/* * Copyright (c) 2019, Andreas Kling * Copyright (c) 2021, Sergey Bugaev * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include // Condition variable attributes. int pthread_condattr_init(pthread_condattr_t* attr) { attr->clockid = CLOCK_MONOTONIC_COARSE; return 0; } int pthread_condattr_destroy(pthread_condattr_t*) { return 0; } int pthread_condattr_setclock(pthread_condattr_t* attr, clockid_t clock) { attr->clockid = clock; return 0; } // Condition variables. // cond->value is the generation number (number of times the variable has been // signaled) multiplied by INCREMENT, or'ed with the NEED_TO_WAKE flags. It's // done this way instead of putting the flags into the high bits because the // sequence number can easily overflow, which is completely fine but should not // cause it to corrupt the flags. static constexpr u32 NEED_TO_WAKE_ONE = 1; static constexpr u32 NEED_TO_WAKE_ALL = 2; static constexpr u32 INCREMENT = 4; int pthread_cond_init(pthread_cond_t* cond, const pthread_condattr_t* attr) { cond->mutex = nullptr; cond->value = 0; cond->clockid = attr ? attr->clockid : CLOCK_MONOTONIC_COARSE; return 0; } int pthread_cond_destroy(pthread_cond_t*) { return 0; } int pthread_cond_wait(pthread_cond_t* cond, pthread_mutex_t* mutex) { return pthread_cond_timedwait(cond, mutex, nullptr); } int pthread_cond_timedwait(pthread_cond_t* cond, pthread_mutex_t* mutex, const struct timespec* abstime) { // Save the mutex this condition variable is associated with. We don't (yet) // support changing this mutex once set. pthread_mutex_t* old_mutex = AK::atomic_exchange(&cond->mutex, mutex, AK::memory_order_relaxed); if (old_mutex && old_mutex != mutex) TODO(); // Fetch the current value, and record that we're about to wait. Fetching // the current value has to be done while we hold the mutex, because the // value might change as soon as we unlock it. u32 value = AK::atomic_fetch_or(&cond->value, NEED_TO_WAKE_ONE | NEED_TO_WAKE_ALL, AK::memory_order_release) | NEED_TO_WAKE_ONE | NEED_TO_WAKE_ALL; pthread_mutex_unlock(mutex); int rc = futex_wait(&cond->value, value, abstime, cond->clockid); if (rc < 0 && errno != EAGAIN) return errno; // We might have been re-queued onto the mutex while we were sleeping. Take // the pessimistic locking path. __pthread_mutex_lock_pessimistic_np(mutex); return 0; } int pthread_cond_signal(pthread_cond_t* cond) { // Increment the generation. u32 value = AK::atomic_fetch_add(&cond->value, INCREMENT, AK::memory_order_relaxed); // Fast path: nobody's waiting (or at least, nobody has to be woken). if (!(value & NEED_TO_WAKE_ONE)) [[likely]] return 0; // Wake someone, and clear the NEED_TO_WAKE_ONE flag if there was nobody for // us to wake, to take the fast path the next time. Since we only learn // whether there has been somebody waiting or not after we have tried to // wake them, it would make sense for us to clear the flag after trying to // wake someone up and seeing there was nobody waiting; but that would race // with somebody else setting the flag. Therefore, we do it like this: // attempt to clear the flag first... value = AK::atomic_fetch_and(&cond->value, ~NEED_TO_WAKE_ONE, AK::memory_order_relaxed); // ...check if it was already cleared by someone else... if (!(value & NEED_TO_WAKE_ONE)) [[likely]] return 0; // ...try to wake someone... int rc = futex_wake(&cond->value, 1); VERIFY(rc >= 0); // ...and if we have woken someone, put the flag back. if (rc > 0) AK::atomic_fetch_or(&cond->value, NEED_TO_WAKE_ONE, AK::memory_order_relaxed); return 0; } int pthread_cond_broadcast(pthread_cond_t* cond) { // Increment the generation. u32 value = AK::atomic_fetch_add(&cond->value, INCREMENT, AK::memory_order_relaxed); // Fast path: nobody's waiting (or at least, nobody has to be woken). if (!(value & NEED_TO_WAKE_ALL)) [[likely]] return 0; AK::atomic_fetch_and(&cond->value, ~(NEED_TO_WAKE_ONE | NEED_TO_WAKE_ALL), AK::memory_order_acquire); pthread_mutex_t* mutex = AK::atomic_load(&cond->mutex, AK::memory_order_relaxed); VERIFY(mutex); int rc = futex(&cond->value, FUTEX_REQUEUE, 1, nullptr, &mutex->lock, INT_MAX); VERIFY(rc >= 0); return 0; }