/* * Copyright (c) 2021, Stephan Unverwerth * Copyright (c) 2021, Jesse Buhagiar * Copyright (c) 2022, Jelle Raaijmakers * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include namespace SoftGPU { static long long g_num_rasterized_triangles; static long long g_num_pixels; static long long g_num_pixels_shaded; static long long g_num_pixels_blended; static long long g_num_sampler_calls; static long long g_num_stencil_writes; static long long g_num_quads; using IntVector2 = Gfx::Vector2; using IntVector3 = Gfx::Vector3; using AK::SIMD::any; using AK::SIMD::exp; using AK::SIMD::expand4; using AK::SIMD::f32x4; using AK::SIMD::i32x4; using AK::SIMD::load4_masked; using AK::SIMD::maskbits; using AK::SIMD::maskcount; using AK::SIMD::none; using AK::SIMD::store4_masked; using AK::SIMD::to_f32x4; using AK::SIMD::to_u32x4; using AK::SIMD::u32x4; constexpr static int edge_function(const IntVector2& a, const IntVector2& b, const IntVector2& c) { return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x())); } constexpr static i32x4 edge_function4(const IntVector2& a, const IntVector2& b, const Vector2& c) { return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x())); } template constexpr static auto interpolate(const T& v0, const T& v1, const T& v2, const Vector3& barycentric_coords) { return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z(); } ALWAYS_INLINE static u32x4 to_rgba32(const Vector4& v) { auto clamped = v.clamped(expand4(0.0f), expand4(1.0f)); auto r = to_u32x4(clamped.x() * 255); auto g = to_u32x4(clamped.y() * 255); auto b = to_u32x4(clamped.z() * 255); auto a = to_u32x4(clamped.w() * 255); return a << 24 | r << 16 | g << 8 | b; } static Vector4 to_vec4(u32x4 rgba) { auto constexpr one_over_255 = expand4(1.0f / 255); return { to_f32x4((rgba >> 16) & 0xff) * one_over_255, to_f32x4((rgba >> 8) & 0xff) * one_over_255, to_f32x4(rgba & 0xff) * one_over_255, to_f32x4((rgba >> 24) & 0xff) * one_over_255, }; } Gfx::IntRect Device::window_coordinates_to_target_coordinates(Gfx::IntRect const& window_rect) { return { window_rect.x(), m_render_target->rect().height() - window_rect.height() - window_rect.y(), window_rect.width(), window_rect.height(), }; } void Device::setup_blend_factors() { m_alpha_blend_factors = {}; switch (m_options.blend_source_factor) { case BlendFactor::Zero: break; case BlendFactor::One: m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f }; break; case BlendFactor::SrcColor: m_alpha_blend_factors.src_factor_src_color = 1; break; case BlendFactor::OneMinusSrcColor: m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f }; m_alpha_blend_factors.src_factor_src_color = -1; break; case BlendFactor::SrcAlpha: m_alpha_blend_factors.src_factor_src_alpha = 1; break; case BlendFactor::OneMinusSrcAlpha: m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f }; m_alpha_blend_factors.src_factor_src_alpha = -1; break; case BlendFactor::DstAlpha: m_alpha_blend_factors.src_factor_dst_alpha = 1; break; case BlendFactor::OneMinusDstAlpha: m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f }; m_alpha_blend_factors.src_factor_dst_alpha = -1; break; case BlendFactor::DstColor: m_alpha_blend_factors.src_factor_dst_color = 1; break; case BlendFactor::OneMinusDstColor: m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f }; m_alpha_blend_factors.src_factor_dst_color = -1; break; case BlendFactor::SrcAlphaSaturate: default: VERIFY_NOT_REACHED(); } switch (m_options.blend_destination_factor) { case BlendFactor::Zero: break; case BlendFactor::One: m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f }; break; case BlendFactor::SrcColor: m_alpha_blend_factors.dst_factor_src_color = 1; break; case BlendFactor::OneMinusSrcColor: m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f }; m_alpha_blend_factors.dst_factor_src_color = -1; break; case BlendFactor::SrcAlpha: m_alpha_blend_factors.dst_factor_src_alpha = 1; break; case BlendFactor::OneMinusSrcAlpha: m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f }; m_alpha_blend_factors.dst_factor_src_alpha = -1; break; case BlendFactor::DstAlpha: m_alpha_blend_factors.dst_factor_dst_alpha = 1; break; case BlendFactor::OneMinusDstAlpha: m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f }; m_alpha_blend_factors.dst_factor_dst_alpha = -1; break; case BlendFactor::DstColor: m_alpha_blend_factors.dst_factor_dst_color = 1; break; case BlendFactor::OneMinusDstColor: m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f }; m_alpha_blend_factors.dst_factor_dst_color = -1; break; case BlendFactor::SrcAlphaSaturate: default: VERIFY_NOT_REACHED(); } } void Device::rasterize_triangle(const Triangle& triangle) { INCREASE_STATISTICS_COUNTER(g_num_rasterized_triangles, 1); // Return if alpha testing is a no-op if (m_options.enable_alpha_test && m_options.alpha_test_func == AlphaTestFunction::Never) return; // Vertices Vertex const vertex0 = triangle.vertices[0]; Vertex const vertex1 = triangle.vertices[1]; Vertex const vertex2 = triangle.vertices[2]; constexpr int subpixel_factor = 1 << SUBPIXEL_BITS; // Calculate area of the triangle for later tests IntVector2 const v0 { static_cast(vertex0.window_coordinates.x() * subpixel_factor), static_cast(vertex0.window_coordinates.y() * subpixel_factor) }; IntVector2 const v1 { static_cast(vertex1.window_coordinates.x() * subpixel_factor), static_cast(vertex1.window_coordinates.y() * subpixel_factor) }; IntVector2 const v2 { static_cast(vertex2.window_coordinates.x() * subpixel_factor), static_cast(vertex2.window_coordinates.y() * subpixel_factor) }; int area = edge_function(v0, v1, v2); if (area == 0) return; auto const one_over_area = 1.0f / area; auto render_bounds = m_render_target->rect(); if (m_options.scissor_enabled) render_bounds.intersect(window_coordinates_to_target_coordinates(m_options.scissor_box)); // Obey top-left rule: // This sets up "zero" for later pixel coverage tests. // Depending on where on the triangle the edge is located // it is either tested against 0 or 1, effectively // turning "< 0" into "<= 0" IntVector3 zero { 1, 1, 1 }; if (v1.y() > v0.y() || (v1.y() == v0.y() && v1.x() < v0.x())) zero.set_z(0); if (v2.y() > v1.y() || (v2.y() == v1.y() && v2.x() < v1.x())) zero.set_x(0); if (v0.y() > v2.y() || (v0.y() == v2.y() && v0.x() < v2.x())) zero.set_y(0); // This function calculates the 3 edge values for the pixel relative to the triangle. auto calculate_edge_values4 = [v0, v1, v2](Vector2 const& p) -> Vector3 { return { edge_function4(v1, v2, p), edge_function4(v2, v0, p), edge_function4(v0, v1, p), }; }; // This function tests whether a point as identified by its 3 edge values lies within the triangle auto test_point4 = [zero](Vector3 const& edges) -> i32x4 { return edges.x() >= zero.x() && edges.y() >= zero.y() && edges.z() >= zero.z(); }; // Calculate block-based bounds // clang-format off int const bx0 = max(render_bounds.left(), min(min(v0.x(), v1.x()), v2.x()) / subpixel_factor) & ~1; int const bx1 = (min(render_bounds.right(), max(max(v0.x(), v1.x()), v2.x()) / subpixel_factor) & ~1) + 2; int const by0 = max(render_bounds.top(), min(min(v0.y(), v1.y()), v2.y()) / subpixel_factor) & ~1; int const by1 = (min(render_bounds.bottom(), max(max(v0.y(), v1.y()), v2.y()) / subpixel_factor) & ~1) + 2; // clang-format on // Fog depths float const vertex0_eye_absz = fabs(vertex0.eye_coordinates.z()); float const vertex1_eye_absz = fabs(vertex1.eye_coordinates.z()); float const vertex2_eye_absz = fabs(vertex2.eye_coordinates.z()); int const render_bounds_left = render_bounds.x(); int const render_bounds_right = render_bounds.x() + render_bounds.width(); int const render_bounds_top = render_bounds.y(); int const render_bounds_bottom = render_bounds.y() + render_bounds.height(); auto const half_pixel_offset = Vector2 { expand4(subpixel_factor / 2), expand4(subpixel_factor / 2), }; // Stencil configuration and writing auto const stencil_configuration = m_stencil_configuration[Face::Front]; auto const stencil_reference_value = stencil_configuration.reference_value & stencil_configuration.test_mask; auto write_to_stencil = [](u8* stencil_ptrs[4], i32x4 stencil_value, StencilOperation op, u8 reference_value, u8 write_mask, i32x4 pixel_mask) { if (write_mask == 0 || op == StencilOperation::Keep) return; switch (op) { case StencilOperation::Decrement: stencil_value = (stencil_value & ~write_mask) | (max(stencil_value - 1, expand4(0)) & write_mask); break; case StencilOperation::DecrementWrap: stencil_value = (stencil_value & ~write_mask) | (((stencil_value - 1) & 0xFF) & write_mask); break; case StencilOperation::Increment: stencil_value = (stencil_value & ~write_mask) | (min(stencil_value + 1, expand4(0xFF)) & write_mask); break; case StencilOperation::IncrementWrap: stencil_value = (stencil_value & ~write_mask) | (((stencil_value + 1) & 0xFF) & write_mask); break; case StencilOperation::Invert: stencil_value ^= write_mask; break; case StencilOperation::Replace: stencil_value = (stencil_value & ~write_mask) | (reference_value & write_mask); break; case StencilOperation::Zero: stencil_value &= ~write_mask; break; default: VERIFY_NOT_REACHED(); } INCREASE_STATISTICS_COUNTER(g_num_stencil_writes, maskcount(pixel_mask)); store4_masked(stencil_value, stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], pixel_mask); }; // Iterate over all blocks within the bounds of the triangle for (int by = by0; by < by1; by += 2) { for (int bx = bx0; bx < bx1; bx += 2) { PixelQuad quad; quad.screen_coordinates = { i32x4 { bx, bx + 1, bx, bx + 1 }, i32x4 { by, by, by + 1, by + 1 }, }; auto edge_values = calculate_edge_values4(quad.screen_coordinates * subpixel_factor + half_pixel_offset); // Generate triangle coverage mask quad.mask = test_point4(edge_values); // Test quad against intersection of render target size and scissor rect quad.mask &= quad.screen_coordinates.x() >= render_bounds_left && quad.screen_coordinates.x() < render_bounds_right && quad.screen_coordinates.y() >= render_bounds_top && quad.screen_coordinates.y() < render_bounds_bottom; if (none(quad.mask)) continue; INCREASE_STATISTICS_COUNTER(g_num_quads, 1); INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask)); // Calculate barycentric coordinates from previously calculated edge values quad.barycentrics = Vector3 { to_f32x4(edge_values.x()), to_f32x4(edge_values.y()), to_f32x4(edge_values.z()), } * one_over_area; int coverage_bits = maskbits(quad.mask); // Stencil testing u8* stencil_ptrs[4]; i32x4 stencil_value; if (m_options.enable_stencil_test) { stencil_ptrs[0] = coverage_bits & 1 ? &m_stencil_buffer->scanline(by)[bx] : nullptr; stencil_ptrs[1] = coverage_bits & 2 ? &m_stencil_buffer->scanline(by)[bx + 1] : nullptr; stencil_ptrs[2] = coverage_bits & 4 ? &m_stencil_buffer->scanline(by + 1)[bx] : nullptr; stencil_ptrs[3] = coverage_bits & 8 ? &m_stencil_buffer->scanline(by + 1)[bx + 1] : nullptr; stencil_value = load4_masked(stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], quad.mask); stencil_value &= stencil_configuration.test_mask; i32x4 stencil_test_passed; switch (stencil_configuration.test_function) { case StencilTestFunction::Always: stencil_test_passed = expand4(~0); break; case StencilTestFunction::Equal: stencil_test_passed = stencil_value == stencil_reference_value; break; case StencilTestFunction::Greater: stencil_test_passed = stencil_value > stencil_reference_value; break; case StencilTestFunction::GreaterOrEqual: stencil_test_passed = stencil_value >= stencil_reference_value; break; case StencilTestFunction::Less: stencil_test_passed = stencil_value < stencil_reference_value; break; case StencilTestFunction::LessOrEqual: stencil_test_passed = stencil_value <= stencil_reference_value; break; case StencilTestFunction::Never: stencil_test_passed = expand4(0); break; case StencilTestFunction::NotEqual: stencil_test_passed = stencil_value != stencil_reference_value; break; default: VERIFY_NOT_REACHED(); } // Update stencil buffer for pixels that failed the stencil test write_to_stencil( stencil_ptrs, stencil_value, stencil_configuration.on_stencil_test_fail, stencil_reference_value, stencil_configuration.write_mask, quad.mask & ~stencil_test_passed); // Update coverage mask + early quad rejection quad.mask &= stencil_test_passed; if (none(quad.mask)) continue; } // Depth testing float* depth_ptrs[4] = { coverage_bits & 1 ? &m_depth_buffer->scanline(by)[bx] : nullptr, coverage_bits & 2 ? &m_depth_buffer->scanline(by)[bx + 1] : nullptr, coverage_bits & 4 ? &m_depth_buffer->scanline(by + 1)[bx] : nullptr, coverage_bits & 8 ? &m_depth_buffer->scanline(by + 1)[bx + 1] : nullptr, }; if (m_options.enable_depth_test) { auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask); quad.depth = interpolate(vertex0.window_coordinates.z(), vertex1.window_coordinates.z(), vertex2.window_coordinates.z(), quad.barycentrics); // FIXME: Also apply depth_offset_factor which depends on the depth gradient if (m_options.depth_offset_enabled) quad.depth += m_options.depth_offset_constant * NumericLimits::epsilon(); i32x4 depth_test_passed; switch (m_options.depth_func) { case DepthTestFunction::Always: depth_test_passed = expand4(~0); break; case DepthTestFunction::Never: depth_test_passed = expand4(0); break; case DepthTestFunction::Greater: depth_test_passed = quad.depth > depth; break; case DepthTestFunction::GreaterOrEqual: depth_test_passed = quad.depth >= depth; break; case DepthTestFunction::NotEqual: #ifdef __SSE__ depth_test_passed = quad.depth != depth; #else depth_test_passed = i32x4 { bit_cast(quad.depth[0]) != bit_cast(depth[0]) ? -1 : 0, bit_cast(quad.depth[1]) != bit_cast(depth[1]) ? -1 : 0, bit_cast(quad.depth[2]) != bit_cast(depth[2]) ? -1 : 0, bit_cast(quad.depth[3]) != bit_cast(depth[3]) ? -1 : 0, }; #endif break; case DepthTestFunction::Equal: #ifdef __SSE__ depth_test_passed = quad.depth == depth; #else // // This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is // compiled for the i386 target. When we calculate our depth value to be stored in the buffer, // it is an 80-bit x87 floating point number, however, when stored into the DepthBuffer, this is // truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually // used here the comparison fails. // This could be solved by using a `long double` for the depth buffer, however this would take // up significantly more space and is completely overkill for a depth buffer. As such, comparing // the first 32-bits of this depth value is "good enough" that if we get a hit on it being // equal, we can pretty much guarantee that it's actually equal. // depth_test_passed = i32x4 { bit_cast(quad.depth[0]) == bit_cast(depth[0]) ? -1 : 0, bit_cast(quad.depth[1]) == bit_cast(depth[1]) ? -1 : 0, bit_cast(quad.depth[2]) == bit_cast(depth[2]) ? -1 : 0, bit_cast(quad.depth[3]) == bit_cast(depth[3]) ? -1 : 0, }; #endif break; case DepthTestFunction::LessOrEqual: depth_test_passed = quad.depth <= depth; break; case DepthTestFunction::Less: depth_test_passed = quad.depth < depth; break; default: VERIFY_NOT_REACHED(); } // Update stencil buffer for pixels that failed the depth test if (m_options.enable_stencil_test) { write_to_stencil( stencil_ptrs, stencil_value, stencil_configuration.on_depth_test_fail, stencil_reference_value, stencil_configuration.write_mask, quad.mask & ~depth_test_passed); } // Update coverage mask + early quad rejection quad.mask &= depth_test_passed; if (none(quad.mask)) continue; } // Update stencil buffer for passed pixels if (m_options.enable_stencil_test) { write_to_stencil( stencil_ptrs, stencil_value, stencil_configuration.on_pass, stencil_reference_value, stencil_configuration.write_mask, quad.mask); } INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask)); // Draw the pixels according to the previously generated mask auto const w_coordinates = Vector3 { expand4(vertex0.window_coordinates.w()), expand4(vertex1.window_coordinates.w()), expand4(vertex2.window_coordinates.w()), }; auto const interpolated_reciprocal_w = interpolate(w_coordinates.x(), w_coordinates.y(), w_coordinates.z(), quad.barycentrics); auto const interpolated_w = 1.0f / interpolated_reciprocal_w; quad.barycentrics = quad.barycentrics * w_coordinates * interpolated_w; // FIXME: make this more generic. We want to interpolate more than just color and uv if (m_options.shade_smooth) { quad.vertex_color = interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics); } else { quad.vertex_color = expand4(vertex0.color); } for (size_t i = 0; i < NUM_SAMPLERS; ++i) quad.texture_coordinates[i] = interpolate(expand4(vertex0.tex_coords[i]), expand4(vertex1.tex_coords[i]), expand4(vertex2.tex_coords[i]), quad.barycentrics); if (m_options.fog_enabled) { // Calculate depth of fragment for fog // // OpenGL 1.5 spec chapter 3.10: "An implementation may choose to approximate the // eye-coordinate distance from the eye to each fragment center by |Ze|." quad.fog_depth = interpolate(expand4(vertex0_eye_absz), expand4(vertex1_eye_absz), expand4(vertex2_eye_absz), quad.barycentrics); } shade_fragments(quad); if (m_options.enable_alpha_test && m_options.alpha_test_func != AlphaTestFunction::Always && !test_alpha(quad)) { continue; } // Write to depth buffer if (m_options.enable_depth_test && m_options.enable_depth_write) store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask); // We will not update the color buffer at all if (!m_options.color_mask || !m_options.enable_color_write) continue; Gfx::RGBA32* color_ptrs[4] = { coverage_bits & 1 ? &m_render_target->scanline(by)[bx] : nullptr, coverage_bits & 2 ? &m_render_target->scanline(by)[bx + 1] : nullptr, coverage_bits & 4 ? &m_render_target->scanline(by + 1)[bx] : nullptr, coverage_bits & 8 ? &m_render_target->scanline(by + 1)[bx + 1] : nullptr, }; u32x4 dst_u32; if (m_options.enable_blending || m_options.color_mask != 0xffffffff) dst_u32 = load4_masked(color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask); if (m_options.enable_blending) { INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask)); // Blend color values from pixel_staging into m_render_target Vector4 const& src = quad.out_color; auto dst = to_vec4(dst_u32); auto src_factor = expand4(m_alpha_blend_factors.src_constant) + src * m_alpha_blend_factors.src_factor_src_color + Vector4 { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.src_factor_src_alpha + dst * m_alpha_blend_factors.src_factor_dst_color + Vector4 { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.src_factor_dst_alpha; auto dst_factor = expand4(m_alpha_blend_factors.dst_constant) + src * m_alpha_blend_factors.dst_factor_src_color + Vector4 { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.dst_factor_src_alpha + dst * m_alpha_blend_factors.dst_factor_dst_color + Vector4 { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.dst_factor_dst_alpha; quad.out_color = src * src_factor + dst * dst_factor; } if (m_options.color_mask == 0xffffffff) store4_masked(to_rgba32(quad.out_color), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask); else store4_masked((to_rgba32(quad.out_color) & m_options.color_mask) | (dst_u32 & ~m_options.color_mask), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask); } } } Device::Device(const Gfx::IntSize& size) : m_render_target(Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, size).release_value_but_fixme_should_propagate_errors()) , m_depth_buffer(make(size)) , m_stencil_buffer(MUST(StencilBuffer::try_create(size))) { m_options.scissor_box = m_render_target->rect(); m_options.viewport = m_render_target->rect(); } DeviceInfo Device::info() const { return { .vendor_name = "SerenityOS", .device_name = "SoftGPU", .num_texture_units = NUM_SAMPLERS, .num_lights = NUM_LIGHTS, .stencil_bits = sizeof(u8) * 8, .supports_npot_textures = true, }; } static void generate_texture_coordinates(Vertex& vertex, RasterizerOptions const& options) { auto generate_coordinate = [&](size_t texcoord_index, size_t config_index) -> float { auto mode = options.texcoord_generation_config[texcoord_index][config_index].mode; switch (mode) { case TexCoordGenerationMode::ObjectLinear: { auto coefficients = options.texcoord_generation_config[texcoord_index][config_index].coefficients; return coefficients.dot(vertex.position); } case TexCoordGenerationMode::EyeLinear: { auto coefficients = options.texcoord_generation_config[texcoord_index][config_index].coefficients; return coefficients.dot(vertex.eye_coordinates); } case TexCoordGenerationMode::SphereMap: { auto const eye_unit = vertex.eye_coordinates.normalized(); FloatVector3 const eye_unit_xyz = { eye_unit.x(), eye_unit.y(), eye_unit.z() }; auto const normal = vertex.normal; auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz); reflection.set_z(reflection.z() + 1); auto const reflection_value = (config_index == 0) ? reflection.x() : reflection.y(); return reflection_value / (2 * reflection.length()) + 0.5f; } case TexCoordGenerationMode::ReflectionMap: { auto const eye_unit = vertex.eye_coordinates.normalized(); FloatVector3 const eye_unit_xyz = { eye_unit.x(), eye_unit.y(), eye_unit.z() }; auto const normal = vertex.normal; auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz); switch (config_index) { case 0: return reflection.x(); case 1: return reflection.y(); case 2: return reflection.z(); default: VERIFY_NOT_REACHED(); } } case TexCoordGenerationMode::NormalMap: { auto const normal = vertex.normal; switch (config_index) { case 0: return normal.x(); case 1: return normal.y(); case 2: return normal.z(); default: VERIFY_NOT_REACHED(); } } default: VERIFY_NOT_REACHED(); } }; for (size_t i = 0; i < vertex.tex_coords.size(); ++i) { auto& tex_coord = vertex.tex_coords[i]; auto const enabled_coords = options.texcoord_generation_enabled_coordinates[i]; tex_coord = { ((enabled_coords & TexCoordGenerationCoordinate::S) > 0) ? generate_coordinate(i, 0) : tex_coord.x(), ((enabled_coords & TexCoordGenerationCoordinate::T) > 0) ? generate_coordinate(i, 1) : tex_coord.y(), ((enabled_coords & TexCoordGenerationCoordinate::R) > 0) ? generate_coordinate(i, 2) : tex_coord.z(), ((enabled_coords & TexCoordGenerationCoordinate::Q) > 0) ? generate_coordinate(i, 3) : tex_coord.w(), }; } } void Device::draw_primitives(PrimitiveType primitive_type, FloatMatrix4x4 const& model_view_transform, FloatMatrix3x3 const& normal_transform, FloatMatrix4x4 const& projection_transform, FloatMatrix4x4 const& texture_transform, Vector const& vertices, Vector const& enabled_texture_units) { // At this point, the user has effectively specified that they are done with defining the geometry // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview): // // 1. Transform all of the vertices in the current vertex list into eye space by multiplying the model-view matrix // 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix // 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling) // 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates) // 5. The vertices are sorted (for the rasterizer, how are we doing this? 3Dfx did this top to bottom in terms of vertex y coordinates) // 6. The vertices are then sent off to the rasterizer and drawn to the screen m_enabled_texture_units = enabled_texture_units; m_triangle_list.clear_with_capacity(); m_processed_triangles.clear_with_capacity(); // Let's construct some triangles if (primitive_type == PrimitiveType::Triangles) { Triangle triangle; if (vertices.size() < 3) return; for (size_t i = 0; i < vertices.size() - 2; i += 3) { triangle.vertices[0] = vertices.at(i); triangle.vertices[1] = vertices.at(i + 1); triangle.vertices[2] = vertices.at(i + 2); m_triangle_list.append(triangle); } } else if (primitive_type == PrimitiveType::Quads) { // We need to construct two triangles to form the quad Triangle triangle; if (vertices.size() < 4) return; for (size_t i = 0; i < vertices.size() - 3; i += 4) { // Triangle 1 triangle.vertices[0] = vertices.at(i); triangle.vertices[1] = vertices.at(i + 1); triangle.vertices[2] = vertices.at(i + 2); m_triangle_list.append(triangle); // Triangle 2 triangle.vertices[0] = vertices.at(i + 2); triangle.vertices[1] = vertices.at(i + 3); triangle.vertices[2] = vertices.at(i); m_triangle_list.append(triangle); } } else if (primitive_type == PrimitiveType::TriangleFan) { Triangle triangle; triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first // This is technically `n-2` triangles. We start at index 1 for (size_t i = 1; i < vertices.size() - 1; i++) { triangle.vertices[1] = vertices.at(i); triangle.vertices[2] = vertices.at(i + 1); m_triangle_list.append(triangle); } } else if (primitive_type == PrimitiveType::TriangleStrip) { Triangle triangle; if (vertices.size() < 3) return; for (size_t i = 0; i < vertices.size() - 2; i++) { if (i % 2 == 0) { triangle.vertices[0] = vertices.at(i); triangle.vertices[1] = vertices.at(i + 1); triangle.vertices[2] = vertices.at(i + 2); } else { triangle.vertices[0] = vertices.at(i + 1); triangle.vertices[1] = vertices.at(i); triangle.vertices[2] = vertices.at(i + 2); } m_triangle_list.append(triangle); } } // Now let's transform each triangle and send that to the GPU auto const viewport = window_coordinates_to_target_coordinates(m_options.viewport); auto const viewport_half_width = viewport.width() / 2.0f; auto const viewport_half_height = viewport.height() / 2.0f; auto const viewport_center_x = viewport.x() + viewport_half_width; auto const viewport_center_y = viewport.y() + viewport_half_height; auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2; auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2; for (auto& triangle : m_triangle_list) { // Transform vertices into eye coordinates using the model-view transform triangle.vertices[0].eye_coordinates = model_view_transform * triangle.vertices[0].position; triangle.vertices[1].eye_coordinates = model_view_transform * triangle.vertices[1].position; triangle.vertices[2].eye_coordinates = model_view_transform * triangle.vertices[2].position; // Transform the vertex normals into eye-space triangle.vertices[0].normal = transform_direction(model_view_transform, triangle.vertices[0].normal); triangle.vertices[1].normal = transform_direction(model_view_transform, triangle.vertices[1].normal); triangle.vertices[2].normal = transform_direction(model_view_transform, triangle.vertices[2].normal); // Calculate per-vertex lighting if (m_options.lighting_enabled) { auto const& material = m_materials.at(0); for (auto& vertex : triangle.vertices) { auto ambient = material.ambient; auto diffuse = material.diffuse; auto emissive = material.emissive; auto specular = material.specular; if (m_options.color_material_enabled && (m_options.color_material_face == ColorMaterialFace::Front || m_options.color_material_face == ColorMaterialFace::FrontAndBack)) { switch (m_options.color_material_mode) { case ColorMaterialMode::Ambient: ambient = vertex.color; break; case ColorMaterialMode::AmbientAndDiffuse: ambient = vertex.color; diffuse = vertex.color; break; case ColorMaterialMode::Diffuse: diffuse = vertex.color; break; case ColorMaterialMode::Emissive: emissive = vertex.color; break; case ColorMaterialMode::Specular: specular = vertex.color; break; } } FloatVector4 result_color = emissive + (ambient * m_lighting_model.scene_ambient_color); for (auto const& light : m_lights) { if (!light.is_enabled) continue; // We need to save the length here because the attenuation factor requires a non // normalized vector! auto sgi_arrow_operator = [](FloatVector4 const& p1, FloatVector4 const& p2, float& saved_length) { if ((p1.w() != 0.0f) && (p2.w() == 0.0f)) { saved_length = p2.length(); return (p2 / saved_length).xyz(); } else if ((p1.w() == 0.0f) && (p2.w() != 0.0f)) { saved_length = p2.length(); return -(p1 / saved_length).xyz(); } else { // FIXME: The OpenGL 1.5 spec says nothing about the case where P1 and P2 BOTH have a w value of 1, which would // then mean the light position has an implicit value of (0, 0, 0, 0). This doesn't make any logical sense, and it most likely // a typographical error. Most other GL implementations seem to just fix it to the distance from the vertex to the light, which // seems to work just fine. // If somebody with more insight about this could clarify this eventually, that'd be great. auto distance = (p2 - p1); saved_length = distance.length(); return (distance / saved_length).xyz(); } }; auto sgi_dot_operator = [](FloatVector3 const& d1, FloatVector3 const& d2) { return AK::max(d1.dot(d2), 0.0f); }; float vector_length = 0.0f; FloatVector3 vertex_to_light = sgi_arrow_operator(vertex.eye_coordinates, light.position, vector_length); // Light attenuation value. float light_attenuation_factor = 1.0f; if (light.position.w() != 0.0f) { auto const vertex_to_light_length = vertex_to_light.length(); auto const vertex_to_light_length_squared = vertex_to_light_length * vertex_to_light_length; light_attenuation_factor = 1.0f / (light.constant_attenuation + (light.linear_attenuation * vertex_to_light_length) + (light.quadratic_attenuation * vertex_to_light_length_squared)); } // Spotlight factor float spotlight_factor = 1.0f; if (light.spotlight_cutoff_angle != 180.0f) { auto const vertex_to_light_dot_spotlight_direction = sgi_dot_operator(vertex_to_light, light.spotlight_direction.normalized()); auto const cos_spotlight_cutoff = AK::cos(light.spotlight_cutoff_angle * AK::Pi / 180.f); if (vertex_to_light_dot_spotlight_direction >= cos_spotlight_cutoff) spotlight_factor = AK::pow(vertex_to_light_dot_spotlight_direction, light.spotlight_exponent); else spotlight_factor = 0.0f; } // FIXME: The spec allows for splitting the colors calculated here into multiple different colors (primary/secondary color). Investigate what this means. (void)m_lighting_model.single_color; // FIXME: Two sided lighting should be implemented eventually (I believe this is where the normals are -ve and then lighting is calculated with the BACK material) (void)m_lighting_model.two_sided_lighting; // Ambient auto const ambient_component = ambient * light.ambient_intensity; // Diffuse auto const normal_dot_vertex_to_light = sgi_dot_operator(vertex.normal, vertex_to_light); auto const diffuse_component = ((diffuse * light.diffuse_intensity) * normal_dot_vertex_to_light); // Specular FloatVector4 specular_component = { 0.0f, 0.0f, 0.0f, 0.0f }; if (normal_dot_vertex_to_light > 0.0f) { FloatVector3 half_vector_normalized; if (!m_lighting_model.viewer_at_infinity) { half_vector_normalized = (vertex_to_light + FloatVector3(0.0f, 0.0f, 1.0f)).normalized(); } else { auto const vertex_to_eye_point = sgi_arrow_operator(vertex.eye_coordinates.normalized(), FloatVector4(0.0f, 0.0f, 0.0f, 1.0f), vector_length); half_vector_normalized = vertex_to_light + vertex_to_eye_point; } auto const normal_dot_half_vector = sgi_dot_operator(vertex.normal.normalized(), half_vector_normalized); auto const specular_coefficient = AK::pow(normal_dot_half_vector, material.shininess); specular_component = (specular * light.specular_intensity) * specular_coefficient; } FloatVector4 color = ambient_component; color += diffuse_component; color += specular_component; color = color * light_attenuation_factor * spotlight_factor; result_color += color; } vertex.color = result_color; vertex.color.set_w(diffuse.w()); // OpenGL 1.5 spec, page 59: "The A produced by lighting is the alpha value associated with diffuse color material" vertex.color.clamp(0.0f, 1.0f); } } // Transform eye coordinates into clip coordinates using the projection transform triangle.vertices[0].clip_coordinates = projection_transform * triangle.vertices[0].eye_coordinates; triangle.vertices[1].clip_coordinates = projection_transform * triangle.vertices[1].eye_coordinates; triangle.vertices[2].clip_coordinates = projection_transform * triangle.vertices[2].eye_coordinates; // At this point, we're in clip space // Here's where we do the clipping. This is a really crude implementation of the // https://learnopengl.com/Getting-started/Coordinate-Systems // "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL // will reconstruct the triangle as one or more triangles to fit inside the clipping range. " // // ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER // Okay, let's do some face culling first m_clipped_vertices.clear_with_capacity(); m_clipped_vertices.append(triangle.vertices[0]); m_clipped_vertices.append(triangle.vertices[1]); m_clipped_vertices.append(triangle.vertices[2]); m_clipper.clip_triangle_against_frustum(m_clipped_vertices); if (m_clipped_vertices.size() < 3) continue; for (auto& vec : m_clipped_vertices) { // To normalized device coordinates (NDC) auto const one_over_w = 1 / vec.clip_coordinates.w(); auto const ndc_coordinates = FloatVector4 { vec.clip_coordinates.x() * one_over_w, vec.clip_coordinates.y() * one_over_w, vec.clip_coordinates.z() * one_over_w, one_over_w, }; // To window coordinates - note that we flip the Y coordinate into target space vec.window_coordinates = { viewport_center_x + ndc_coordinates.x() * viewport_half_width, viewport_center_y - ndc_coordinates.y() * viewport_half_height, depth_halfway + ndc_coordinates.z() * depth_half_range, ndc_coordinates.w(), }; } Triangle tri; tri.vertices[0] = m_clipped_vertices[0]; for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) { tri.vertices[1] = m_clipped_vertices[i]; tri.vertices[2] = m_clipped_vertices[i + 1]; m_processed_triangles.append(tri); } } // Generate texture coordinates if at least one coordinate is enabled bool texture_coordinate_generation_enabled = false; for (auto const coordinates_enabled : m_options.texcoord_generation_enabled_coordinates) { if (coordinates_enabled != TexCoordGenerationCoordinate::None) { texture_coordinate_generation_enabled = true; break; } } for (auto& triangle : m_processed_triangles) { // Let's calculate the (signed) area of the triangle // https://cp-algorithms.com/geometry/oriented-triangle-area.html float dxAB = triangle.vertices[0].window_coordinates.x() - triangle.vertices[1].window_coordinates.x(); // A.x - B.x float dxBC = triangle.vertices[1].window_coordinates.x() - triangle.vertices[2].window_coordinates.x(); // B.X - C.x float dyAB = triangle.vertices[0].window_coordinates.y() - triangle.vertices[1].window_coordinates.y(); float dyBC = triangle.vertices[1].window_coordinates.y() - triangle.vertices[2].window_coordinates.y(); float area = (dxAB * dyBC) - (dxBC * dyAB); if (area == 0.0f) continue; if (m_options.enable_culling) { bool is_front = (m_options.front_face == WindingOrder::CounterClockwise ? area < 0 : area > 0); if (!is_front && m_options.cull_back) continue; if (is_front && m_options.cull_front) continue; } if (area > 0) swap(triangle.vertices[0], triangle.vertices[1]); // Transform normals triangle.vertices[0].normal = normal_transform * triangle.vertices[0].normal; triangle.vertices[1].normal = normal_transform * triangle.vertices[1].normal; triangle.vertices[2].normal = normal_transform * triangle.vertices[2].normal; if (m_options.normalization_enabled) { triangle.vertices[0].normal.normalize(); triangle.vertices[1].normal.normalize(); triangle.vertices[2].normal.normalize(); } if (texture_coordinate_generation_enabled) { generate_texture_coordinates(triangle.vertices[0], m_options); generate_texture_coordinates(triangle.vertices[1], m_options); generate_texture_coordinates(triangle.vertices[2], m_options); } // Apply texture transformation for (size_t i = 0; i < NUM_SAMPLERS; ++i) { triangle.vertices[0].tex_coords[i] = texture_transform * triangle.vertices[0].tex_coords[i]; triangle.vertices[1].tex_coords[i] = texture_transform * triangle.vertices[1].tex_coords[i]; triangle.vertices[2].tex_coords[i] = texture_transform * triangle.vertices[2].tex_coords[i]; } rasterize_triangle(triangle); } } ALWAYS_INLINE void Device::shade_fragments(PixelQuad& quad) { quad.out_color = quad.vertex_color; for (size_t i : m_enabled_texture_units) { // FIXME: implement GL_TEXTURE_1D, GL_TEXTURE_3D and GL_TEXTURE_CUBE_MAP auto const& sampler = m_samplers[i]; auto texel = sampler.sample_2d({ quad.texture_coordinates[i].x(), quad.texture_coordinates[i].y() }); INCREASE_STATISTICS_COUNTER(g_num_sampler_calls, 1); // FIXME: Implement more blend modes switch (sampler.config().fixed_function_texture_env_mode) { case TextureEnvMode::Modulate: quad.out_color = quad.out_color * texel; break; case TextureEnvMode::Replace: quad.out_color = texel; break; case TextureEnvMode::Decal: { auto src_alpha = quad.out_color.w(); quad.out_color.set_x(mix(quad.out_color.x(), texel.x(), src_alpha)); quad.out_color.set_y(mix(quad.out_color.y(), texel.y(), src_alpha)); quad.out_color.set_z(mix(quad.out_color.z(), texel.z(), src_alpha)); break; } default: VERIFY_NOT_REACHED(); } } // Calculate fog // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html // FIXME: exponential fog is not vectorized, we should add a SIMD exp function that calculates an approximation. if (m_options.fog_enabled) { auto factor = expand4(0.0f); switch (m_options.fog_mode) { case FogMode::Linear: factor = (m_options.fog_end - quad.fog_depth) / (m_options.fog_end - m_options.fog_start); break; case FogMode::Exp: { auto argument = -m_options.fog_density * quad.fog_depth; factor = exp(argument); } break; case FogMode::Exp2: { auto argument = m_options.fog_density * quad.fog_depth; argument *= -argument; factor = exp(argument); } break; default: VERIFY_NOT_REACHED(); } // Mix texel's RGB with fog's RBG - leave alpha alone auto fog_color = expand4(m_options.fog_color); quad.out_color.set_x(mix(fog_color.x(), quad.out_color.x(), factor)); quad.out_color.set_y(mix(fog_color.y(), quad.out_color.y(), factor)); quad.out_color.set_z(mix(fog_color.z(), quad.out_color.z(), factor)); } } ALWAYS_INLINE bool Device::test_alpha(PixelQuad& quad) { auto const alpha = quad.out_color.w(); auto const ref_value = expand4(m_options.alpha_test_ref_value); switch (m_options.alpha_test_func) { case AlphaTestFunction::Less: quad.mask &= alpha < ref_value; break; case AlphaTestFunction::Equal: quad.mask &= alpha == ref_value; break; case AlphaTestFunction::LessOrEqual: quad.mask &= alpha <= ref_value; break; case AlphaTestFunction::Greater: quad.mask &= alpha > ref_value; break; case AlphaTestFunction::NotEqual: quad.mask &= alpha != ref_value; break; case AlphaTestFunction::GreaterOrEqual: quad.mask &= alpha >= ref_value; break; case AlphaTestFunction::Never: case AlphaTestFunction::Always: default: VERIFY_NOT_REACHED(); } return any(quad.mask); } void Device::resize(const Gfx::IntSize& size) { wait_for_all_threads(); m_render_target = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, size).release_value_but_fixme_should_propagate_errors(); m_depth_buffer = adopt_own(*new DepthBuffer(size)); } void Device::clear_color(const FloatVector4& color) { wait_for_all_threads(); uint8_t r = static_cast(clamp(color.x(), 0.0f, 1.0f) * 255); uint8_t g = static_cast(clamp(color.y(), 0.0f, 1.0f) * 255); uint8_t b = static_cast(clamp(color.z(), 0.0f, 1.0f) * 255); uint8_t a = static_cast(clamp(color.w(), 0.0f, 1.0f) * 255); auto const fill_color = Gfx::Color(r, g, b, a); if (m_options.scissor_enabled) { auto fill_rect = m_render_target->rect(); fill_rect.intersect(window_coordinates_to_target_coordinates(m_options.scissor_box)); Gfx::Painter painter { *m_render_target }; painter.fill_rect(fill_rect, fill_color); return; } m_render_target->fill(fill_color); } void Device::clear_depth(float depth) { wait_for_all_threads(); if (m_options.scissor_enabled) { m_depth_buffer->clear(window_coordinates_to_target_coordinates(m_options.scissor_box), depth); return; } m_depth_buffer->clear(depth); } void Device::clear_stencil(u8 value) { Gfx::IntRect clear_rect = m_stencil_buffer->rect(); if (m_options.scissor_enabled) clear_rect.intersect(window_coordinates_to_target_coordinates(m_options.scissor_box)); m_stencil_buffer->clear(clear_rect, value); } void Device::blit_to_color_buffer_at_raster_position(Gfx::Bitmap const& source) { if (!m_raster_position.valid) return; wait_for_all_threads(); INCREASE_STATISTICS_COUNTER(g_num_pixels, source.width() * source.height()); INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, source.width() * source.height()); Gfx::Painter painter { *m_render_target }; auto const blit_rect = raster_rect_in_target_coordinates(source.size()); painter.blit({ blit_rect.x(), blit_rect.y() }, source, source.rect(), 1.0f, true); } void Device::blit_to_depth_buffer_at_raster_position(Vector const& depth_values, size_t width, size_t height) { if (!m_raster_position.valid) return; auto const raster_rect = raster_rect_in_target_coordinates({ width, height }); auto const y1 = raster_rect.y(); auto const y2 = y1 + height; auto const x1 = raster_rect.x(); int const x2 = x1 + width; auto index = 0; for (int y = y2 - 1; y >= y1; --y) { auto depth_line = m_depth_buffer->scanline(y); for (int x = x1; x < x2; ++x) { depth_line[x] = depth_values.at(index++); } } } void Device::blit_to(Gfx::Bitmap& target) { wait_for_all_threads(); Gfx::Painter painter { target }; painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false); if constexpr (ENABLE_STATISTICS_OVERLAY) draw_statistics_overlay(target); } void Device::draw_statistics_overlay(Gfx::Bitmap& target) { static Core::ElapsedTimer timer; static String debug_string; static int frame_counter; frame_counter++; int milliseconds = 0; if (timer.is_valid()) milliseconds = timer.elapsed(); else timer.start(); Gfx::Painter painter { target }; if (milliseconds > MILLISECONDS_PER_STATISTICS_PERIOD) { int num_rendertarget_pixels = m_render_target->width() * m_render_target->height(); StringBuilder builder; builder.append(String::formatted("Timings : {:.1}ms {:.1}FPS\n", static_cast(milliseconds) / frame_counter, (milliseconds > 0) ? 1000.0 * frame_counter / milliseconds : 9999.0)); builder.append(String::formatted("Triangles : {}\n", g_num_rasterized_triangles)); builder.append(String::formatted("SIMD usage : {}%\n", g_num_quads > 0 ? g_num_pixels_shaded * 25 / g_num_quads : 0)); builder.append(String::formatted("Pixels : {}, Stencil: {}%, Shaded: {}%, Blended: {}%, Overdraw: {}%\n", g_num_pixels, g_num_pixels > 0 ? g_num_stencil_writes * 100 / g_num_pixels : 0, g_num_pixels > 0 ? g_num_pixels_shaded * 100 / g_num_pixels : 0, g_num_pixels_shaded > 0 ? g_num_pixels_blended * 100 / g_num_pixels_shaded : 0, num_rendertarget_pixels > 0 ? g_num_pixels_shaded * 100 / num_rendertarget_pixels - 100 : 0)); builder.append(String::formatted("Sampler calls: {}\n", g_num_sampler_calls)); debug_string = builder.to_string(); frame_counter = 0; timer.start(); } g_num_rasterized_triangles = 0; g_num_pixels = 0; g_num_pixels_shaded = 0; g_num_pixels_blended = 0; g_num_sampler_calls = 0; g_num_stencil_writes = 0; g_num_quads = 0; auto& font = Gfx::FontDatabase::default_fixed_width_font(); for (int y = -1; y < 2; y++) for (int x = -1; x < 2; x++) if (x != 0 && y != 0) painter.draw_text(target.rect().translated(x + 2, y + 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::Black); painter.draw_text(target.rect().translated(2, 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::White); } void Device::wait_for_all_threads() const { // FIXME: Wait for all render threads to finish when multithreading is being implemented } void Device::set_options(const RasterizerOptions& options) { wait_for_all_threads(); m_options = options; if (m_options.enable_blending) setup_blend_factors(); // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented } void Device::set_light_model_params(const LightModelParameters& lighting_model) { wait_for_all_threads(); m_lighting_model = lighting_model; // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented } Gfx::RGBA32 Device::get_backbuffer_pixel(int x, int y) { // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height()) return 0; return m_render_target->scanline(y)[x]; } float Device::get_depthbuffer_value(int x, int y) { // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height()) return 1.0f; return m_depth_buffer->scanline(y)[x]; } NonnullRefPtr Device::create_image(ImageFormat format, unsigned width, unsigned height, unsigned depth, unsigned levels, unsigned layers) { VERIFY(width > 0); VERIFY(height > 0); VERIFY(depth > 0); VERIFY(levels > 0); VERIFY(layers > 0); return adopt_ref(*new Image(format, width, height, depth, levels, layers)); } void Device::set_sampler_config(unsigned sampler, SamplerConfig const& config) { m_samplers[sampler].set_config(config); } void Device::set_light_state(unsigned int light_id, Light const& light) { m_lights.at(light_id) = light; } void Device::set_material_state(Face face, Material const& material) { m_materials[face] = material; } void Device::set_stencil_configuration(Face face, StencilConfiguration const& stencil_configuration) { m_stencil_configuration[face] = stencil_configuration; } void Device::set_raster_position(RasterPosition const& raster_position) { m_raster_position = raster_position; } void Device::set_raster_position(FloatVector4 const& position, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform) { auto const eye_coordinates = model_view_transform * position; auto const clip_coordinates = projection_transform * eye_coordinates; // FIXME: implement clipping m_raster_position.valid = true; auto ndc_coordinates = clip_coordinates / clip_coordinates.w(); ndc_coordinates.set_w(clip_coordinates.w()); auto const viewport = m_options.viewport; auto const viewport_half_width = viewport.width() / 2.0f; auto const viewport_half_height = viewport.height() / 2.0f; auto const viewport_center_x = viewport.x() + viewport_half_width; auto const viewport_center_y = viewport.y() + viewport_half_height; auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2; auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2; // FIXME: implement other raster position properties such as color and texcoords m_raster_position.window_coordinates = { viewport_center_x + ndc_coordinates.x() * viewport_half_width, viewport_center_y + ndc_coordinates.y() * viewport_half_height, depth_halfway + ndc_coordinates.z() * depth_half_range, ndc_coordinates.w(), }; m_raster_position.eye_coordinate_distance = eye_coordinates.length(); } Gfx::IntRect Device::raster_rect_in_target_coordinates(Gfx::IntSize size) { auto const raster_rect = Gfx::IntRect { static_cast(m_raster_position.window_coordinates.x()), static_cast(m_raster_position.window_coordinates.y()), size.width(), size.height(), }; return window_coordinates_to_target_coordinates(raster_rect); } }