((p1.w() != 0.f) && (p2.w() == 0.f)) light_vector = p2.xyz(); else if ((p1.w() == 0.f) && (p2.w() != 0.f)) light_vector = -p1.xyz(); else light_vector = p2.xyz() - p1.xyz(); output_length = light_vector.length(); if (output_length == 0.f) return light_vector; return light_vector / output_length; }; auto sgi_dot_operator = [](FloatVector3 const& d1, FloatVector3 const& d2) { return AK::max(d1.dot(d2), 0.0f); }; float vertex_to_light_length = 0.f; FloatVector3 vertex_to_light = sgi_arrow_operator(vertex.eye_coordinates, light.position, vertex_to_light_length); // Light attenuation value. float light_attenuation_factor = 1.0f; if (light.position.w() != 0.0f) light_attenuation_factor = 1.0f / (light.constant_attenuation + (light.linear_attenuation * vertex_to_light_length) + (light.quadratic_attenuation * vertex_to_light_length * vertex_to_light_length)); // Spotlight factor float spotlight_factor = 1.0f; if (light.spotlight_cutoff_angle != 180.0f) { auto const vertex_to_light_dot_spotlight_direction = sgi_dot_operator(vertex_to_light, light.spotlight_direction.normalized()); auto const cos_spotlight_cutoff = AK::cos(light.spotlight_cutoff_angle * AK::Pi / 180.f); if (vertex_to_light_dot_spotlight_direction >= cos_spotlight_cutoff) spotlight_factor = AK::pow(vertex_to_light_dot_spotlight_direction, light.spotlight_exponent); else spotlight_factor = 0.0f; } // FIXME: The spec allows for splitting the colors calculated here into multiple different colors (primary/secondary color). Investigate what this means. (void)m_lighting_model.color_control; // FIXME: Two sided lighting should be implemented eventually (I believe this is where the normals are -ve and then lighting is calculated with the BACK material) (void)m_lighting_model.two_sided_lighting; // Ambient auto const ambient_component = ambient * light.ambient_intensity; // Diffuse auto const normal_dot_vertex_to_light = sgi_dot_operator(vertex.normal, vertex_to_light); auto const diffuse_component = diffuse * light.diffuse_intensity * normal_dot_vertex_to_light; // Specular FloatVector4 specular_component = { 0.0f, 0.0f, 0.0f, 0.0f }; if (normal_dot_vertex_to_light > 0.0f) { FloatVector3 half_vector_normalized; if (!m_lighting_model.viewer_at_infinity) { half_vector_normalized = vertex_to_light + FloatVector3(0.0f, 0.0f, 1.0f); } else { auto const vertex_to_eye_point = sgi_arrow_operator(vertex.eye_coordinates, { 0.f, 0.f, 0.f, 1.f }, vertex_to_light_length); half_vector_normalized = vertex_to_light + vertex_to_eye_point; } half_vector_normalized.normalize(); auto const normal_dot_half_vector = sgi_dot_operator(vertex.normal, half_vector_normalized); auto const specular_coefficient = AK::pow(normal_dot_half_vector, material.shininess); specular_component = specular * light.specular_intensity * specular_coefficient; } auto color = ambient_component + diffuse_component + specular_component; color = color * light_attenuation_factor * spotlight_factor; result_color += color; } vertex.color = result_color; vertex.color.set_w(diffuse.w()); // OpenGL 1.5 spec, page 59: "The A produced by lighting is the alpha value associated with diffuse color material" vertex.color.clamp(0.0f, 1.0f); } void Device::draw_primitives(GPU::PrimitiveType primitive_type, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform, Vector& vertices) { // At this point, the user has effectively specified that they are done with defining the geometry // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview): // // 1. Transform all of the vertices in the current vertex list into eye space by multiplying the model-view matrix // 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix // 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling) // 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates) // 5. The triangle's vertices are sorted in a counter-clockwise orientation // 6. The triangles are then sent off to the rasterizer and drawn to the screen if (vertices.is_empty()) return; // Set up normals transform by taking the upper left 3x3 elements from the model view matrix // See section 2.11.3 of the OpenGL 1.5 spec auto const normal_transform = model_view_transform.submatrix_from_topleft<3>().transpose().inverse(); // First, transform all vertices for (auto& vertex : vertices) { vertex.eye_coordinates = model_view_transform * vertex.position; vertex.normal = normal_transform * vertex.normal; if (m_options.normalization_enabled) vertex.normal.normalize(); calculate_vertex_lighting(vertex); vertex.clip_coordinates = projection_transform * vertex.eye_coordinates; for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) { auto const& texture_unit_configuration = m_texture_unit_configuration[i]; if (!texture_unit_configuration.enabled) continue; generate_texture_coordinates(vertex, vertex.tex_coords[i], texture_unit_configuration); vertex.tex_coords[i] = texture_unit_configuration.transformation_matrix * vertex.tex_coords[i]; } } // Window coordinate calculation auto const viewport = m_options.viewport; auto const viewport_half_width = viewport.width() / 2.f; auto const viewport_half_height = viewport.height() / 2.f; auto const viewport_center_x = viewport.x() + viewport_half_width; auto const viewport_center_y = viewport.y() + viewport_half_height; auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2; auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2; auto calculate_vertex_window_coordinates = [&](GPU::Vertex& vertex) { auto const one_over_w = 1 / vertex.clip_coordinates.w(); auto const ndc_coordinates = vertex.clip_coordinates.xyz() * one_over_w; vertex.window_coordinates = { viewport_center_x + ndc_coordinates.x() * viewport_half_width, viewport_center_y + ndc_coordinates.y() * viewport_half_height, depth_halfway + ndc_coordinates.z() * depth_half_range, one_over_w, }; }; // Process points if (primitive_type == GPU::PrimitiveType::Points) { m_clipper.clip_points_against_frustum(vertices); for (auto& vertex : vertices) { calculate_vertex_window_coordinates(vertex); rasterize_point(vertex); } return; } // Process lines, line loop and line strips auto rasterize_line_segment = [&](GPU::Vertex& from, GPU::Vertex& to) { if (!m_clipper.clip_line_against_frustum(from, to)) return; calculate_vertex_window_coordinates(from); calculate_vertex_window_coordinates(to); rasterize_line(from, to); }; if (primitive_type == GPU::PrimitiveType::Lines) { if (vertices.size() < 2) return; for (size_t i = 0; i < vertices.size() - 1; i += 2) rasterize_line_segment(vertices[i], vertices[i + 1]); return; } else if (primitive_type == GPU::PrimitiveType::LineLoop) { if (vertices.size() < 2) return; for (size_t i = 0; i < vertices.size(); ++i) rasterize_line_segment(vertices[i], vertices[(i + 1) % vertices.size()]); return; } else if (primitive_type == GPU::PrimitiveType::LineStrip) { if (vertices.size() < 2) return; for (size_t i = 0; i < vertices.size() - 1; ++i) rasterize_line_segment(vertices[i], vertices[i + 1]); return; } // Let's construct some triangles m_triangle_list.clear_with_capacity(); m_processed_triangles.clear_with_capacity(); if (primitive_type == GPU::PrimitiveType::Triangles) { Triangle triangle; if (vertices.size() < 3) return; for (size_t i = 0; i < vertices.size() - 2; i += 3) { triangle.vertices[0] = vertices.at(i); triangle.vertices[1] = vertices.at(i + 1); triangle.vertices[2] = vertices.at(i + 2); m_triangle_list.append(triangle); } } else if (primitive_type == GPU::PrimitiveType::Quads) { // We need to construct two triangles to form the quad Triangle triangle; if (vertices.size() < 4) return; for (size_t i = 0; i < vertices.size() - 3; i += 4) { // Triangle 1 triangle.vertices[0] = vertices.at(i); triangle.vertices[1] = vertices.at(i + 1); triangle.vertices[2] = vertices.at(i + 2); m_triangle_list.append(triangle); // Triangle 2 triangle.vertices[0] = vertices.at(i + 2); triangle.vertices[1] = vertices.at(i + 3); triangle.vertices[2] = vertices.at(i); m_triangle_list.append(triangle); } } else if (primitive_type == GPU::PrimitiveType::TriangleFan) { Triangle triangle; triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first // This is technically `n-2` triangles. We start at index 1 for (size_t i = 1; i < vertices.size() - 1; i++) { triangle.vertices[1] = vertices.at(i); triangle.vertices[2] = vertices.at(i + 1); m_triangle_list.append(triangle); } } else if (primitive_type == GPU::PrimitiveType::TriangleStrip) { Triangle triangle; if (vertices.size() < 3) return; for (size_t i = 0; i < vertices.size() - 2; i++) { if (i % 2 == 0) { triangle.vertices[0] = vertices.at(i); triangle.vertices[1] = vertices.at(i + 1); triangle.vertices[2] = vertices.at(i + 2); } else { triangle.vertices[0] = vertices.at(i + 1); triangle.vertices[1] = vertices.at(i); triangle.vertices[2] = vertices.at(i + 2); } m_triangle_list.append(triangle); } } // Clip triangles for (auto& triangle : m_triangle_list) { m_clipped_vertices.clear_with_capacity(); m_clipped_vertices.append(triangle.vertices[0]); m_clipped_vertices.append(triangle.vertices[1]); m_clipped_vertices.append(triangle.vertices[2]); m_clipper.clip_triangle_against_frustum(m_clipped_vertices); if (m_clip_planes.size() > 0) m_clipper.clip_triangle_against_user_defined(m_clipped_vertices, m_clip_planes); if (m_clipped_vertices.size() < 3) continue; for (auto& vertex : m_clipped_vertices) calculate_vertex_window_coordinates(vertex); Triangle tri; tri.vertices[0] = m_clipped_vertices[0]; for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) { tri.vertices[1] = m_clipped_vertices[i]; tri.vertices[2] = m_clipped_vertices[i + 1]; m_processed_triangles.append(tri); } } for (auto& triangle : m_processed_triangles) rasterize_triangle(triangle); } ALWAYS_INLINE void Device::shade_fragments(PixelQuad& quad) { if (m_current_fragment_shader) { m_shader_processor.execute(quad, *m_current_fragment_shader); return; } Array, GPU::NUM_TEXTURE_UNITS> texture_stage_texel; auto current_color = quad.get_input_vector4(SHADER_INPUT_VERTEX_COLOR); for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) { if (!m_texture_unit_configuration[i].enabled) continue; auto const& sampler = m_samplers[i]; // OpenGL 2.0 ¶ 3.5.1 states (in a roundabout way) that texture coordinates must be divided by Q auto homogeneous_texture_coordinate = quad.get_input_vector4(SHADER_INPUT_FIRST_TEXCOORD + i * 4); auto texel = sampler.sample_2d(homogeneous_texture_coordinate.xy() / homogeneous_texture_coordinate.w()); INCREASE_STATISTICS_COUNTER(g_num_sampler_calls, 1); if (m_samplers_need_texture_staging) texture_stage_texel[i] = texel; // FIXME: implement support for GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_INTENSITY and GL_RGB internal formats auto& fixed_function_env = sampler.config().fixed_function_texture_environment; switch (fixed_function_env.env_mode) { case GPU::TextureEnvMode::Add: current_color.set_x(current_color.x() + texel.x()); current_color.set_y(current_color.y() + texel.y()); current_color.set_z(current_color.z() + texel.z()); current_color.set_w(current_color.w() * texel.w()); break; case GPU::TextureEnvMode::Blend: { auto blend_color = expand4(fixed_function_env.color); current_color.set_x(mix(current_color.x(), blend_color.x(), texel.x())); current_color.set_y(mix(current_color.y(), blend_color.y(), texel.y())); current_color.set_z(mix(current_color.z(), blend_color.z(), texel.z())); current_color.set_w(current_color.w() * texel.w()); break; } case GPU::TextureEnvMode::Combine: { auto get_source_color = [&](GPU::TextureSource source, u8 texture_stage) { switch (source) { case GPU::TextureSource::Constant: return expand4(fixed_function_env.color); case GPU::TextureSource::Previous: return current_color; case GPU::TextureSource::PrimaryColor: return quad.get_input_vector4(SHADER_INPUT_VERTEX_COLOR); case GPU::TextureSource::Texture: return texel; case GPU::TextureSource::TextureStage: return texture_stage_texel[texture_stage]; } VERIFY_NOT_REACHED(); }; auto get_argument_value = [](GPU::TextureOperand operand, auto value) { switch (operand) { case GPU::TextureOperand::OneMinusSourceAlpha: case GPU::TextureOperand::OneMinusSourceColor: return expand4(FloatVector4 { 1.f, 1.f, 1.f, 1.f }) - value; case GPU::TextureOperand::SourceAlpha: case GPU::TextureOperand::SourceColor: return value; } VERIFY_NOT_REACHED(); }; auto calculate_combinator = [](GPU::TextureCombinator combinator, auto arg0, auto arg1, auto arg2) { switch (combinator) { case GPU::TextureCombinator::Add: return arg0 + arg1; case GPU::TextureCombinator::AddSigned: return arg0 + arg1 - expand4(FloatVector4 { .5f, .5f, .5f, .5f }); case GPU::TextureCombinator::Dot3RGB: case GPU::TextureCombinator::Dot3RGBA: { auto scalar = 4.f * ((arg0.x() - .5f) * (arg1.x() - .5f) + (arg0.y() - 0.5f) * (arg1.y() - 0.5f) + (arg0.z() - 0.5f) * (arg1.z() - 0.5f)); return Vector4 { scalar, scalar, scalar, scalar }; } case GPU::TextureCombinator::Interpolate: return mix(arg0, arg1, arg2); case GPU::TextureCombinator::Modulate: return arg0 * arg1; case GPU::TextureCombinator::Replace: return arg0; case GPU::TextureCombinator::Subtract: return arg0 - arg1; } VERIFY_NOT_REACHED(); }; auto calculate_color = [&](GPU::TextureCombinator combinator, auto& operands, auto& sources, u8 texture_stage) { auto arg0 = get_argument_value(operands[0], get_source_color(sources[0], texture_stage)); auto arg1 = get_argument_value(operands[1], get_source_color(sources[1], texture_stage)); auto arg2 = get_argument_value(operands[2], get_source_color(sources[2], texture_stage)); return calculate_combinator(combinator, arg0, arg1, arg2); }; auto rgb_color = calculate_color( fixed_function_env.rgb_combinator, fixed_function_env.rgb_operand, fixed_function_env.rgb_source, fixed_function_env.rgb_source_texture_stage); auto alpha_color = calculate_color( fixed_function_env.alpha_combinator, fixed_function_env.alpha_operand, fixed_function_env.alpha_source, fixed_function_env.alpha_source_texture_stage); current_color.set_x(rgb_color.x() * fixed_function_env.rgb_scale); current_color.set_y(rgb_color.y() * fixed_function_env.rgb_scale); current_color.set_z(rgb_color.z() * fixed_function_env.rgb_scale); current_color.set_w(alpha_color.w() * fixed_function_env.alpha_scale); current_color.clamp(expand4(0.f), expand4(1.f)); break; } case GPU::TextureEnvMode::Decal: { auto dst_alpha = texel.w(); current_color.set_x(mix(current_color.x(), texel.x(), dst_alpha)); current_color.set_y(mix(current_color.y(), texel.y(), dst_alpha)); current_color.set_z(mix(current_color.z(), texel.z(), dst_alpha)); break; } case GPU::TextureEnvMode::Modulate: current_color = current_color * texel; break; case GPU::TextureEnvMode::Replace: current_color = texel; break; } } // Calculate fog // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html if (m_options.fog_enabled) { f32x4 factor; switch (m_options.fog_mode) { case GPU::FogMode::Linear: factor = (m_options.fog_end - quad.fog_depth) * m_one_over_fog_depth; break; case GPU::FogMode::Exp: { auto argument = -m_options.fog_density * quad.fog_depth; factor = exp_approximate(argument); } break; case GPU::FogMode::Exp2: { auto argument = m_options.fog_density * quad.fog_depth; argument *= -argument; factor = exp_approximate(argument); } break; default: VERIFY_NOT_REACHED(); } // Mix texel's RGB with fog's RBG - leave alpha alone auto fog_color = expand4(m_options.fog_color); current_color.set_x(mix(fog_color.x(), current_color.x(), factor)); current_color.set_y(mix(fog_color.y(), current_color.y(), factor)); current_color.set_z(mix(fog_color.z(), current_color.z(), factor)); } quad.set_output(SHADER_OUTPUT_FIRST_COLOR, current_color.x()); quad.set_output(SHADER_OUTPUT_FIRST_COLOR + 1, current_color.y()); quad.set_output(SHADER_OUTPUT_FIRST_COLOR + 2, current_color.z()); // Multiply coverage with the fragment's alpha to obtain the final alpha value quad.set_output(SHADER_OUTPUT_FIRST_COLOR + 3, current_color.w() * quad.coverage); } void Device::resize(Gfx::IntSize size) { auto frame_buffer_or_error = FrameBuffer::try_create(size); m_frame_buffer = MUST(frame_buffer_or_error); } void Device::clear_color(FloatVector4 const& color) { auto const fill_color = to_argb32(color); auto clear_rect = m_frame_buffer->rect(); if (m_options.scissor_enabled) clear_rect.intersect(m_options.scissor_box); m_frame_buffer->color_buffer()->fill(fill_color, clear_rect); } void Device::clear_depth(GPU::DepthType depth) { auto clear_rect = m_frame_buffer->rect(); if (m_options.scissor_enabled) clear_rect.intersect(m_options.scissor_box); m_frame_buffer->depth_buffer()->fill(depth, clear_rect); } void Device::clear_stencil(GPU::StencilType value) { auto clear_rect = m_frame_buffer->rect(); if (m_options.scissor_enabled) clear_rect.intersect(m_options.scissor_box); m_frame_buffer->stencil_buffer()->fill(value, clear_rect); } GPU::ImageDataLayout Device::color_buffer_data_layout(Vector2 size, Vector2 offset) { return { .pixel_type = { .format = GPU::PixelFormat::BGRA, .bits = GPU::PixelComponentBits::B8_8_8_8, .data_type = GPU::PixelDataType::UnsignedInt, .components_order = GPU::ComponentsOrder::Reversed, }, .dimensions = { .width = static_cast(m_frame_buffer->rect().width()), .height = static_cast(m_frame_buffer->rect().height()), .depth = 1, }, .selection = { .offset_x = offset.x(), .offset_y = offset.y(), .offset_z = 0, .width = size.x(), .height = size.y(), .depth = 1, }, }; } GPU::ImageDataLayout Device::depth_buffer_data_layout(Vector2 size, Vector2 offset) { return { .pixel_type = { .format = GPU::PixelFormat::DepthComponent, .bits = GPU::PixelComponentBits::AllBits, .data_type = GPU::PixelDataType::Float, }, .dimensions = { .width = static_cast(m_frame_buffer->rect().width()), .height = static_cast(m_frame_buffer->rect().height()), .depth = 1, }, .selection = { .offset_x = offset.x(), .offset_y = offset.y(), .offset_z = 0, .width = size.x(), .height = size.y(), .depth = 1, }, }; } void Device::blit_from_color_buffer(Gfx::Bitmap& target) { m_frame_buffer->color_buffer()->blit_flipped_to_bitmap(target, m_frame_buffer->rect()); if constexpr (ENABLE_STATISTICS_OVERLAY) draw_statistics_overlay(target); } void Device::blit_from_color_buffer(NonnullRefPtr image, u32 level, Vector2 input_size, Vector2 input_offset, Vector3 output_offset) { auto input_layout = color_buffer_data_layout(input_size, input_offset); auto const* input_data = m_frame_buffer->color_buffer()->scanline(0); auto const& softgpu_image = reinterpret_cast(image.ptr()); auto output_layout = softgpu_image->image_data_layout(level, output_offset); auto* output_data = softgpu_image->texel_pointer(level, 0, 0, 0); PixelConverter converter { input_layout, output_layout }; auto conversion_result = converter.convert(input_data, output_data, {}); if (conversion_result.is_error()) dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal()); } void Device::blit_from_color_buffer(void* output_data, Vector2 input_offset, GPU::ImageDataLayout const& output_layout) { auto const& output_selection = output_layout.selection; auto input_layout = color_buffer_data_layout({ output_selection.width, output_selection.height }, input_offset); PixelConverter converter { input_layout, output_layout }; auto const* input_data = m_frame_buffer->color_buffer()->scanline(0); auto conversion_result = converter.convert(input_data, output_data, {}); if (conversion_result.is_error()) dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal()); } void Device::blit_from_depth_buffer(void* output_data, Vector2 input_offset, GPU::ImageDataLayout const& output_layout) { auto const& output_selection = output_layout.selection; auto input_layout = depth_buffer_data_layout({ output_selection.width, output_selection.height }, input_offset); PixelConverter converter { input_layout, output_layout }; auto const* input_data = m_frame_buffer->depth_buffer()->scanline(0); auto conversion_result = converter.convert(input_data, output_data, {}); if (conversion_result.is_error()) dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal()); } void Device::blit_from_depth_buffer(NonnullRefPtr image, u32 level, Vector2 input_size, Vector2 input_offset, Vector3 output_offset) { auto input_layout = depth_buffer_data_layout(input_size, input_offset); auto const* input_data = m_frame_buffer->depth_buffer()->scanline(0); auto const& softgpu_image = reinterpret_cast(image.ptr()); auto output_layout = softgpu_image->image_data_layout(level, output_offset); auto* output_data = softgpu_image->texel_pointer(level, 0, 0, 0); PixelConverter converter { input_layout, output_layout }; auto conversion_result = converter.convert(input_data, output_data, {}); if (conversion_result.is_error()) dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal()); } void Device::blit_to_color_buffer_at_raster_position(void const* input_data, GPU::ImageDataLayout const& input_layout) { if (!m_raster_position.valid) return; auto input_selection = input_layout.selection; INCREASE_STATISTICS_COUNTER(g_num_pixels, input_selection.width * input_selection.height); INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, input_selection.width * input_selection.height); auto const rasterization_rect = get_rasterization_rect_of_size({ input_selection.width, input_selection.height }); auto output_layout = color_buffer_data_layout( { static_cast(rasterization_rect.width()), static_cast(rasterization_rect.height()) }, { rasterization_rect.x(), rasterization_rect.y() }); PixelConverter converter { input_layout, output_layout }; auto* output_data = m_frame_buffer->color_buffer()->scanline(0); auto conversion_result = converter.convert(input_data, output_data, {}); if (conversion_result.is_error()) dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal()); } void Device::blit_to_depth_buffer_at_raster_position(void const* input_data, GPU::ImageDataLayout const& input_layout) { if (!m_raster_position.valid) return; auto input_selection = input_layout.selection; auto const rasterization_rect = get_rasterization_rect_of_size({ input_selection.width, input_selection.height }); auto output_layout = depth_buffer_data_layout( { static_cast(rasterization_rect.width()), static_cast(rasterization_rect.height()) }, { rasterization_rect.x(), rasterization_rect.y() }); PixelConverter converter { input_layout, output_layout }; auto* output_data = m_frame_buffer->depth_buffer()->scanline(0); auto conversion_result = converter.convert(input_data, output_data, {}); if (conversion_result.is_error()) dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal()); } void Device::draw_statistics_overlay(Gfx::Bitmap& target) { static Core::ElapsedTimer timer; static String debug_string; static int frame_counter; frame_counter++; i64 milliseconds = 0; if (timer.is_valid()) milliseconds = timer.elapsed(); else timer.start(); Gfx::Painter painter { target }; if (milliseconds > MILLISECONDS_PER_STATISTICS_PERIOD) { int num_rendertarget_pixels = m_frame_buffer->rect().size().area(); StringBuilder builder; builder.appendff("Timings : {:.1}ms {:.1}FPS\n", static_cast(milliseconds) / frame_counter, (milliseconds > 0) ? 1000.0 * frame_counter / milliseconds : 9999.0); builder.appendff("Triangles : {}\n", g_num_rasterized_triangles); builder.appendff("SIMD usage : {}%\n", g_num_quads > 0 ? g_num_pixels_shaded * 25 / g_num_quads : 0); builder.appendff("Pixels : {}, Stencil: {}%, Shaded: {}%, Blended: {}%, Overdraw: {}%\n", g_num_pixels, g_num_pixels > 0 ? g_num_stencil_writes * 100 / g_num_pixels : 0, g_num_pixels > 0 ? g_num_pixels_shaded * 100 / g_num_pixels : 0, g_num_pixels_shaded > 0 ? g_num_pixels_blended * 100 / g_num_pixels_shaded : 0, num_rendertarget_pixels > 0 ? g_num_pixels_shaded * 100 / num_rendertarget_pixels - 100 : 0); builder.appendff("Sampler calls: {}\n", g_num_sampler_calls); debug_string = builder.to_string().release_value_but_fixme_should_propagate_errors(); frame_counter = 0; timer.start(); } g_num_rasterized_triangles = 0; g_num_pixels = 0; g_num_pixels_shaded = 0; g_num_pixels_blended = 0; g_num_sampler_calls = 0; g_num_stencil_writes = 0; g_num_quads = 0; auto& font = Gfx::FontDatabase::default_fixed_width_font(); for (int y = -1; y < 2; y++) for (int x = -1; x < 2; x++) if (x != 0 && y != 0) painter.draw_text(target.rect().translated(x + 2, y + 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::Black); painter.draw_text(target.rect().translated(2, 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::White); } void Device::set_options(GPU::RasterizerOptions const& options) { m_options = options; if (m_options.fog_enabled) m_one_over_fog_depth = 1.f / (m_options.fog_end - m_options.fog_start); } void Device::set_light_model_params(GPU::LightModelParameters const& lighting_model) { m_lighting_model = lighting_model; } NonnullRefPtr Device::create_image(GPU::PixelFormat const& pixel_format, u32 width, u32 height, u32 depth, u32 max_levels) { VERIFY(width > 0); VERIFY(height > 0); VERIFY(depth > 0); VERIFY(max_levels > 0); return adopt_ref(*new Image(this, pixel_format, width, height, depth, max_levels)); } ErrorOr> Device::create_shader(GPU::IR::Shader const& intermediate_representation) { ShaderCompiler compiler; auto shader = TRY(compiler.compile(this, intermediate_representation)); return shader; } void Device::set_sampler_config(unsigned sampler, GPU::SamplerConfig const& config) { VERIFY(config.bound_image.is_null() || config.bound_image->ownership_token() == this); m_samplers[sampler].set_config(config); m_samplers_need_texture_staging = any_of(m_samplers, [](auto const& sampler) { auto const& fixed_function_env = sampler.config().fixed_function_texture_environment; if (fixed_function_env.env_mode != GPU::TextureEnvMode::Combine) return false; return any_of(fixed_function_env.alpha_source, [](auto texture_source) { return texture_source == GPU::TextureSource::TextureStage; }) || any_of(fixed_function_env.rgb_source, [](auto texture_source) { return texture_source == GPU::TextureSource::TextureStage; }); }); } void Device::set_light_state(unsigned int light_id, GPU::Light const& light) { m_lights.at(light_id) = light; } void Device::set_material_state(GPU::Face face, GPU::Material const& material) { m_materials[face] = material; } void Device::set_stencil_configuration(GPU::Face face, GPU::StencilConfiguration const& stencil_configuration) { m_stencil_configuration[face] = stencil_configuration; } void Device::set_texture_unit_configuration(GPU::TextureUnitIndex index, GPU::TextureUnitConfiguration const& configuration) { m_texture_unit_configuration[index] = configuration; } void Device::set_raster_position(GPU::RasterPosition const& raster_position) { m_raster_position = raster_position; } void Device::set_clip_planes(Vector const& clip_planes) { m_clip_planes = clip_planes; } void Device::set_raster_position(FloatVector4 const& position, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform) { auto const eye_coordinates = model_view_transform * position; auto const clip_coordinates = projection_transform * eye_coordinates; // FIXME: implement clipping m_raster_position.valid = true; auto ndc_coordinates = clip_coordinates / clip_coordinates.w(); ndc_coordinates.set_w(clip_coordinates.w()); auto const viewport = m_options.viewport; auto const viewport_half_width = viewport.width() / 2.0f; auto const viewport_half_height = viewport.height() / 2.0f; auto const viewport_center_x = viewport.x() + viewport_half_width; auto const viewport_center_y = viewport.y() + viewport_half_height; auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2; auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2; // FIXME: implement other raster position properties such as color and texcoords m_raster_position.window_coordinates = { viewport_center_x + ndc_coordinates.x() * viewport_half_width, viewport_center_y + ndc_coordinates.y() * viewport_half_height, depth_halfway + ndc_coordinates.z() * depth_half_range, ndc_coordinates.w(), }; m_raster_position.eye_coordinate_distance = eye_coordinates.length(); } void Device::bind_fragment_shader(RefPtr shader) { VERIFY(shader.is_null() || shader->ownership_token() == this); if (shader.is_null()) { m_current_fragment_shader = nullptr; return; } auto softgpu_shader = static_ptr_cast(shader); m_current_fragment_shader = softgpu_shader; } Gfx::IntRect Device::get_rasterization_rect_of_size(Gfx::IntSize size) const { // Round the X and Y floating point coordinates to the nearest integer; OpenGL 1.5 spec: // "Any fragments whose centers lie inside of this rectangle (or on its bottom or left // boundaries) are produced in correspondence with this particular group of elements." return { round_to(m_raster_position.window_coordinates.x()), round_to(m_raster_position.window_coordinates.y()), size.width(), size.height(), }; } } extern "C" { GPU::Device* serenity_gpu_create_device(Gfx::IntSize size) { return make(size).leak_ptr(); } }