/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2021, Mițca Dumitru * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include template constexpr double e_to_power(); template<> constexpr double e_to_power<0>() { return 1; } template constexpr double e_to_power() { return M_E * e_to_power(); } template constexpr size_t factorial(); template<> constexpr size_t factorial<0>() { return 1; } template constexpr size_t factorial() { return value * factorial(); } template constexpr size_t product_even(); template<> constexpr size_t product_even<2>() { return 2; } template constexpr size_t product_even() { return value * product_even(); } template constexpr size_t product_odd(); template<> constexpr size_t product_odd<1>() { return 1; } template constexpr size_t product_odd() { return value * product_odd(); } enum class RoundingMode { ToZero = FE_TOWARDZERO, Up = FE_UPWARD, Down = FE_DOWNWARD, ToEven = FE_TONEAREST }; template union FloatExtractor; #if ARCH(I386) || ARCH(X86_64) // This assumes long double is 80 bits, which is true with GCC on Intel platforms template<> union FloatExtractor { static const int mantissa_bits = 64; static const unsigned long long mantissa_max = ~0u; static const int exponent_bias = 16383; static const int exponent_bits = 15; static const unsigned exponent_max = 32767; struct { unsigned long long mantissa; unsigned exponent : 15; unsigned sign : 1; }; long double d; }; #endif template<> union FloatExtractor { static const int mantissa_bits = 52; static const unsigned long long mantissa_max = (1ull << 52) - 1; static const int exponent_bias = 1023; static const int exponent_bits = 11; static const unsigned exponent_max = 2047; struct { unsigned long long mantissa : 52; unsigned exponent : 11; unsigned sign : 1; }; double d; }; template<> union FloatExtractor { static const int mantissa_bits = 23; static const unsigned mantissa_max = (1 << 23) - 1; static const int exponent_bias = 127; static const int exponent_bits = 8; static const unsigned exponent_max = 255; struct { unsigned long long mantissa : 23; unsigned exponent : 8; unsigned sign : 1; }; float d; }; // This is much branchier than it really needs to be template static FloatType internal_to_integer(FloatType x, RoundingMode rounding_mode) { if (!isfinite(x)) return x; using Extractor = FloatExtractor; Extractor extractor; extractor.d = x; auto unbiased_exponent = extractor.exponent - Extractor::exponent_bias; bool round = false; bool guard = false; if (unbiased_exponent < 0) { // it was easier to special case [0..1) as it saves us from // handling subnormals, underflows, etc if (unbiased_exponent == -1) { round = true; } guard = extractor.mantissa != 0; extractor.mantissa = 0; extractor.exponent = 0; } else { if (unbiased_exponent >= Extractor::mantissa_bits) return x; auto dead_bitcount = Extractor::mantissa_bits - unbiased_exponent; auto dead_mask = (1ull << dead_bitcount) - 1; auto dead_bits = extractor.mantissa & dead_mask; extractor.mantissa &= ~dead_mask; auto guard_mask = dead_mask >> 1; guard = (dead_bits & guard_mask) != 0; round = (dead_bits & ~guard_mask) != 0; } bool should_round = false; switch (rounding_mode) { case RoundingMode::ToEven: should_round = round; break; case RoundingMode::Up: if (!extractor.sign) should_round = guard || round; break; case RoundingMode::Down: if (extractor.sign) should_round = guard || round; break; case RoundingMode::ToZero: break; } if (should_round) { // We could do this ourselves, but this saves us from manually // handling overflow. if (extractor.sign) extractor.d -= 1.0; else extractor.d += 1.0; } return extractor.d; } // This is much branchier than it really needs to be template static FloatType internal_nextafter(FloatType x, bool up) { if (!isfinite(x)) return x; using Extractor = FloatExtractor; Extractor extractor; extractor.d = x; if (x == 0) { if (!extractor.sign) { extractor.mantissa = 1; extractor.sign = !up; return extractor.d; } if (up) { extractor.sign = false; extractor.mantissa = 1; return extractor.d; } extractor.mantissa = 1; extractor.sign = up != extractor.sign; return extractor.d; } if (up != extractor.sign) { extractor.mantissa++; if (!extractor.mantissa) { // no need to normalize the mantissa as we just hit a power // of two. extractor.exponent++; if (extractor.exponent == Extractor::exponent_max) { extractor.exponent = Extractor::exponent_max - 1; extractor.mantissa = Extractor::mantissa_max; } } return extractor.d; } if (!extractor.mantissa) { if (extractor.exponent) { extractor.exponent--; extractor.mantissa = Extractor::mantissa_max; } else { extractor.d = 0; } return extractor.d; } extractor.mantissa--; if (extractor.mantissa != Extractor::mantissa_max) return extractor.d; if (extractor.exponent) { extractor.exponent--; // normalize extractor.mantissa <<= 1; } else { if (extractor.sign) { // Negative infinity extractor.mantissa = 0; extractor.exponent = Extractor::exponent_max; } } return extractor.d; } template static int internal_ilogb(FloatT x) NOEXCEPT { if (x == 0) return FP_ILOGB0; if (isnan(x)) return FP_ILOGNAN; if (!isfinite(x)) return INT_MAX; using Extractor = FloatExtractor; Extractor extractor; extractor.d = x; return (int)extractor.exponent - Extractor::exponent_bias; } template static FloatT internal_modf(FloatT x, FloatT* intpart) NOEXCEPT { FloatT integer_part = internal_to_integer(x, RoundingMode::ToZero); *intpart = integer_part; auto fraction = x - integer_part; if (signbit(fraction) != signbit(x)) fraction = -fraction; return fraction; } template static FloatT internal_scalbn(FloatT x, int exponent) NOEXCEPT { if (x == 0 || !isfinite(x) || isnan(x) || exponent == 0) return x; using Extractor = FloatExtractor; Extractor extractor; extractor.d = x; if (extractor.exponent != 0) { extractor.exponent = clamp((int)extractor.exponent + exponent, 0, (int)Extractor::exponent_max); return extractor.d; } unsigned leading_mantissa_zeroes = extractor.mantissa == 0 ? 32 : __builtin_clz(extractor.mantissa); int shift = min((int)leading_mantissa_zeroes, exponent); exponent = max(exponent - shift, 0); extractor.exponent <<= shift; extractor.exponent = exponent + 1; return extractor.d; } template static FloatT internal_copysign(FloatT x, FloatT y) NOEXCEPT { using Extractor = FloatExtractor; Extractor ex, ey; ex.d = x; ey.d = y; ex.sign = ey.sign; return ex.d; } template static FloatT internal_gamma(FloatT x) NOEXCEPT { if (isnan(x)) return (FloatT)NAN; if (x == (FloatT)0.0) return signbit(x) ? (FloatT)-INFINITY : (FloatT)INFINITY; if (x < (FloatT)0 && (rintl(x) == x || isinf(x))) return (FloatT)NAN; if (isinf(x)) return (FloatT)INFINITY; using Extractor = FloatExtractor; // These constants were obtained through use of WolframAlpha constexpr long long max_integer_whose_factorial_fits = (Extractor::mantissa_bits == FloatExtractor::mantissa_bits ? 20 : (Extractor::mantissa_bits == FloatExtractor::mantissa_bits ? 18 : (Extractor::mantissa_bits == FloatExtractor::mantissa_bits ? 10 : 0))); static_assert(max_integer_whose_factorial_fits != 0, "internal_gamma needs to be aware of the integer factorial that fits in this floating point type."); if (rintl(x) == (long double)x && x <= max_integer_whose_factorial_fits) { long long result = 1; for (long long cursor = 1; cursor <= min(max_integer_whose_factorial_fits, (long long)x); cursor++) result *= cursor; return (FloatT)result; } // Stirling approximation return sqrtl(2.0 * M_PI / x) * powl(x / M_E, x); } extern "C" { float nanf(const char* s) NOEXCEPT { return __builtin_nanf(s); } double nan(const char* s) NOEXCEPT { return __builtin_nan(s); } long double nanl(const char* s) NOEXCEPT { return __builtin_nanl(s); } double trunc(double x) NOEXCEPT { return internal_to_integer(x, RoundingMode::ToZero); } float truncf(float x) NOEXCEPT { return internal_to_integer(x, RoundingMode::ToZero); } long double truncl(long double x) NOEXCEPT { return internal_to_integer(x, RoundingMode::ToZero); } long double cosl(long double angle) NOEXCEPT { return sinl(angle + M_PI_2); } double cos(double angle) NOEXCEPT { return sin(angle + M_PI_2); } float cosf(float angle) NOEXCEPT { return sinf(angle + M_PI_2); } long double sinl(long double angle) NOEXCEPT { long double ret = 0.0; __asm__( "fsin" : "=t"(ret) : "0"(angle)); return ret; } // This can also be done with a taylor expansion, but for // now this works pretty well (and doesn't mess anything up // in quake in particular, which is very Floating-Point precision // heavy) double sin(double angle) NOEXCEPT { double ret = 0.0; __asm__( "fsin" : "=t"(ret) : "0"(angle)); return ret; } float sinf(float angle) NOEXCEPT { float ret = 0.0f; __asm__( "fsin" : "=t"(ret) : "0"(angle)); return ret; } long double powl(long double x, long double y) NOEXCEPT { // FIXME: Please fix me. I am naive. if (isnan(y)) return y; if (y == 0) return 1; if (x == 0) return 0; if (y == 1) return x; int y_as_int = (int)y; if (y == (long double)y_as_int) { long double result = x; for (int i = 0; i < fabsl(y) - 1; ++i) result *= x; if (y < 0) result = 1.0l / result; return result; } return exp2l(y * log2l(x)); } double pow(double x, double y) NOEXCEPT { return (double)powl(x, y); } float powf(float x, float y) NOEXCEPT { return (float)powl(x, y); } // On systems where FLT_RADIX == 2, ldexp is equivalent to scalbn long double ldexpl(long double x, int exp) NOEXCEPT { return internal_scalbn(x, exp); } double ldexp(double x, int exp) NOEXCEPT { return internal_scalbn(x, exp); } float ldexpf(float x, int exp) NOEXCEPT { return internal_scalbn(x, exp); } long double tanhl(long double x) NOEXCEPT { if (x > 0) { long double exponentiated = expl(2 * x); return (exponentiated - 1) / (exponentiated + 1); } long double plusX = expl(x); long double minusX = 1 / plusX; return (plusX - minusX) / (plusX + minusX); } double tanh(double x) NOEXCEPT { return (double)tanhl(x); } float tanhf(float x) NOEXCEPT { return (float)tanhl(x); } static long double ampsin(long double angle) NOEXCEPT { long double looped_angle = fmodl(M_PI + angle, M_TAU) - M_PI; long double looped_angle_squared = looped_angle * looped_angle; long double quadratic_term; if (looped_angle > 0) { quadratic_term = -looped_angle_squared; } else { quadratic_term = looped_angle_squared; } long double linear_term = M_PI * looped_angle; return quadratic_term + linear_term; } long double tanl(long double angle) NOEXCEPT { return ampsin(angle) / ampsin(M_PI_2 + angle); } double tan(double angle) NOEXCEPT { return (double)tanl(angle); } float tanf(float angle) NOEXCEPT { return (float)tanl(angle); } long double sqrtl(long double x) NOEXCEPT { long double res; asm("fsqrt" : "=t"(res) : "0"(x)); return res; } double sqrt(double x) NOEXCEPT { double res; __asm__("fsqrt" : "=t"(res) : "0"(x)); return res; } float sqrtf(float x) NOEXCEPT { float res; __asm__("fsqrt" : "=t"(res) : "0"(x)); return res; } long double sinhl(long double x) NOEXCEPT { long double exponentiated = expl(x); if (x > 0) return (exponentiated * exponentiated - 1) / 2 / exponentiated; return (exponentiated - 1 / exponentiated) / 2; } double sinh(double x) NOEXCEPT { return (double)sinhl(x); } float sinhf(float x) NOEXCEPT { return (float)sinhl(x); } long double log10l(long double x) NOEXCEPT { long double ret = 0.0l; __asm__( "fldlg2\n" "fld %%st(1)\n" "fyl2x\n" "fstp %%st(1)" : "=t"(ret) : "0"(x)); return ret; } double log10(double x) NOEXCEPT { return (double)log10l(x); } float log10f(float x) NOEXCEPT { return (float)log10l(x); } long double logl(long double x) NOEXCEPT { long double ret = 0.0l; asm( "fldln2\n" "fld %%st(1)\n" "fyl2x\n" "fstp %%st(1)" : "=t"(ret) : "0"(x)); return ret; } double log(double x) NOEXCEPT { return (double)logl(x); } float logf(float x) NOEXCEPT { return (float)logl(x); } long double fmodl(long double index, long double period) NOEXCEPT { return index - truncl(index / period) * period; } double fmod(double index, double period) NOEXCEPT { return index - trunc(index / period) * period; } float fmodf(float index, float period) NOEXCEPT { return index - trunc(index / period) * period; } // FIXME: These aren't exactly like fmod, but these definitions are probably good enough for now long double remainderl(long double x, long double y) NOEXCEPT { return fmodl(x, y); } double remainder(double x, double y) NOEXCEPT { return fmod(x, y); } float remainderf(float x, float y) NOEXCEPT { return fmodf(x, y); } long double expl(long double exponent) NOEXCEPT { long double res = 0; asm("fldl2e\n" "fmulp\n" "fld1\n" "fld %%st(1)\n" "fprem\n" "f2xm1\n" "faddp\n" "fscale\n" "fstp %%st(1)" : "=t"(res) : "0"(exponent)); return res; } double exp(double exponent) NOEXCEPT { return (double)expl(exponent); } float expf(float exponent) NOEXCEPT { return (float)expl(exponent); } long double exp2l(long double exponent) NOEXCEPT { long double res = 0; asm("fld1\n" "fld %%st(1)\n" "fprem\n" "f2xm1\n" "faddp\n" "fscale\n" "fstp %%st(1)" : "=t"(res) : "0"(exponent)); return res; } double exp2(double exponent) NOEXCEPT { return (double)exp2l(exponent); } float exp2f(float exponent) NOEXCEPT { return (float)exp2l(exponent); } long double coshl(long double x) NOEXCEPT { long double exponentiated = expl(-x); if (x < 0) return (1 + exponentiated * exponentiated) / 2 / exponentiated; return (1 / exponentiated + exponentiated) / 2; } double cosh(double x) NOEXCEPT { return (double)coshl(x); } float coshf(float x) NOEXCEPT { return (float)coshl(x); } long double atan2l(long double y, long double x) NOEXCEPT { if (x > 0) return atanl(y / x); if (x == 0) { if (y > 0) return M_PI_2; if (y < 0) return -M_PI_2; return 0; } if (y >= 0) return atanl(y / x) + M_PI; return atanl(y / x) - M_PI; } double atan2(double y, double x) NOEXCEPT { return (double)atan2l(y, x); } float atan2f(float y, float x) NOEXCEPT { return (float)atan2l(y, x); } long double atanl(long double x) NOEXCEPT { if (x < 0) return -atanl(-x); if (x > 1) return M_PI_2 - atanl(1 / x); long double squared = x * x; return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared))))))); } double atan(double x) NOEXCEPT { return (double)atanl(x); } float atanf(float x) NOEXCEPT { return (float)atanl(x); } long double asinl(long double x) NOEXCEPT { if (x > 1 || x < -1) return NAN; if (x > 0.5 || x < -0.5) return 2 * atanl(x / (1 + sqrtl(1 - x * x))); long double squared = x * x; long double value = x; long double i = x * squared; value += i * product_odd<1>() / product_even<2>() / 3; i *= squared; value += i * product_odd<3>() / product_even<4>() / 5; i *= squared; value += i * product_odd<5>() / product_even<6>() / 7; i *= squared; value += i * product_odd<7>() / product_even<8>() / 9; i *= squared; value += i * product_odd<9>() / product_even<10>() / 11; i *= squared; value += i * product_odd<11>() / product_even<12>() / 13; return value; } double asin(double x) NOEXCEPT { return (double)asinl(x); } float asinf(float x) NOEXCEPT { return (float)asinl(x); } long double acosl(long double x) NOEXCEPT { return M_PI_2 - asinl(x); } double acos(double x) NOEXCEPT { return M_PI_2 - asin(x); } float acosf(float x) NOEXCEPT { return M_PI_2 - asinf(x); } long double fabsl(long double value) NOEXCEPT { return value < 0 ? -value : value; } double fabs(double value) NOEXCEPT { return value < 0 ? -value : value; } float fabsf(float value) NOEXCEPT { return value < 0 ? -value : value; } int ilogbl(long double x) NOEXCEPT { return internal_ilogb(x); } int ilogb(double x) NOEXCEPT { return internal_ilogb(x); } int ilogbf(float x) NOEXCEPT { return internal_ilogb(x); } long double logbl(long double x) NOEXCEPT { return ilogbl(x); } double logb(double x) NOEXCEPT { return ilogb(x); } float logbf(float x) NOEXCEPT { return ilogbf(x); } long double log2l(long double x) NOEXCEPT { long double ret = 0.0; asm( "fld1\n" "fld %%st(1)\n" "fyl2x\n" "fstp %%st(1)" : "=t"(ret) : "0"(x)); return ret; } double log2(double x) NOEXCEPT { return (double)log2l(x); } float log2f(float x) NOEXCEPT { return (float)log2l(x); } double frexp(double x, int* exp) NOEXCEPT { *exp = (x == 0) ? 0 : (1 + ilogb(x)); return scalbn(x, -(*exp)); } float frexpf(float x, int* exp) NOEXCEPT { *exp = (x == 0) ? 0 : (1 + ilogbf(x)); return scalbnf(x, -(*exp)); } long double frexpl(long double x, int* exp) NOEXCEPT { *exp = (x == 0) ? 0 : (1 + ilogbl(x)); return scalbnl(x, -(*exp)); } double round(double value) NOEXCEPT { return internal_to_integer(value, RoundingMode::ToEven); } float roundf(float value) NOEXCEPT { return internal_to_integer(value, RoundingMode::ToEven); } long double roundl(long double value) NOEXCEPT { return internal_to_integer(value, RoundingMode::ToEven); } long lroundf(float value) NOEXCEPT { return internal_to_integer(value, RoundingMode::ToEven); } long lround(double value) NOEXCEPT { return internal_to_integer(value, RoundingMode::ToEven); } long lroundl(long double value) NOEXCEPT { return internal_to_integer(value, RoundingMode::ToEven); } long long llroundf(float value) NOEXCEPT { return internal_to_integer(value, RoundingMode::ToEven); } long long llround(double value) NOEXCEPT { return internal_to_integer(value, RoundingMode::ToEven); } long long llroundd(long double value) NOEXCEPT { return internal_to_integer(value, RoundingMode::ToEven); } float floorf(float value) NOEXCEPT { return internal_to_integer(value, RoundingMode::Down); } double floor(double value) NOEXCEPT { return internal_to_integer(value, RoundingMode::Down); } long double floorl(long double value) NOEXCEPT { return internal_to_integer(value, RoundingMode::Down); } long double rintl(long double value) NOEXCEPT { return internal_to_integer(value, RoundingMode { fegetround() }); } double rint(double value) NOEXCEPT { return internal_to_integer(value, RoundingMode { fegetround() }); } float rintf(float value) NOEXCEPT { return internal_to_integer(value, RoundingMode { fegetround() }); } long lrintl(long double value) NOEXCEPT { return (long)internal_to_integer(value, RoundingMode { fegetround() }); } long lrint(double value) NOEXCEPT { return (long)internal_to_integer(value, RoundingMode { fegetround() }); } long lrintf(float value) NOEXCEPT { return (long)internal_to_integer(value, RoundingMode { fegetround() }); } long long llrintl(long double value) NOEXCEPT { return (long long)internal_to_integer(value, RoundingMode { fegetround() }); } long long llrint(double value) NOEXCEPT { return (long long)internal_to_integer(value, RoundingMode { fegetround() }); } long long llrintf(float value) NOEXCEPT { return (long long)internal_to_integer(value, RoundingMode { fegetround() }); } float ceilf(float value) NOEXCEPT { return internal_to_integer(value, RoundingMode::Up); } double ceil(double value) NOEXCEPT { return internal_to_integer(value, RoundingMode::Up); } long double ceill(long double value) NOEXCEPT { return internal_to_integer(value, RoundingMode::Up); } long double modfl(long double x, long double* intpart) NOEXCEPT { return internal_modf(x, intpart); } double modf(double x, double* intpart) NOEXCEPT { return internal_modf(x, intpart); } float modff(float x, float* intpart) NOEXCEPT { return internal_modf(x, intpart); } double gamma(double x) NOEXCEPT { // Stirling approximation return sqrt(2.0 * M_PI / x) * pow(x / M_E, x); } long double tgammal(long double value) NOEXCEPT { return internal_gamma(value); } double tgamma(double value) NOEXCEPT { return internal_gamma(value); } float tgammaf(float value) NOEXCEPT { return internal_gamma(value); } int signgam = 0; long double lgammal(long double value) NOEXCEPT { return lgammal_r(value, &signgam); } double lgamma(double value) NOEXCEPT { return lgamma_r(value, &signgam); } float lgammaf(float value) NOEXCEPT { return lgammaf_r(value, &signgam); } long double lgammal_r(long double value, int* sign) NOEXCEPT { if (value == 1.0 || value == 2.0) return 0.0; if (isinf(value) || value == 0.0) return INFINITY; long double result = logl(internal_gamma(value)); *sign = signbit(result) ? -1 : 1; return result; } double lgamma_r(double value, int* sign) NOEXCEPT { if (value == 1.0 || value == 2.0) return 0.0; if (isinf(value) || value == 0.0) return INFINITY; double result = log(internal_gamma(value)); *sign = signbit(result) ? -1 : 1; return result; } float lgammaf_r(float value, int* sign) NOEXCEPT { if (value == 1.0 || value == 2.0) return 0.0; if (isinf(value) || value == 0.0) return INFINITY; float result = logf(internal_gamma(value)); *sign = signbit(result) ? -1 : 1; return result; } long double expm1l(long double x) NOEXCEPT { return expl(x) - 1; } double expm1(double x) NOEXCEPT { return exp(x) - 1; } float expm1f(float x) NOEXCEPT { return expf(x) - 1; } long double cbrtl(long double x) NOEXCEPT { if (isinf(x) || x == 0) return x; if (x < 0) return -cbrtl(-x); long double r = x; long double ex = 0; while (r < 0.125l) { r *= 8; ex--; } while (r > 1.0l) { r *= 0.125l; ex++; } r = (-0.46946116l * r + 1.072302l) * r + 0.3812513l; while (ex < 0) { r *= 0.5l; ex++; } while (ex > 0) { r *= 2.0l; ex--; } r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r); r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r); r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r); r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r); return r; } double cbrt(double x) NOEXCEPT { return (double)cbrtl(x); } float cbrtf(float x) NOEXCEPT { return (float)cbrtl(x); } long double log1pl(long double x) NOEXCEPT { return logl(1 + x); } double log1p(double x) NOEXCEPT { return log(1 + x); } float log1pf(float x) NOEXCEPT { return logf(1 + x); } long double acoshl(long double x) NOEXCEPT { return logl(x + sqrtl(x * x - 1)); } double acosh(double x) NOEXCEPT { return log(x + sqrt(x * x - 1)); } float acoshf(float x) NOEXCEPT { return logf(x + sqrtf(x * x - 1)); } long double asinhl(long double x) NOEXCEPT { return logl(x + sqrtl(x * x + 1)); } double asinh(double x) NOEXCEPT { return log(x + sqrt(x * x + 1)); } float asinhf(float x) NOEXCEPT { return logf(x + sqrtf(x * x + 1)); } long double atanhl(long double x) NOEXCEPT { return logl((1 + x) / (1 - x)) / 2.0l; } double atanh(double x) NOEXCEPT { return log((1 + x) / (1 - x)) / 2.0; } float atanhf(float x) NOEXCEPT { return logf((1 + x) / (1 - x)) / 2.0f; } long double hypotl(long double x, long double y) NOEXCEPT { return sqrtl(x * x + y * y); } double hypot(double x, double y) NOEXCEPT { return sqrt(x * x + y * y); } float hypotf(float x, float y) NOEXCEPT { return sqrtf(x * x + y * y); } long double erfl(long double x) NOEXCEPT { // algorithm taken from Abramowitz and Stegun (no. 26.2.17) long double t = 1 / (1 + 0.47047l * fabsl(x)); long double poly = t * (0.3480242l + t * (-0.958798l + t * 0.7478556l)); long double answer = 1 - poly * expl(-x * x); if (x < 0) return -answer; return answer; } double erf(double x) NOEXCEPT { return (double)erfl(x); } float erff(float x) NOEXCEPT { return (float)erf(x); } long double erfcl(long double x) NOEXCEPT { return 1 - erfl(x); } double erfc(double x) NOEXCEPT { return 1 - erf(x); } float erfcf(float x) NOEXCEPT { return 1 - erff(x); } double nextafter(double x, double target) NOEXCEPT { if (x == target) return target; return internal_nextafter(x, target >= x); } float nextafterf(float x, float target) NOEXCEPT { if (x == target) return target; return internal_nextafter(x, target >= x); } long double nextafterl(long double x, long double target) NOEXCEPT { return internal_nextafter(x, target >= x); } double nexttoward(double x, long double target) NOEXCEPT { if (x == target) return target; return internal_nextafter(x, target >= x); } float nexttowardf(float x, long double target) NOEXCEPT { if (x == target) return target; return internal_nextafter(x, target >= x); } long double nexttowardl(long double x, long double target) NOEXCEPT { if (x == target) return target; return internal_nextafter(x, target >= x); } float copysignf(float x, float y) NOEXCEPT { return internal_copysign(x, y); } double copysign(double x, double y) NOEXCEPT { return internal_copysign(x, y); } long double copysignl(long double x, long double y) NOEXCEPT { return internal_copysign(x, y); } float scalbnf(float x, int exponent) NOEXCEPT { return internal_scalbn(x, exponent); } double scalbn(double x, int exponent) NOEXCEPT { return internal_scalbn(x, exponent); } long double scalbnl(long double x, int exponent) NOEXCEPT { return internal_scalbn(x, exponent); } float scalbnlf(float x, long exponent) NOEXCEPT { return internal_scalbn(x, exponent); } double scalbln(double x, long exponent) NOEXCEPT { return internal_scalbn(x, exponent); } long double scalblnl(long double x, long exponent) NOEXCEPT { return internal_scalbn(x, exponent); } long double fmaxl(long double x, long double y) NOEXCEPT { if (isnan(x)) return y; if (isnan(y)) return x; return x > y ? x : y; } double fmax(double x, double y) NOEXCEPT { if (isnan(x)) return y; if (isnan(y)) return x; return x > y ? x : y; } float fmaxf(float x, float y) NOEXCEPT { if (isnan(x)) return y; if (isnan(y)) return x; return x > y ? x : y; } long double fminl(long double x, long double y) NOEXCEPT { if (isnan(x)) return y; if (isnan(y)) return x; return x < y ? x : y; } double fmin(double x, double y) NOEXCEPT { if (isnan(x)) return y; if (isnan(y)) return x; return x < y ? x : y; } float fminf(float x, float y) NOEXCEPT { if (isnan(x)) return y; if (isnan(y)) return x; return x < y ? x : y; } }