/* * Copyright (c) 2020, Andreas Kling * Copyright (c) 2020-2022, Linus Groh * Copyright (c) 2022, David Tuin * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace JS { static inline bool same_type_for_equality(Value const& lhs, Value const& rhs) { // If the top two bytes are identical then either: // both are NaN boxed Values with the same type // or they are doubles which happen to have the same top bytes. if ((lhs.encoded() & TAG_EXTRACTION) == (rhs.encoded() & TAG_EXTRACTION)) return true; if (lhs.is_number() && rhs.is_number()) return true; // One of the Values is not a number and they do not have the same tag return false; } static const Crypto::SignedBigInteger BIGINT_ZERO { 0 }; ALWAYS_INLINE bool both_number(Value const& lhs, Value const& rhs) { return lhs.is_number() && rhs.is_number(); } ALWAYS_INLINE bool both_bigint(Value const& lhs, Value const& rhs) { return lhs.is_bigint() && rhs.is_bigint(); } // 6.1.6.1.20 Number::toString ( x ), https://tc39.es/ecma262/#sec-numeric-types-number-tostring // Implementation for radix = 10 DeprecatedString number_to_string(double d, NumberToStringMode mode) { auto convert_to_decimal_digits_array = [](auto x, auto& digits, auto& length) { for (; x; x /= 10) digits[length++] = x % 10 | '0'; for (i32 i = 0; 2 * i + 1 < length; ++i) swap(digits[i], digits[length - i - 1]); }; // 1. If x is NaN, return "NaN". if (isnan(d)) return "NaN"; // 2. If x is +0๐”ฝ or -0๐”ฝ, return "0". if (d == +0.0 || d == -0.0) return "0"; // 4. If x is +โˆž๐”ฝ, return "Infinity". if (isinf(d)) { if (d > 0) return "Infinity"; else return "-Infinity"; } StringBuilder builder; // 5. Let n, k, and s be integers such that k โ‰ฅ 1, radix ^ (k - 1) โ‰ค s < radix ^ k, // ๐”ฝ(s ร— radix ^ (n - k)) is x, and k is as small as possible. Note that k is the number of // digits in the representation of s using radix radix, that s is not divisible by radix, and // that the least significant digit of s is not necessarily uniquely determined by these criteria. // // Note: guarantees provided by convert_floating_point_to_decimal_exponential_form satisfy // requirements of NOTE 2. auto [sign, mantissa, exponent] = convert_floating_point_to_decimal_exponential_form(d); i32 k = 0; AK::Array mantissa_digits; convert_to_decimal_digits_array(mantissa, mantissa_digits, k); i32 n = exponent + k; // s = mantissa // 3. If x < -0๐”ฝ, return the string-concatenation of "-" and Number::toString(-x, radix). if (sign) builder.append('-'); // Non-standard: Intl needs number-to-string conversions for extremely large numbers without any // exponential formatting, as it will handle such formatting itself in a locale-aware way. bool force_no_exponent = mode == NumberToStringMode::WithoutExponent; // 6. If radix โ‰  10 or n is in the inclusive interval from -5 to 21, then if ((n >= -5 && n <= 21) || force_no_exponent) { // a. If n โ‰ฅ k, then if (n >= k) { // i. Return the string-concatenation of: // the code units of the k digits of the representation of s using radix radix builder.append(mantissa_digits.data(), k); // n - k occurrences of the code unit 0x0030 (DIGIT ZERO) builder.append_repeated('0', n - k); // b. Else if n > 0, then } else if (n > 0) { // i. Return the string-concatenation of: // the code units of the most significant n digits of the representation of s using radix radix builder.append(mantissa_digits.data(), n); // the code unit 0x002E (FULL STOP) builder.append('.'); // the code units of the remaining k - n digits of the representation of s using radix radix builder.append(mantissa_digits.data() + n, k - n); // c. Else, } else { // i. Assert: n โ‰ค 0. VERIFY(n <= 0); // ii. Return the string-concatenation of: // the code unit 0x0030 (DIGIT ZERO) builder.append('0'); // the code unit 0x002E (FULL STOP) builder.append('.'); // -n occurrences of the code unit 0x0030 (DIGIT ZERO) builder.append_repeated('0', -n); // the code units of the k digits of the representation of s using radix radix builder.append(mantissa_digits.data(), k); } return builder.to_deprecated_string(); } // 7. NOTE: In this case, the input will be represented using scientific E notation, such as 1.2e+3. // 9. If n < 0, then // a. Let exponentSign be the code unit 0x002D (HYPHEN-MINUS). // 10. Else, // a. Let exponentSign be the code unit 0x002B (PLUS SIGN). char exponent_sign = n < 0 ? '-' : '+'; AK::Array exponent_digits; i32 exponent_length = 0; convert_to_decimal_digits_array(abs(n - 1), exponent_digits, exponent_length); // 11. If k is 1, then if (k == 1) { // a. Return the string-concatenation of: // the code unit of the single digit of s builder.append(mantissa_digits[0]); // the code unit 0x0065 (LATIN SMALL LETTER E) builder.append('e'); // exponentSign builder.append(exponent_sign); // the code units of the decimal representation of abs(n - 1) builder.append(exponent_digits.data(), exponent_length); return builder.to_deprecated_string(); } // 12. Return the string-concatenation of: // the code unit of the most significant digit of the decimal representation of s builder.append(mantissa_digits[0]); // the code unit 0x002E (FULL STOP) builder.append('.'); // the code units of the remaining k - 1 digits of the decimal representation of s builder.append(mantissa_digits.data() + 1, k - 1); // the code unit 0x0065 (LATIN SMALL LETTER E) builder.append('e'); // exponentSign builder.append(exponent_sign); // the code units of the decimal representation of abs(n - 1) builder.append(exponent_digits.data(), exponent_length); return builder.to_deprecated_string(); } // 7.2.2 IsArray ( argument ), https://tc39.es/ecma262/#sec-isarray ThrowCompletionOr Value::is_array(VM& vm) const { // 1. If argument is not an Object, return false. if (!is_object()) return false; auto const& object = as_object(); // 2. If argument is an Array exotic object, return true. if (is(object)) return true; // 3. If argument is a Proxy exotic object, then if (is(object)) { auto const& proxy = static_cast(object); // a. If argument.[[ProxyHandler]] is null, throw a TypeError exception. if (proxy.is_revoked()) return vm.throw_completion(ErrorType::ProxyRevoked); // b. Let target be argument.[[ProxyTarget]]. auto const& target = proxy.target(); // c. Return ? IsArray(target). return Value(&target).is_array(vm); } // 4. Return false. return false; } Array& Value::as_array() { VERIFY(is_object() && is(as_object())); return static_cast(as_object()); } // 7.2.3 IsCallable ( argument ), https://tc39.es/ecma262/#sec-iscallable bool Value::is_function() const { // 1. If argument is not an Object, return false. // 2. If argument has a [[Call]] internal method, return true. // 3. Return false. return is_object() && as_object().is_function(); } FunctionObject& Value::as_function() { VERIFY(is_function()); return static_cast(as_object()); } FunctionObject const& Value::as_function() const { VERIFY(is_function()); return static_cast(as_object()); } // 7.2.4 IsConstructor ( argument ), https://tc39.es/ecma262/#sec-isconstructor bool Value::is_constructor() const { // 1. If Type(argument) is not Object, return false. if (!is_function()) return false; // 2. If argument has a [[Construct]] internal method, return true. if (as_function().has_constructor()) return true; // 3. Return false. return false; } // 7.2.8 IsRegExp ( argument ), https://tc39.es/ecma262/#sec-isregexp ThrowCompletionOr Value::is_regexp(VM& vm) const { // 1. If argument is not an Object, return false. if (!is_object()) return false; // 2. Let matcher be ? Get(argument, @@match). auto matcher = TRY(as_object().get(*vm.well_known_symbol_match())); // 3. If matcher is not undefined, return ToBoolean(matcher). if (!matcher.is_undefined()) return matcher.to_boolean(); // 4. If argument has a [[RegExpMatcher]] internal slot, return true. // 5. Return false. return is(as_object()); } // 13.5.3 The typeof Operator, https://tc39.es/ecma262/#sec-typeof-operator DeprecatedString Value::typeof() const { // 9. If val is a Number, return "number". if (is_number()) return "number"; switch (m_value.tag) { // 4. If val is undefined, return "undefined". case UNDEFINED_TAG: return "undefined"; // 5. If val is null, return "object". case NULL_TAG: return "object"; // 6. If val is a String, return "string". case STRING_TAG: return "string"; // 7. If val is a Symbol, return "symbol". case SYMBOL_TAG: return "symbol"; // 8. If val is a Boolean, return "boolean". case BOOLEAN_TAG: return "boolean"; // 10. If val is a BigInt, return "bigint". case BIGINT_TAG: return "bigint"; // 11. Assert: val is an Object. case OBJECT_TAG: // B.3.6.3 Changes to the typeof Operator, https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot-typeof // 12. If val has an [[IsHTMLDDA]] internal slot, return "undefined". if (as_object().is_htmldda()) return "undefined"; // 13. If val has a [[Call]] internal slot, return "function". if (is_function()) return "function"; // 14. Return "object". return "object"; default: VERIFY_NOT_REACHED(); } } DeprecatedString Value::to_string_without_side_effects() const { if (is_double()) return number_to_string(m_value.as_double); switch (m_value.tag) { case UNDEFINED_TAG: return "undefined"; case NULL_TAG: return "null"; case BOOLEAN_TAG: return as_bool() ? "true" : "false"; case INT32_TAG: return DeprecatedString::number(as_i32()); case STRING_TAG: return as_string().deprecated_string(); case SYMBOL_TAG: return as_symbol().to_deprecated_string(); case BIGINT_TAG: return as_bigint().to_deprecated_string(); case OBJECT_TAG: return DeprecatedString::formatted("[object {}]", as_object().class_name()); case ACCESSOR_TAG: return ""; default: VERIFY_NOT_REACHED(); } } ThrowCompletionOr Value::to_primitive_string(VM& vm) { if (is_string()) return &as_string(); auto string = TRY(to_string(vm)); return PrimitiveString::create(vm, string).ptr(); } // 7.1.17 ToString ( argument ), https://tc39.es/ecma262/#sec-tostring ThrowCompletionOr Value::to_string(VM& vm) const { if (is_double()) return number_to_string(m_value.as_double); switch (m_value.tag) { // 1. If argument is a String, return argument. case STRING_TAG: return as_string().deprecated_string(); // 2. If argument is a Symbol, throw a TypeError exception. case SYMBOL_TAG: return vm.throw_completion(ErrorType::Convert, "symbol", "string"); // 3. If argument is undefined, return "undefined". case UNDEFINED_TAG: return "undefined"sv; // 4. If argument is null, return "null". case NULL_TAG: return "null"sv; // 5. If argument is true, return "true". // 6. If argument is false, return "false". case BOOLEAN_TAG: return as_bool() ? "true"sv : "false"sv; // 7. If argument is a Number, return Number::toString(argument, 10). case INT32_TAG: return DeprecatedString::number(as_i32()); // 8. If argument is a BigInt, return BigInt::toString(argument, 10). case BIGINT_TAG: return as_bigint().big_integer().to_base(10); // 9. Assert: argument is an Object. case OBJECT_TAG: { // 10. Let primValue be ? ToPrimitive(argument, string). auto primitive_value = TRY(to_primitive(vm, PreferredType::String)); // 11. Assert: primValue is not an Object. VERIFY(!primitive_value.is_object()); // 12. Return ? ToString(primValue). return primitive_value.to_string(vm); } default: VERIFY_NOT_REACHED(); } } ThrowCompletionOr Value::to_utf16_string(VM& vm) const { if (is_string()) return as_string().utf16_string(); auto utf8_string = TRY(to_string(vm)); return Utf16String(utf8_string); } // 7.1.2 ToBoolean ( argument ), https://tc39.es/ecma262/#sec-toboolean bool Value::to_boolean() const { if (is_double()) { if (is_nan()) return false; return m_value.as_double != 0; } switch (m_value.tag) { // 1. If argument is a Boolean, return argument. case BOOLEAN_TAG: return as_bool(); // 2. If argument is any of undefined, null, +0๐”ฝ, -0๐”ฝ, NaN, 0โ„ค, or the empty String, return false. case UNDEFINED_TAG: case NULL_TAG: return false; case INT32_TAG: return as_i32() != 0; case STRING_TAG: return !as_string().is_empty(); case BIGINT_TAG: return as_bigint().big_integer() != BIGINT_ZERO; case OBJECT_TAG: // B.3.6.1 Changes to ToBoolean, https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot-to-boolean // 3. If argument is an Object and argument has an [[IsHTMLDDA]] internal slot, return false. if (as_object().is_htmldda()) return false; // 4. Return true. return true; case SYMBOL_TAG: return true; default: VERIFY_NOT_REACHED(); } } // 7.1.1 ToPrimitive ( input [ , preferredType ] ), https://tc39.es/ecma262/#sec-toprimitive ThrowCompletionOr Value::to_primitive(VM& vm, PreferredType preferred_type) const { // 1. If input is an Object, then if (is_object()) { // a. Let exoticToPrim be ? GetMethod(input, @@toPrimitive). auto* exotic_to_primitive = TRY(get_method(vm, *vm.well_known_symbol_to_primitive())); // b. If exoticToPrim is not undefined, then if (exotic_to_primitive) { auto hint = [&]() -> DeprecatedString { switch (preferred_type) { // i. If preferredType is not present, let hint be "default". case PreferredType::Default: return "default"; // ii. Else if preferredType is string, let hint be "string". case PreferredType::String: return "string"; // iii. Else, // 1. Assert: preferredType is number. // 2. Let hint be "number". case PreferredType::Number: return "number"; default: VERIFY_NOT_REACHED(); } }(); // iv. Let result be ? Call(exoticToPrim, input, ยซ hint ยป). auto result = TRY(call(vm, *exotic_to_primitive, *this, PrimitiveString::create(vm, hint))); // v. If result is not an Object, return result. if (!result.is_object()) return result; // vi. Throw a TypeError exception. return vm.throw_completion(ErrorType::ToPrimitiveReturnedObject, to_string_without_side_effects(), hint); } // c. If preferredType is not present, let preferredType be number. if (preferred_type == PreferredType::Default) preferred_type = PreferredType::Number; // d. Return ? OrdinaryToPrimitive(input, preferredType). return as_object().ordinary_to_primitive(preferred_type); } // 2. Return input. return *this; } // 7.1.18 ToObject ( argument ), https://tc39.es/ecma262/#sec-toobject ThrowCompletionOr Value::to_object(VM& vm) const { auto& realm = *vm.current_realm(); VERIFY(!is_empty()); // Number if (is_number()) { // Return a new Number object whose [[NumberData]] internal slot is set to argument. See 21.1 for a description of Number objects. return NumberObject::create(realm, as_double()).ptr(); } switch (m_value.tag) { // Undefined // Null case UNDEFINED_TAG: case NULL_TAG: // Throw a TypeError exception. return vm.throw_completion(ErrorType::ToObjectNullOrUndefined); // Boolean case BOOLEAN_TAG: // Return a new Boolean object whose [[BooleanData]] internal slot is set to argument. See 20.3 for a description of Boolean objects. return BooleanObject::create(realm, as_bool()).ptr(); // String case STRING_TAG: // Return a new String object whose [[StringData]] internal slot is set to argument. See 22.1 for a description of String objects. return StringObject::create(realm, const_cast(as_string()), *realm.intrinsics().string_prototype()).ptr(); // Symbol case SYMBOL_TAG: // Return a new Symbol object whose [[SymbolData]] internal slot is set to argument. See 20.4 for a description of Symbol objects. return SymbolObject::create(realm, const_cast(as_symbol())).ptr(); // BigInt case BIGINT_TAG: // Return a new BigInt object whose [[BigIntData]] internal slot is set to argument. See 21.2 for a description of BigInt objects. return BigIntObject::create(realm, const_cast(as_bigint())).ptr(); // Object case OBJECT_TAG: // Return argument. return &const_cast(as_object()); default: VERIFY_NOT_REACHED(); } } // 7.1.3 ToNumeric ( value ), https://tc39.es/ecma262/#sec-tonumeric FLATTEN ThrowCompletionOr Value::to_numeric(VM& vm) const { // 1. Let primValue be ? ToPrimitive(value, number). auto primitive_value = TRY(to_primitive(vm, Value::PreferredType::Number)); // 2. If primValue is a BigInt, return primValue. if (primitive_value.is_bigint()) return primitive_value; // 3. Return ? ToNumber(primValue). return primitive_value.to_number(vm); } constexpr bool is_ascii_number(u32 code_point) { return is_ascii_digit(code_point) || code_point == '.' || (code_point == 'e' || code_point == 'E') || code_point == '+' || code_point == '-'; } struct NumberParseResult { StringView literal; u8 base; }; static Optional parse_number_text(StringView text) { NumberParseResult result {}; auto check_prefix = [&](auto lower_prefix, auto upper_prefix) { if (text.length() <= 2) return false; if (!text.starts_with(lower_prefix) && !text.starts_with(upper_prefix)) return false; return true; }; // https://tc39.es/ecma262/#sec-tonumber-applied-to-the-string-type if (check_prefix("0b"sv, "0B"sv)) { if (!all_of(text.substring_view(2), is_ascii_binary_digit)) return {}; result.literal = text.substring_view(2); result.base = 2; } else if (check_prefix("0o"sv, "0O"sv)) { if (!all_of(text.substring_view(2), is_ascii_octal_digit)) return {}; result.literal = text.substring_view(2); result.base = 8; } else if (check_prefix("0x"sv, "0X"sv)) { if (!all_of(text.substring_view(2), is_ascii_hex_digit)) return {}; result.literal = text.substring_view(2); result.base = 16; } else { if (!all_of(text, is_ascii_number)) return {}; result.literal = text; result.base = 10; } return result; } // 7.1.4.1.1 StringToNumber ( str ), https://tc39.es/ecma262/#sec-stringtonumber Optional string_to_number(StringView string) { // 1. Let text be StringToCodePoints(str). DeprecatedString text = Utf8View(string).trim(whitespace_characters, AK::TrimMode::Both).as_string(); // 2. Let literal be ParseText(text, StringNumericLiteral). if (text.is_empty()) return Value(0); if (text == "Infinity" || text == "+Infinity") return js_infinity(); if (text == "-Infinity") return js_negative_infinity(); auto result = parse_number_text(text); // 3. If literal is a List of errors, return NaN. if (!result.has_value()) return js_nan(); // 4. Return StringNumericValue of literal. if (result->base != 10) { auto bigint = Crypto::UnsignedBigInteger::from_base(result->base, result->literal); return Value(bigint.to_double()); } auto maybe_double = text.to_double(AK::TrimWhitespace::No); if (!maybe_double.has_value()) return js_nan(); return Value(*maybe_double); } // 7.1.4 ToNumber ( argument ), https://tc39.es/ecma262/#sec-tonumber ThrowCompletionOr Value::to_number(VM& vm) const { VERIFY(!is_empty()); // 1. If argument is a Number, return argument. if (is_number()) return *this; switch (m_value.tag) { // 2. If argument is either a Symbol or a BigInt, throw a TypeError exception. case SYMBOL_TAG: return vm.throw_completion(ErrorType::Convert, "symbol", "number"); case BIGINT_TAG: return vm.throw_completion(ErrorType::Convert, "BigInt", "number"); // 3. If argument is undefined, return NaN. case UNDEFINED_TAG: return js_nan(); // 4. If argument is either null or false, return +0๐”ฝ. case NULL_TAG: return Value(0); // 5. If argument is true, return 1๐”ฝ. case BOOLEAN_TAG: return Value(as_bool() ? 1 : 0); // 6. If argument is a String, return StringToNumber(argument). case STRING_TAG: return string_to_number(as_string().deprecated_string().view()); // 7. Assert: argument is an Object. case OBJECT_TAG: { // 8. Let primValue be ? ToPrimitive(argument, number). auto primitive_value = TRY(to_primitive(vm, PreferredType::Number)); // 9. Assert: primValue is not an Object. VERIFY(!primitive_value.is_object()); // 10. Return ? ToNumber(primValue). return primitive_value.to_number(vm); } default: VERIFY_NOT_REACHED(); } } static Optional string_to_bigint(VM& vm, StringView string); // 7.1.13 ToBigInt ( argument ), https://tc39.es/ecma262/#sec-tobigint ThrowCompletionOr Value::to_bigint(VM& vm) const { // 1. Let prim be ? ToPrimitive(argument, number). auto primitive = TRY(to_primitive(vm, PreferredType::Number)); // 2. Return the value that prim corresponds to in Table 12. // Number if (primitive.is_number()) { // Throw a TypeError exception. return vm.throw_completion(ErrorType::Convert, "number", "BigInt"); } switch (primitive.m_value.tag) { // Undefined case UNDEFINED_TAG: // Throw a TypeError exception. return vm.throw_completion(ErrorType::Convert, "undefined", "BigInt"); // Null case NULL_TAG: // Throw a TypeError exception. return vm.throw_completion(ErrorType::Convert, "null", "BigInt"); // Boolean case BOOLEAN_TAG: { // Return 1n if prim is true and 0n if prim is false. auto value = primitive.as_bool() ? 1 : 0; return BigInt::create(vm, Crypto::SignedBigInteger { value }).ptr(); } // BigInt case BIGINT_TAG: // Return prim. return &primitive.as_bigint(); case STRING_TAG: { // 1. Let n be ! StringToBigInt(prim). auto bigint = string_to_bigint(vm, primitive.as_string().deprecated_string()); // 2. If n is undefined, throw a SyntaxError exception. if (!bigint.has_value()) return vm.throw_completion(ErrorType::BigIntInvalidValue, primitive); // 3. Return n. return bigint.release_value(); } // Symbol case SYMBOL_TAG: // Throw a TypeError exception. return vm.throw_completion(ErrorType::Convert, "symbol", "BigInt"); default: VERIFY_NOT_REACHED(); } } struct BigIntParseResult { StringView literal; u8 base { 10 }; bool is_negative { false }; }; static Optional parse_bigint_text(StringView text) { BigIntParseResult result {}; auto parse_for_prefixed_base = [&](auto lower_prefix, auto upper_prefix, auto validator) { if (text.length() <= 2) return false; if (!text.starts_with(lower_prefix) && !text.starts_with(upper_prefix)) return false; return all_of(text.substring_view(2), validator); }; if (parse_for_prefixed_base("0b"sv, "0B"sv, is_ascii_binary_digit)) { result.literal = text.substring_view(2); result.base = 2; } else if (parse_for_prefixed_base("0o"sv, "0O"sv, is_ascii_octal_digit)) { result.literal = text.substring_view(2); result.base = 8; } else if (parse_for_prefixed_base("0x"sv, "0X"sv, is_ascii_hex_digit)) { result.literal = text.substring_view(2); result.base = 16; } else { if (text.starts_with('-')) { text = text.substring_view(1); result.is_negative = true; } else if (text.starts_with('+')) { text = text.substring_view(1); } if (!all_of(text, is_ascii_digit)) return {}; result.literal = text; result.base = 10; } return result; } // 7.1.14 StringToBigInt ( str ), https://tc39.es/ecma262/#sec-stringtobigint static Optional string_to_bigint(VM& vm, StringView string) { // 1. Let text be StringToCodePoints(str). auto text = Utf8View(string).trim(whitespace_characters, AK::TrimMode::Both).as_string(); // 2. Let literal be ParseText(text, StringIntegerLiteral). auto result = parse_bigint_text(text); // 3. If literal is a List of errors, return undefined. if (!result.has_value()) return {}; // 4. Let mv be the MV of literal. // 5. Assert: mv is an integer. auto bigint = Crypto::SignedBigInteger::from_base(result->base, result->literal); if (result->is_negative && (bigint != BIGINT_ZERO)) bigint.negate(); // 6. Return โ„ค(mv). return BigInt::create(vm, move(bigint)); } // 7.1.15 ToBigInt64 ( argument ), https://tc39.es/ecma262/#sec-tobigint64 ThrowCompletionOr Value::to_bigint_int64(VM& vm) const { // 1. Let n be ? ToBigInt(argument). auto* bigint = TRY(to_bigint(vm)); // 2. Let int64bit be โ„(n) modulo 2^64. // 3. If int64bit โ‰ฅ 2^63, return โ„ค(int64bit - 2^64); otherwise return โ„ค(int64bit). return static_cast(bigint->big_integer().to_u64()); } // 7.1.16 ToBigUint64 ( argument ), https://tc39.es/ecma262/#sec-tobiguint64 ThrowCompletionOr Value::to_bigint_uint64(VM& vm) const { // 1. Let n be ? ToBigInt(argument). auto* bigint = TRY(to_bigint(vm)); // 2. Let int64bit be โ„(n) modulo 2^64. // 3. Return โ„ค(int64bit). return bigint->big_integer().to_u64(); } ThrowCompletionOr Value::to_double(VM& vm) const { return TRY(to_number(vm)).as_double(); } // 7.1.19 ToPropertyKey ( argument ), https://tc39.es/ecma262/#sec-topropertykey ThrowCompletionOr Value::to_property_key(VM& vm) const { // OPTIMIZATION: Return the value as a numeric PropertyKey, if possible. if (is_int32() && as_i32() >= 0) return PropertyKey { as_i32() }; // 1. Let key be ? ToPrimitive(argument, string). auto key = TRY(to_primitive(vm, PreferredType::String)); // 2. If key is a Symbol, then if (key.is_symbol()) { // a. Return key. return &key.as_symbol(); } // 3. Return ! ToString(key). return MUST(key.to_string(vm)); } // 7.1.6 ToInt32 ( argument ), https://tc39.es/ecma262/#sec-toint32 ThrowCompletionOr Value::to_i32_slow_case(VM& vm) const { VERIFY(!is_int32()); // 1. Let number be ? ToNumber(argument). double number = TRY(to_number(vm)).as_double(); // 2. If number is not finite or number is either +0๐”ฝ or -0๐”ฝ, return +0๐”ฝ. if (!isfinite(number) || number == 0) return 0; // 3. Let int be the mathematical value whose sign is the sign of number and whose magnitude is floor(abs(โ„(number))). auto abs = fabs(number); auto int_val = floor(abs); if (signbit(number)) int_val = -int_val; // 4. Let int32bit be int modulo 2^32. auto int32bit = modulo(int_val, NumericLimits::max() + 1.0); // 5. If int32bit โ‰ฅ 2^31, return ๐”ฝ(int32bit - 2^32); otherwise return ๐”ฝ(int32bit). if (int32bit >= 2147483648.0) int32bit -= 4294967296.0; return static_cast(int32bit); } // 7.1.6 ToInt32 ( argument ), https://tc39.es/ecma262/#sec-toint32 ThrowCompletionOr Value::to_i32(VM& vm) const { if (is_int32()) return as_i32(); return to_i32_slow_case(vm); } // 7.1.7 ToUint32 ( argument ), https://tc39.es/ecma262/#sec-touint32 ThrowCompletionOr Value::to_u32(VM& vm) const { // 1. Let number be ? ToNumber(argument). double number = TRY(to_number(vm)).as_double(); // 2. If number is not finite or number is either +0๐”ฝ or -0๐”ฝ, return +0๐”ฝ. if (!isfinite(number) || number == 0) return 0; // 3. Let int be the mathematical value whose sign is the sign of number and whose magnitude is floor(abs(โ„(number))). auto int_val = floor(fabs(number)); if (signbit(number)) int_val = -int_val; // 4. Let int32bit be int modulo 2^32. auto int32bit = modulo(int_val, NumericLimits::max() + 1.0); // 5. Return ๐”ฝ(int32bit). // Cast to i64 here to ensure that the double --> u32 cast doesn't invoke undefined behavior // Otherwise, negative numbers cause a UBSAN warning. return static_cast(static_cast(int32bit)); } // 7.1.8 ToInt16 ( argument ), https://tc39.es/ecma262/#sec-toint16 ThrowCompletionOr Value::to_i16(VM& vm) const { // 1. Let number be ? ToNumber(argument). double number = TRY(to_number(vm)).as_double(); // 2. If number is not finite or number is either +0๐”ฝ or -0๐”ฝ, return +0๐”ฝ. if (!isfinite(number) || number == 0) return 0; // 3. Let int be the mathematical value whose sign is the sign of number and whose magnitude is floor(abs(โ„(number))). auto abs = fabs(number); auto int_val = floor(abs); if (signbit(number)) int_val = -int_val; // 4. Let int16bit be int modulo 2^16. auto int16bit = modulo(int_val, NumericLimits::max() + 1.0); // 5. If int16bit โ‰ฅ 2^15, return ๐”ฝ(int16bit - 2^16); otherwise return ๐”ฝ(int16bit). if (int16bit >= 32768.0) int16bit -= 65536.0; return static_cast(int16bit); } // 7.1.9 ToUint16 ( argument ), https://tc39.es/ecma262/#sec-touint16 ThrowCompletionOr Value::to_u16(VM& vm) const { // 1. Let number be ? ToNumber(argument). double number = TRY(to_number(vm)).as_double(); // 2. If number is not finite or number is either +0๐”ฝ or -0๐”ฝ, return +0๐”ฝ. if (!isfinite(number) || number == 0) return 0; // 3. Let int be the mathematical value whose sign is the sign of number and whose magnitude is floor(abs(โ„(number))). auto int_val = floor(fabs(number)); if (signbit(number)) int_val = -int_val; // 4. Let int16bit be int modulo 2^16. auto int16bit = modulo(int_val, NumericLimits::max() + 1.0); // 5. Return ๐”ฝ(int16bit). return static_cast(int16bit); } // 7.1.10 ToInt8 ( argument ), https://tc39.es/ecma262/#sec-toint8 ThrowCompletionOr Value::to_i8(VM& vm) const { // 1. Let number be ? ToNumber(argument). double number = TRY(to_number(vm)).as_double(); // 2. If number is not finite or number is either +0๐”ฝ or -0๐”ฝ, return +0๐”ฝ. if (!isfinite(number) || number == 0) return 0; // 3. Let int be the mathematical value whose sign is the sign of number and whose magnitude is floor(abs(โ„(number))). auto abs = fabs(number); auto int_val = floor(abs); if (signbit(number)) int_val = -int_val; // 4. Let int8bit be int modulo 2^8. auto int8bit = modulo(int_val, NumericLimits::max() + 1.0); // 5. If int8bit โ‰ฅ 2^7, return ๐”ฝ(int8bit - 2^8); otherwise return ๐”ฝ(int8bit). if (int8bit >= 128.0) int8bit -= 256.0; return static_cast(int8bit); } // 7.1.11 ToUint8 ( argument ), https://tc39.es/ecma262/#sec-touint8 ThrowCompletionOr Value::to_u8(VM& vm) const { // 1. Let number be ? ToNumber(argument). double number = TRY(to_number(vm)).as_double(); // 2. If number is not finite or number is either +0๐”ฝ or -0๐”ฝ, return +0๐”ฝ. if (!isfinite(number) || number == 0) return 0; // 3. Let int be the mathematical value whose sign is the sign of number and whose magnitude is floor(abs(โ„(number))). auto int_val = floor(fabs(number)); if (signbit(number)) int_val = -int_val; // 4. Let int8bit be int modulo 2^8. auto int8bit = modulo(int_val, NumericLimits::max() + 1.0); // 5. Return ๐”ฝ(int8bit). return static_cast(int8bit); } // 7.1.12 ToUint8Clamp ( argument ), https://tc39.es/ecma262/#sec-touint8clamp ThrowCompletionOr Value::to_u8_clamp(VM& vm) const { // 1. Let number be ? ToNumber(argument). auto number = TRY(to_number(vm)); // 2. If number is NaN, return +0๐”ฝ. if (number.is_nan()) return 0; double value = number.as_double(); // 3. If โ„(number) โ‰ค 0, return +0๐”ฝ. if (value <= 0.0) return 0; // 4. If โ„(number) โ‰ฅ 255, return 255๐”ฝ. if (value >= 255.0) return 255; // 5. Let f be floor(โ„(number)). auto int_val = floor(value); // 6. If f + 0.5 < โ„(number), return ๐”ฝ(f + 1). if (int_val + 0.5 < value) return static_cast(int_val + 1.0); // 7. If โ„(number) < f + 0.5, return ๐”ฝ(f). if (value < int_val + 0.5) return static_cast(int_val); // 8. If f is odd, return ๐”ฝ(f + 1). if (fmod(int_val, 2.0) == 1.0) return static_cast(int_val + 1.0); // 9. Return ๐”ฝ(f). return static_cast(int_val); } // 7.1.20 ToLength ( argument ), https://tc39.es/ecma262/#sec-tolength ThrowCompletionOr Value::to_length(VM& vm) const { // 1. Let len be ? ToIntegerOrInfinity(argument). auto len = TRY(to_integer_or_infinity(vm)); // 2. If len โ‰ค 0, return +0๐”ฝ. if (len <= 0) return 0; // FIXME: The expected output range is 0 - 2^53-1, but we don't want to overflow the size_t on 32-bit platforms. // Convert this to u64 so it works everywhere. constexpr double length_limit = sizeof(void*) == 4 ? NumericLimits::max() : MAX_ARRAY_LIKE_INDEX; // 3. Return ๐”ฝ(min(len, 2^53 - 1)). return min(len, length_limit); } // 7.1.22 ToIndex ( argument ), https://tc39.es/ecma262/#sec-toindex ThrowCompletionOr Value::to_index(VM& vm) const { // 1. If value is undefined, then if (is_undefined()) { // a. Return 0. return 0; } // 2. Else, // a. Let integer be ? ToIntegerOrInfinity(value). auto integer = TRY(to_integer_or_infinity(vm)); // OPTIMIZATION: If the value is negative, ToLength normalizes it to 0, and we fail the SameValue comparison below. // Bail out early instead. if (integer < 0) return vm.throw_completion(ErrorType::InvalidIndex); // b. Let clamped be ! ToLength(๐”ฝ(integer)). auto clamped = MUST(Value(integer).to_length(vm)); // c. If SameValue(๐”ฝ(integer), clamped) is false, throw a RangeError exception. if (integer != clamped) return vm.throw_completion(ErrorType::InvalidIndex); // d. Assert: 0 โ‰ค integer โ‰ค 2^53 - 1. VERIFY(0 <= integer && integer <= MAX_ARRAY_LIKE_INDEX); // e. Return integer. // NOTE: We return the clamped value here, which already has the right type. return clamped; } // 7.1.5 ToIntegerOrInfinity ( argument ), https://tc39.es/ecma262/#sec-tointegerorinfinity ThrowCompletionOr Value::to_integer_or_infinity(VM& vm) const { // 1. Let number be ? ToNumber(argument). auto number = TRY(to_number(vm)); // 2. If number is NaN, +0๐”ฝ, or -0๐”ฝ, return 0. if (number.is_nan() || number.as_double() == 0) return 0; // 3. If number is +โˆž๐”ฝ, return +โˆž. // 4. If number is -โˆž๐”ฝ, return -โˆž. if (number.is_infinity()) return number.as_double(); // 5. Let integer be floor(abs(โ„(number))). auto integer = floor(fabs(number.as_double())); // 6. If number < -0๐”ฝ, set integer to -integer. // NOTE: The zero check is required as 'integer' is a double here but an MV in the spec, // which doesn't have negative zero. if (number.as_double() < 0 && integer != 0) integer = -integer; // 7. Return integer. return integer; } // Standalone variant using plain doubles for cases where we already got numbers and know the AO won't throw. double to_integer_or_infinity(double number) { // 1. Let number be ? ToNumber(argument). // 2. If number is NaN, +0๐”ฝ, or -0๐”ฝ, return 0. if (isnan(number) || number == 0) return 0; // 3. If number is +โˆž๐”ฝ, return +โˆž. if (__builtin_isinf_sign(number) > 0) return static_cast(INFINITY); // 4. If number is -โˆž๐”ฝ, return -โˆž. if (__builtin_isinf_sign(number) < 0) return static_cast(-INFINITY); // 5. Let integer be floor(abs(โ„(number))). auto integer = floor(fabs(number)); // 6. If number < -0๐”ฝ, set integer to -integer. // NOTE: The zero check is required as 'integer' is a double here but an MV in the spec, // which doesn't have negative zero. if (number < 0 && integer != 0) integer = -integer; // 7. Return integer. return integer; } // 7.3.3 GetV ( V, P ), https://tc39.es/ecma262/#sec-getv ThrowCompletionOr Value::get(VM& vm, PropertyKey const& property_key) const { // 1. Assert: IsPropertyKey(P) is true. VERIFY(property_key.is_valid()); // 2. Let O be ? ToObject(V). auto* object = TRY(to_object(vm)); // 3. Return ? O.[[Get]](P, V). return TRY(object->internal_get(property_key, *this)); } // 7.3.11 GetMethod ( V, P ), https://tc39.es/ecma262/#sec-getmethod ThrowCompletionOr Value::get_method(VM& vm, PropertyKey const& property_key) const { // 1. Assert: IsPropertyKey(P) is true. VERIFY(property_key.is_valid()); // 2. Let func be ? GetV(V, P). auto function = TRY(get(vm, property_key)); // 3. If func is either undefined or null, return undefined. if (function.is_nullish()) return nullptr; // 4. If IsCallable(func) is false, throw a TypeError exception. if (!function.is_function()) return vm.throw_completion(ErrorType::NotAFunction, function.to_string_without_side_effects()); // 5. Return func. return &function.as_function(); } // 13.10 Relational Operators, https://tc39.es/ecma262/#sec-relational-operators // RelationalExpression : RelationalExpression > ShiftExpression ThrowCompletionOr greater_than(VM& vm, Value lhs, Value rhs) { // 1. Let lref be ? Evaluation of RelationalExpression. // 2. Let lval be ? GetValue(lref). // 3. Let rref be ? Evaluation of ShiftExpression. // 4. Let rval be ? GetValue(rref). // NOTE: This is handled in the AST or Bytecode interpreter. // OPTIMIZATION: If both values are i32, we can do a direct comparison without calling into IsLessThan. if (lhs.is_int32() && rhs.is_int32()) return lhs.as_i32() > rhs.as_i32(); // 5. Let r be ? IsLessThan(rval, lval, false). auto relation = TRY(is_less_than(vm, lhs, rhs, false)); // 6. If r is undefined, return false. Otherwise, return r. if (relation == TriState::Unknown) return Value(false); return Value(relation == TriState::True); } // 13.10 Relational Operators, https://tc39.es/ecma262/#sec-relational-operators // RelationalExpression : RelationalExpression >= ShiftExpression ThrowCompletionOr greater_than_equals(VM& vm, Value lhs, Value rhs) { // 1. Let lref be ? Evaluation of RelationalExpression. // 2. Let lval be ? GetValue(lref). // 3. Let rref be ? Evaluation of ShiftExpression. // 4. Let rval be ? GetValue(rref). // NOTE: This is handled in the AST or Bytecode interpreter. // OPTIMIZATION: If both values are i32, we can do a direct comparison without calling into IsLessThan. if (lhs.is_int32() && rhs.is_int32()) return lhs.as_i32() >= rhs.as_i32(); // 5. Let r be ? IsLessThan(lval, rval, true). auto relation = TRY(is_less_than(vm, lhs, rhs, true)); // 6. If r is true or undefined, return false. Otherwise, return true. if (relation == TriState::Unknown || relation == TriState::True) return Value(false); return Value(true); } // 13.10 Relational Operators, https://tc39.es/ecma262/#sec-relational-operators // RelationalExpression : RelationalExpression < ShiftExpression ThrowCompletionOr less_than(VM& vm, Value lhs, Value rhs) { // 1. Let lref be ? Evaluation of RelationalExpression. // 2. Let lval be ? GetValue(lref). // 3. Let rref be ? Evaluation of ShiftExpression. // 4. Let rval be ? GetValue(rref). // NOTE: This is handled in the AST or Bytecode interpreter. // OPTIMIZATION: If both values are i32, we can do a direct comparison without calling into IsLessThan. if (lhs.is_int32() && rhs.is_int32()) return lhs.as_i32() < rhs.as_i32(); // 5. Let r be ? IsLessThan(lval, rval, true). auto relation = TRY(is_less_than(vm, lhs, rhs, true)); // 6. If r is undefined, return false. Otherwise, return r. if (relation == TriState::Unknown) return Value(false); return Value(relation == TriState::True); } // 13.10 Relational Operators, https://tc39.es/ecma262/#sec-relational-operators // RelationalExpression : RelationalExpression <= ShiftExpression ThrowCompletionOr less_than_equals(VM& vm, Value lhs, Value rhs) { // 1. Let lref be ? Evaluation of RelationalExpression. // 2. Let lval be ? GetValue(lref). // 3. Let rref be ? Evaluation of ShiftExpression. // 4. Let rval be ? GetValue(rref). // NOTE: This is handled in the AST or Bytecode interpreter. // OPTIMIZATION: If both values are i32, we can do a direct comparison without calling into IsLessThan. if (lhs.is_int32() && rhs.is_int32()) return lhs.as_i32() <= rhs.as_i32(); // 5. Let r be ? IsLessThan(rval, lval, false). auto relation = TRY(is_less_than(vm, lhs, rhs, false)); // 6. If r is true or undefined, return false. Otherwise, return true. if (relation == TriState::True || relation == TriState::Unknown) return Value(false); return Value(true); } // 13.12 Binary Bitwise Operators, https://tc39.es/ecma262/#sec-binary-bitwise-operators // BitwiseANDExpression : BitwiseANDExpression & EqualityExpression ThrowCompletionOr bitwise_and(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1-2, 6. N/A. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.17 Number::bitwiseAND ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-bitwiseAND // 1. Return NumberBitwiseOp(&, x, y). if (!lhs_numeric.is_finite_number() || !rhs_numeric.is_finite_number()) return Value(0); return Value(TRY(lhs_numeric.to_i32(vm)) & TRY(rhs_numeric.to_i32(vm))); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.18 BigInt::bitwiseAND ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-bigint-bitwiseAND // 1. Return BigIntBitwiseOp(&, x, y). return BigInt::create(vm, lhs_numeric.as_bigint().big_integer().bitwise_and(rhs_numeric.as_bigint().big_integer())); } // 5. If Type(lnum) is different from Type(rnum), throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "bitwise AND"); } // 13.12 Binary Bitwise Operators, https://tc39.es/ecma262/#sec-binary-bitwise-operators // BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression ThrowCompletionOr bitwise_or(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1-2, 6. N/A. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.19 Number::bitwiseOR ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-bitwiseOR // 1. Return NumberBitwiseOp(|, x, y). if (!lhs_numeric.is_finite_number() && !rhs_numeric.is_finite_number()) return Value(0); if (!lhs_numeric.is_finite_number()) return rhs_numeric; if (!rhs_numeric.is_finite_number()) return lhs_numeric; return Value(TRY(lhs_numeric.to_i32(vm)) | TRY(rhs_numeric.to_i32(vm))); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.20 BigInt::bitwiseOR ( x, y ) // 1. Return BigIntBitwiseOp(|, x, y). return BigInt::create(vm, lhs_numeric.as_bigint().big_integer().bitwise_or(rhs_numeric.as_bigint().big_integer())); } // 5. If Type(lnum) is different from Type(rnum), throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "bitwise OR"); } // 13.12 Binary Bitwise Operators, https://tc39.es/ecma262/#sec-binary-bitwise-operators // BitwiseXORExpression : BitwiseXORExpression ^ BitwiseANDExpression ThrowCompletionOr bitwise_xor(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1-2, 6. N/A. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.18 Number::bitwiseXOR ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-bitwiseXOR // 1. Return NumberBitwiseOp(^, x, y). if (!lhs_numeric.is_finite_number() && !rhs_numeric.is_finite_number()) return Value(0); if (!lhs_numeric.is_finite_number()) return rhs_numeric; if (!rhs_numeric.is_finite_number()) return lhs_numeric; return Value(TRY(lhs_numeric.to_i32(vm)) ^ TRY(rhs_numeric.to_i32(vm))); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.19 BigInt::bitwiseXOR ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-bigint-bitwiseXOR // 1. Return BigIntBitwiseOp(^, x, y). return BigInt::create(vm, lhs_numeric.as_bigint().big_integer().bitwise_xor(rhs_numeric.as_bigint().big_integer())); } // 5. If Type(lnum) is different from Type(rnum), throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "bitwise XOR"); } // 13.5.6 Bitwise NOT Operator ( ~ ), https://tc39.es/ecma262/#sec-bitwise-not-operator // UnaryExpression : ~ UnaryExpression ThrowCompletionOr bitwise_not(VM& vm, Value lhs) { // 1. Let expr be ? Evaluation of UnaryExpression. // NOTE: This is handled in the AST or Bytecode interpreter. // 2. Let oldValue be ? ToNumeric(? GetValue(expr)). auto old_value = TRY(lhs.to_numeric(vm)); // 3. If oldValue is a Number, then if (old_value.is_number()) { // a. Return Number::bitwiseNOT(oldValue). // 6.1.6.1.2 Number::bitwiseNOT ( x ), https://tc39.es/ecma262/#sec-numeric-types-number-bitwiseNOT // 1. Let oldValue be ! ToInt32(x). // 2. Return the result of applying bitwise complement to oldValue. The mathematical value of the result is // exactly representable as a 32-bit two's complement bit string. return Value(~TRY(old_value.to_i32(vm))); } // 4. Else, // a. Assert: oldValue is a BigInt. VERIFY(old_value.is_bigint()); // b. Return BigInt::bitwiseNOT(oldValue). // 6.1.6.2.2 BigInt::bitwiseNOT ( x ), https://tc39.es/ecma262/#sec-numeric-types-bigint-bitwiseNOT // 1. Return -x - 1โ„ค. return BigInt::create(vm, old_value.as_bigint().big_integer().bitwise_not()); } // 13.5.4 Unary + Operator, https://tc39.es/ecma262/#sec-unary-plus-operator // UnaryExpression : + UnaryExpression ThrowCompletionOr unary_plus(VM& vm, Value lhs) { // 1. Let expr be ? Evaluation of UnaryExpression. // NOTE: This is handled in the AST or Bytecode interpreter. // 2. Return ? ToNumber(? GetValue(expr)). return TRY(lhs.to_number(vm)); } // 13.5.5 Unary - Operator, https://tc39.es/ecma262/#sec-unary-minus-operator // UnaryExpression : - UnaryExpression ThrowCompletionOr unary_minus(VM& vm, Value lhs) { // 1. Let expr be ? Evaluation of UnaryExpression. // NOTE: This is handled in the AST or Bytecode interpreter. // 2. Let oldValue be ? ToNumeric(? GetValue(expr)). auto old_value = TRY(lhs.to_numeric(vm)); // 3. If oldValue is a Number, then if (old_value.is_number()) { // a. Return Number::unaryMinus(oldValue). // 6.1.6.1.1 Number::unaryMinus ( x ), https://tc39.es/ecma262/#sec-numeric-types-number-unaryMinus // 1. If x is NaN, return NaN. if (old_value.is_nan()) return js_nan(); // 2. Return the result of negating x; that is, compute a Number with the same magnitude but opposite sign. return Value(-old_value.as_double()); } // 4. Else, // a. Assert: oldValue is a BigInt. VERIFY(old_value.is_bigint()); // b. Return BigInt::unaryMinus(oldValue). // 6.1.6.2.1 BigInt::unaryMinus ( x ), https://tc39.es/ecma262/#sec-numeric-types-bigint-unaryMinus // 1. If x is 0โ„ค, return 0โ„ค. if (old_value.as_bigint().big_integer() == BIGINT_ZERO) return BigInt::create(vm, BIGINT_ZERO); // 2. Return the BigInt value that represents the negation of โ„(x). auto big_integer_negated = old_value.as_bigint().big_integer(); big_integer_negated.negate(); return BigInt::create(vm, big_integer_negated); } // 13.9.1 The Left Shift Operator ( << ), https://tc39.es/ecma262/#sec-left-shift-operator // ShiftExpression : ShiftExpression << AdditiveExpression ThrowCompletionOr left_shift(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1-2, 6. N/A. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.9 Number::leftShift ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-leftShift // OPTIMIZATION: Handle infinite values according to the results returned by ToInt32/ToUint32. if (!lhs_numeric.is_finite_number()) return Value(0); if (!rhs_numeric.is_finite_number()) return lhs_numeric; // 1. Let lnum be ! ToInt32(x). auto lhs_i32 = MUST(lhs_numeric.to_i32(vm)); // 2. Let rnum be ! ToUint32(y). auto rhs_u32 = MUST(rhs_numeric.to_u32(vm)); // 3. Let shiftCount be โ„(rnum) modulo 32. auto shift_count = rhs_u32 % 32; // 4. Return the result of left shifting lnum by shiftCount bits. The mathematical value of the result is // exactly representable as a 32-bit two's complement bit string. return Value(lhs_i32 << shift_count); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.9 BigInt::leftShift ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-bigint-leftShift auto multiplier_divisor = Crypto::SignedBigInteger { Crypto::NumberTheory::Power(Crypto::UnsignedBigInteger(2), rhs_numeric.as_bigint().big_integer().unsigned_value()) }; // 1. If y < 0โ„ค, then if (rhs_numeric.as_bigint().big_integer().is_negative()) { // a. Return the BigInt value that represents โ„(x) / 2^-y, rounding down to the nearest integer, including for negative numbers. // NOTE: Since y is negative we can just do โ„(x) / 2^|y| auto const& big_integer = lhs_numeric.as_bigint().big_integer(); auto division_result = big_integer.divided_by(multiplier_divisor); // For positive initial values and no remainder just return quotient if (division_result.remainder.is_zero() || !big_integer.is_negative()) return BigInt::create(vm, division_result.quotient); // For negative round "down" to the next negative number return BigInt::create(vm, division_result.quotient.minus(Crypto::SignedBigInteger { 1 })); } // 2. Return the BigInt value that represents โ„(x) ร— 2^y. return Value(BigInt::create(vm, lhs_numeric.as_bigint().big_integer().multiplied_by(multiplier_divisor))); } // 5. If Type(lnum) is different from Type(rnum), throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "left-shift"); } // 13.9.2 The Signed Right Shift Operator ( >> ), https://tc39.es/ecma262/#sec-signed-right-shift-operator // ShiftExpression : ShiftExpression >> AdditiveExpression ThrowCompletionOr right_shift(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1-2, 6. N/A. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.10 Number::signedRightShift ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-signedRightShift // OPTIMIZATION: Handle infinite values according to the results returned by ToInt32/ToUint32. if (!lhs_numeric.is_finite_number()) return Value(0); if (!rhs_numeric.is_finite_number()) return lhs_numeric; // 1. Let lnum be ! ToInt32(x). auto lhs_i32 = MUST(lhs_numeric.to_i32(vm)); // 2. Let rnum be ! ToUint32(y). auto rhs_u32 = MUST(rhs_numeric.to_u32(vm)); // 3. Let shiftCount be โ„(rnum) modulo 32. auto shift_count = rhs_u32 % 32; // 4. Return the result of performing a sign-extending right shift of lnum by shiftCount bits. // The most significant bit is propagated. The mathematical value of the result is exactly representable // as a 32-bit two's complement bit string. return Value(lhs_i32 >> shift_count); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.10 BigInt::signedRightShift ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-bigint-signedRightShift // 1. Return BigInt::leftShift(x, -y). auto rhs_negated = rhs_numeric.as_bigint().big_integer(); rhs_negated.negate(); return left_shift(vm, lhs, BigInt::create(vm, rhs_negated)); } // 5. If Type(lnum) is different from Type(rnum), throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "right-shift"); } // 13.9.3 The Unsigned Right Shift Operator ( >>> ), https://tc39.es/ecma262/#sec-unsigned-right-shift-operator // ShiftExpression : ShiftExpression >>> AdditiveExpression ThrowCompletionOr unsigned_right_shift(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1-2, 5-6. N/A. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.11 Number::unsignedRightShift ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-unsignedRightShift // OPTIMIZATION: Handle infinite values according to the results returned by ToUint32. if (!lhs_numeric.is_finite_number()) return Value(0); if (!rhs_numeric.is_finite_number()) return lhs_numeric; // 1. Let lnum be ! ToUint32(x). auto lhs_u32 = MUST(lhs_numeric.to_u32(vm)); // 2. Let rnum be ! ToUint32(y). auto rhs_u32 = MUST(rhs_numeric.to_u32(vm)); // 3. Let shiftCount be โ„(rnum) modulo 32. auto shift_count = rhs_u32 % 32; // 4. Return the result of performing a zero-filling right shift of lnum by shiftCount bits. // Vacated bits are filled with zero. The mathematical value of the result is exactly representable // as a 32-bit unsigned bit string. return Value(lhs_u32 >> shift_count); } // 6. If lnum is a BigInt, then // d. If opText is >>>, return ? BigInt::unsignedRightShift(lnum, rnum). // 6.1.6.2.11 BigInt::unsignedRightShift ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-bigint-unsignedRightShift // 1. Throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperator, "unsigned right-shift"); } // 13.8.1 The Addition Operator ( + ), https://tc39.es/ecma262/#sec-addition-operator-plus // AdditiveExpression : AdditiveExpression + MultiplicativeExpression ThrowCompletionOr add(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1. If opText is +, then // OPTIMIZATION: If both values are i32 or double, we can do a direct addition without the type conversions below. if (both_number(lhs, rhs)) { if (lhs.is_int32() && rhs.is_int32()) { Checked result; result = MUST(lhs.to_i32(vm)); result += MUST(rhs.to_i32(vm)); if (!result.has_overflow()) return Value(result.value()); } return Value(lhs.as_double() + rhs.as_double()); } // a. Let lprim be ? ToPrimitive(lval). auto lhs_primitive = TRY(lhs.to_primitive(vm)); // b. Let rprim be ? ToPrimitive(rval). auto rhs_primitive = TRY(rhs.to_primitive(vm)); // c. If lprim is a String or rprim is a String, then if (lhs_primitive.is_string() || rhs_primitive.is_string()) { // i. Let lstr be ? ToString(lprim). auto lhs_string = TRY(lhs_primitive.to_primitive_string(vm)); // ii. Let rstr be ? ToString(rprim). auto rhs_string = TRY(rhs_primitive.to_primitive_string(vm)); // iii. Return the string-concatenation of lstr and rstr. return PrimitiveString::create(vm, *lhs_string, *rhs_string); } // d. Set lval to lprim. // e. Set rval to rprim. // 2. NOTE: At this point, it must be a numeric operation. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs_primitive.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs_primitive.to_numeric(vm)); // 6. N/A. // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.7 Number::add ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-add auto x = lhs_numeric.as_double(); auto y = rhs_numeric.as_double(); return Value(x + y); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.7 BigInt::add ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-bigint-add auto x = lhs_numeric.as_bigint().big_integer(); auto y = rhs_numeric.as_bigint().big_integer(); return BigInt::create(vm, x.plus(y)); } // 5. If Type(lnum) is different from Type(rnum), throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "addition"); } // 13.8.2 The Subtraction Operator ( - ), https://tc39.es/ecma262/#sec-subtraction-operator-minus // AdditiveExpression : AdditiveExpression - MultiplicativeExpression ThrowCompletionOr sub(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1-2, 6. N/A. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.8 Number::subtract ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-subtract auto x = lhs_numeric.as_double(); auto y = rhs_numeric.as_double(); // 1. Return Number::add(x, Number::unaryMinus(y)). return Value(x - y); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.8 BigInt::subtract ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-bigint-subtract auto x = lhs_numeric.as_bigint().big_integer(); auto y = rhs_numeric.as_bigint().big_integer(); // 1. Return the BigInt value that represents the difference x minus y. return BigInt::create(vm, x.minus(y)); } // 5. If Type(lnum) is different from Type(rnum), throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "subtraction"); } // 13.7 Multiplicative Operators, https://tc39.es/ecma262/#sec-multiplicative-operators // MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator ExponentiationExpression ThrowCompletionOr mul(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1-2, 6. N/A. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.4 Number::multiply ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-multiply auto x = lhs_numeric.as_double(); auto y = rhs_numeric.as_double(); return Value(x * y); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.4 BigInt::multiply ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-bigint-multiply auto x = lhs_numeric.as_bigint().big_integer(); auto y = rhs_numeric.as_bigint().big_integer(); // 1. Return the BigInt value that represents the product of x and y. return BigInt::create(vm, x.multiplied_by(y)); } // 5. If Type(lnum) is different from Type(rnum), throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "multiplication"); } // 13.7 Multiplicative Operators, https://tc39.es/ecma262/#sec-multiplicative-operators // MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator ExponentiationExpression ThrowCompletionOr div(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1-2, 6. N/A. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.5 Number::divide ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-divide return Value(lhs_numeric.as_double() / rhs_numeric.as_double()); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.5 BigInt::divide ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-bigint-divide auto x = lhs_numeric.as_bigint().big_integer(); auto y = rhs_numeric.as_bigint().big_integer(); // 1. If y is 0โ„ค, throw a RangeError exception. if (y == BIGINT_ZERO) return vm.throw_completion(ErrorType::DivisionByZero); // 2. Let quotient be โ„(x) / โ„(y). // 3. Return the BigInt value that represents quotient rounded towards 0 to the next integer value. return BigInt::create(vm, x.divided_by(y).quotient); } // 5. If Type(lnum) is different from Type(rnum), throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "division"); } // 13.7 Multiplicative Operators, https://tc39.es/ecma262/#sec-multiplicative-operators // MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator ExponentiationExpression ThrowCompletionOr mod(VM& vm, Value lhs, Value rhs) { // 13.15.3 ApplyStringOrNumericBinaryOperator ( lval, opText, rval ), https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator // 1-2, 6. N/A. // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { // 6.1.6.1.6 Number::remainder ( n, d ), https://tc39.es/ecma262/#sec-numeric-types-number-remainder // The ECMA specification is describing the mathematical definition of modulus // implemented by fmod. auto n = lhs_numeric.as_double(); auto d = rhs_numeric.as_double(); return Value(fmod(n, d)); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.6 BigInt::remainder ( n, d ), https://tc39.es/ecma262/#sec-numeric-types-bigint-remainder auto n = lhs_numeric.as_bigint().big_integer(); auto d = rhs_numeric.as_bigint().big_integer(); // 1. If d is 0โ„ค, throw a RangeError exception. if (d == BIGINT_ZERO) return vm.throw_completion(ErrorType::DivisionByZero); // 2. If n is 0โ„ค, return 0โ„ค. // 3. Let quotient be โ„(n) / โ„(d). // 4. Let q be the BigInt whose sign is the sign of quotient and whose magnitude is floor(abs(quotient)). // 5. Return n - (d ร— q). return BigInt::create(vm, n.divided_by(d).remainder); } // 5. If Type(lnum) is different from Type(rnum), throw a TypeError exception. return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "modulo"); } // 6.1.6.1.3 Number::exponentiate ( base, exponent ), https://tc39.es/ecma262/#sec-numeric-types-number-exponentiate static Value exp_double(Value base, Value exponent) { VERIFY(both_number(base, exponent)); // 1. If exponent is NaN, return NaN. if (exponent.is_nan()) return js_nan(); // 2. If exponent is +0๐”ฝ or exponent is -0๐”ฝ, return 1๐”ฝ. if (exponent.is_positive_zero() || exponent.is_negative_zero()) return Value(1); // 3. If base is NaN, return NaN. if (base.is_nan()) return js_nan(); // 4. If base is +โˆž๐”ฝ, then if (base.is_positive_infinity()) { // a. If exponent > +0๐”ฝ, return +โˆž๐”ฝ. Otherwise, return +0๐”ฝ. return exponent.as_double() > 0 ? js_infinity() : Value(0); } // 5. If base is -โˆž๐”ฝ, then if (base.is_negative_infinity()) { auto is_odd_integral_number = exponent.is_integral_number() && (static_cast(exponent.as_double()) % 2 != 0); // a. If exponent > +0๐”ฝ, then if (exponent.as_double() > 0) { // i. If exponent is an odd integral Number, return -โˆž๐”ฝ. Otherwise, return +โˆž๐”ฝ. return is_odd_integral_number ? js_negative_infinity() : js_infinity(); } // b. Else, else { // i. If exponent is an odd integral Number, return -0๐”ฝ. Otherwise, return +0๐”ฝ. return is_odd_integral_number ? Value(-0.0) : Value(0); } } // 6. If base is +0๐”ฝ, then if (base.is_positive_zero()) { // a. If exponent > +0๐”ฝ, return +0๐”ฝ. Otherwise, return +โˆž๐”ฝ. return exponent.as_double() > 0 ? Value(0) : js_infinity(); } // 7. If base is -0๐”ฝ, then if (base.is_negative_zero()) { auto is_odd_integral_number = exponent.is_integral_number() && (static_cast(exponent.as_double()) % 2 != 0); // a. If exponent > +0๐”ฝ, then if (exponent.as_double() > 0) { // i. If exponent is an odd integral Number, return -0๐”ฝ. Otherwise, return +0๐”ฝ. return is_odd_integral_number ? Value(-0.0) : Value(0); } // b. Else, else { // i. If exponent is an odd integral Number, return -โˆž๐”ฝ. Otherwise, return +โˆž๐”ฝ. return is_odd_integral_number ? js_negative_infinity() : js_infinity(); } } // 8. Assert: base is finite and is neither +0๐”ฝ nor -0๐”ฝ. VERIFY(base.is_finite_number() && !base.is_positive_zero() && !base.is_negative_zero()); // 9. If exponent is +โˆž๐”ฝ, then if (exponent.is_positive_infinity()) { auto absolute_base = fabs(base.as_double()); // a. If abs(โ„(base)) > 1, return +โˆž๐”ฝ. if (absolute_base > 1) return js_infinity(); // b. If abs(โ„(base)) is 1, return NaN. else if (absolute_base == 1) return js_nan(); // c. If abs(โ„(base)) < 1, return +0๐”ฝ. else if (absolute_base < 1) return Value(0); } // 10. If exponent is -โˆž๐”ฝ, then if (exponent.is_negative_infinity()) { auto absolute_base = fabs(base.as_double()); // a. If abs(โ„(base)) > 1, return +0๐”ฝ. if (absolute_base > 1) return Value(0); // b. If abs(โ„(base)) is 1, return NaN. else if (absolute_base == 1) return js_nan(); // a. If abs(โ„(base)) > 1, return +0๐”ฝ. else if (absolute_base < 1) return js_infinity(); } // 11. Assert: exponent is finite and is neither +0๐”ฝ nor -0๐”ฝ. VERIFY(exponent.is_finite_number() && !exponent.is_positive_zero() && !exponent.is_negative_zero()); // 12. If base < -0๐”ฝ and exponent is not an integral Number, return NaN. if (base.as_double() < 0 && !exponent.is_integral_number()) return js_nan(); // 13. Return an implementation-approximated Number value representing the result of raising โ„(base) to the โ„(exponent) power. return Value(::pow(base.as_double(), exponent.as_double())); } // 13.6 Exponentiation Operator, https://tc39.es/ecma262/#sec-exp-operator // ExponentiationExpression : UpdateExpression ** ExponentiationExpression ThrowCompletionOr exp(VM& vm, Value lhs, Value rhs) { // 3. Let lnum be ? ToNumeric(lval). auto lhs_numeric = TRY(lhs.to_numeric(vm)); // 4. Let rnum be ? ToNumeric(rval). auto rhs_numeric = TRY(rhs.to_numeric(vm)); // 7. Let operation be the abstract operation associated with opText and Type(lnum) in the following table: // [...] // 8. Return operation(lnum, rnum). if (both_number(lhs_numeric, rhs_numeric)) { return exp_double(lhs_numeric, rhs_numeric); } if (both_bigint(lhs_numeric, rhs_numeric)) { // 6.1.6.2.3 BigInt::exponentiate ( base, exponent ), https://tc39.es/ecma262/#sec-numeric-types-bigint-exponentiate auto base = lhs_numeric.as_bigint().big_integer(); auto exponent = rhs_numeric.as_bigint().big_integer(); // 1. If exponent < 0โ„ค, throw a RangeError exception. if (exponent.is_negative()) return vm.throw_completion(ErrorType::NegativeExponent); // 2. If base is 0โ„ค and exponent is 0โ„ค, return 1โ„ค. // 3. Return the BigInt value that represents โ„(base) raised to the power โ„(exponent). return BigInt::create(vm, Crypto::NumberTheory::Power(base, exponent)); } return vm.throw_completion(ErrorType::BigIntBadOperatorOtherType, "exponentiation"); } ThrowCompletionOr in(VM& vm, Value lhs, Value rhs) { if (!rhs.is_object()) return vm.throw_completion(ErrorType::InOperatorWithObject); auto lhs_property_key = TRY(lhs.to_property_key(vm)); return Value(TRY(rhs.as_object().has_property(lhs_property_key))); } // 13.10.2 InstanceofOperator ( V, target ), https://tc39.es/ecma262/#sec-instanceofoperator ThrowCompletionOr instance_of(VM& vm, Value value, Value target) { // 1. If target is not an Object, throw a TypeError exception. if (!target.is_object()) return vm.throw_completion(ErrorType::NotAnObject, target.to_string_without_side_effects()); // 2. Let instOfHandler be ? GetMethod(target, @@hasInstance). auto* instance_of_handler = TRY(target.get_method(vm, *vm.well_known_symbol_has_instance())); // 3. If instOfHandler is not undefined, then if (instance_of_handler) { // a. Return ToBoolean(? Call(instOfHandler, target, ยซ V ยป)). return Value(TRY(call(vm, *instance_of_handler, target, value)).to_boolean()); } // 4. If IsCallable(target) is false, throw a TypeError exception. if (!target.is_function()) return vm.throw_completion(ErrorType::NotAFunction, target.to_string_without_side_effects()); // 5. Return ? OrdinaryHasInstance(target, V). return ordinary_has_instance(vm, target, value); } // 7.3.22 OrdinaryHasInstance ( C, O ), https://tc39.es/ecma262/#sec-ordinaryhasinstance ThrowCompletionOr ordinary_has_instance(VM& vm, Value lhs, Value rhs) { // 1. If IsCallable(C) is false, return false. if (!rhs.is_function()) return Value(false); auto& rhs_function = rhs.as_function(); // 2. If C has a [[BoundTargetFunction]] internal slot, then if (is(rhs_function)) { auto const& bound_target = static_cast(rhs_function); // a. Let BC be C.[[BoundTargetFunction]]. // b. Return ? InstanceofOperator(O, BC). return instance_of(vm, lhs, Value(&bound_target.bound_target_function())); } // 3. If O is not an Object, return false. if (!lhs.is_object()) return Value(false); auto* lhs_object = &lhs.as_object(); // 4. Let P be ? Get(C, "prototype"). auto rhs_prototype = TRY(rhs_function.get(vm.names.prototype)); // 5. If P is not an Object, throw a TypeError exception. if (!rhs_prototype.is_object()) return vm.throw_completion(ErrorType::InstanceOfOperatorBadPrototype, rhs.to_string_without_side_effects()); // 6. Repeat, while (true) { // a. Set O to ? O.[[GetPrototypeOf]](). lhs_object = TRY(lhs_object->internal_get_prototype_of()); // b. If O is null, return false. if (!lhs_object) return Value(false); // c. If SameValue(P, O) is true, return true. if (same_value(rhs_prototype, lhs_object)) return Value(true); } } // 7.2.10 SameValue ( x, y ), https://tc39.es/ecma262/#sec-samevalue bool same_value(Value lhs, Value rhs) { // 1. If Type(x) is different from Type(y), return false. if (!same_type_for_equality(lhs, rhs)) return false; // 2. If x is a Number, then if (lhs.is_number()) { // a. Return Number::sameValue(x, y). // 6.1.6.1.14 Number::sameValue ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-sameValue // 1. If x is NaN and y is NaN, return true. if (lhs.is_nan() && rhs.is_nan()) return true; // 2. If x is +0๐”ฝ and y is -0๐”ฝ, return false. if (lhs.is_positive_zero() && rhs.is_negative_zero()) return false; // 3. If x is -0๐”ฝ and y is +0๐”ฝ, return false. if (lhs.is_negative_zero() && rhs.is_positive_zero()) return false; // 4. If x is the same Number value as y, return true. // 5. Return false. return lhs.as_double() == rhs.as_double(); } // 3. Return SameValueNonNumber(x, y). return same_value_non_number(lhs, rhs); } // 7.2.11 SameValueZero ( x, y ), https://tc39.es/ecma262/#sec-samevaluezero bool same_value_zero(Value lhs, Value rhs) { // 1. If Type(x) is different from Type(y), return false. if (!same_type_for_equality(lhs, rhs)) return false; // 2. If x is a Number, then if (lhs.is_number()) { // a. Return Number::sameValueZero(x, y). if (lhs.is_nan() && rhs.is_nan()) return true; return lhs.as_double() == rhs.as_double(); } // 3. Return SameValueNonNumber(x, y). return same_value_non_number(lhs, rhs); } // 7.2.12 SameValueNonNumber ( x, y ), https://tc39.es/ecma262/#sec-samevaluenonnumeric bool same_value_non_number(Value lhs, Value rhs) { // 1. Assert: Type(x) is the same as Type(y). VERIFY(same_type_for_equality(lhs, rhs)); VERIFY(!lhs.is_number()); // 2. If x is a BigInt, then if (lhs.is_bigint()) { // a. Return BigInt::equal(x, y). // 6.1.6.2.13 BigInt::equal ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-bigint-equal // 1. If โ„(x) = โ„(y), return true; otherwise return false. return lhs.as_bigint().big_integer() == rhs.as_bigint().big_integer(); } // 5. If x is a String, then if (lhs.is_string()) { // a. If x and y are exactly the same sequence of code units (same length and same code units at corresponding indices), return true; otherwise, return false. return lhs.as_string().deprecated_string() == rhs.as_string().deprecated_string(); } // 3. If x is undefined, return true. // 4. If x is null, return true. // 6. If x is a Boolean, then // a. If x and y are both true or both false, return true; otherwise, return false. // 7. If x is a Symbol, then // a. If x and y are both the same Symbol value, return true; otherwise, return false. // 8. If x and y are the same Object value, return true. Otherwise, return false. // NOTE: All the options above will have the exact same bit representation in Value, so we can directly compare the bits. return lhs.m_value.encoded == rhs.m_value.encoded; } // 7.2.15 IsStrictlyEqual ( x, y ), https://tc39.es/ecma262/#sec-isstrictlyequal bool is_strictly_equal(Value lhs, Value rhs) { // 1. If Type(x) is different from Type(y), return false. if (!same_type_for_equality(lhs, rhs)) return false; // 2. If x is a Number, then if (lhs.is_number()) { // a. Return Number::equal(x, y). // 6.1.6.1.13 Number::equal ( x, y ), https://tc39.es/ecma262/#sec-numeric-types-number-equal // 1. If x is NaN, return false. // 2. If y is NaN, return false. if (lhs.is_nan() || rhs.is_nan()) return false; // 3. If x is the same Number value as y, return true. // 4. If x is +0๐”ฝ and y is -0๐”ฝ, return true. // 5. If x is -0๐”ฝ and y is +0๐”ฝ, return true. if (lhs.as_double() == rhs.as_double()) return true; // 6. Return false. return false; } // 3. Return SameValueNonNumber(x, y). return same_value_non_number(lhs, rhs); } // 7.2.14 IsLooselyEqual ( x, y ), https://tc39.es/ecma262/#sec-islooselyequal ThrowCompletionOr is_loosely_equal(VM& vm, Value lhs, Value rhs) { // 1. If Type(x) is the same as Type(y), then if (same_type_for_equality(lhs, rhs)) { // a. Return IsStrictlyEqual(x, y). return is_strictly_equal(lhs, rhs); } // 2. If x is null and y is undefined, return true. // 3. If x is undefined and y is null, return true. if (lhs.is_nullish() && rhs.is_nullish()) return true; // 4. NOTE: This step is replaced in section B.3.6.2. // B.3.6.2 Changes to IsLooselyEqual, https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot-aec // 4. Perform the following steps: // a. If Type(x) is Object and x has an [[IsHTMLDDA]] internal slot and y is either null or undefined, return true. if (lhs.is_object() && lhs.as_object().is_htmldda() && rhs.is_nullish()) return true; // b. If x is either null or undefined and Type(y) is Object and y has an [[IsHTMLDDA]] internal slot, return true. if (lhs.is_nullish() && rhs.is_object() && rhs.as_object().is_htmldda()) return true; // == End of B.3.6.2 == // 5. If Type(x) is Number and Type(y) is String, return ! IsLooselyEqual(x, ! ToNumber(y)). if (lhs.is_number() && rhs.is_string()) return is_loosely_equal(vm, lhs, MUST(rhs.to_number(vm))); // 6. If Type(x) is String and Type(y) is Number, return ! IsLooselyEqual(! ToNumber(x), y). if (lhs.is_string() && rhs.is_number()) return is_loosely_equal(vm, MUST(lhs.to_number(vm)), rhs); // 7. If Type(x) is BigInt and Type(y) is String, then if (lhs.is_bigint() && rhs.is_string()) { // a. Let n be StringToBigInt(y). auto bigint = string_to_bigint(vm, rhs.as_string().deprecated_string()); // b. If n is undefined, return false. if (!bigint.has_value()) return false; // c. Return ! IsLooselyEqual(x, n). return is_loosely_equal(vm, lhs, *bigint); } // 8. If Type(x) is String and Type(y) is BigInt, return ! IsLooselyEqual(y, x). if (lhs.is_string() && rhs.is_bigint()) return is_loosely_equal(vm, rhs, lhs); // 9. If Type(x) is Boolean, return ! IsLooselyEqual(! ToNumber(x), y). if (lhs.is_boolean()) return is_loosely_equal(vm, MUST(lhs.to_number(vm)), rhs); // 10. If Type(y) is Boolean, return ! IsLooselyEqual(x, ! ToNumber(y)). if (rhs.is_boolean()) return is_loosely_equal(vm, lhs, MUST(rhs.to_number(vm))); // 11. If Type(x) is either String, Number, BigInt, or Symbol and Type(y) is Object, return ! IsLooselyEqual(x, ? ToPrimitive(y)). if ((lhs.is_string() || lhs.is_number() || lhs.is_bigint() || lhs.is_symbol()) && rhs.is_object()) { auto rhs_primitive = TRY(rhs.to_primitive(vm)); return is_loosely_equal(vm, lhs, rhs_primitive); } // 12. If Type(x) is Object and Type(y) is either String, Number, BigInt, or Symbol, return ! IsLooselyEqual(? ToPrimitive(x), y). if (lhs.is_object() && (rhs.is_string() || rhs.is_number() || rhs.is_bigint() || rhs.is_symbol())) { auto lhs_primitive = TRY(lhs.to_primitive(vm)); return is_loosely_equal(vm, lhs_primitive, rhs); } // 13. If Type(x) is BigInt and Type(y) is Number, or if Type(x) is Number and Type(y) is BigInt, then if ((lhs.is_bigint() && rhs.is_number()) || (lhs.is_number() && rhs.is_bigint())) { // a. If x or y are any of NaN, +โˆž๐”ฝ, or -โˆž๐”ฝ, return false. if (lhs.is_nan() || lhs.is_infinity() || rhs.is_nan() || rhs.is_infinity()) return false; // b. If โ„(x) = โ„(y), return true; otherwise return false. if ((lhs.is_number() && !lhs.is_integral_number()) || (rhs.is_number() && !rhs.is_integral_number())) return false; VERIFY(!lhs.is_nan() && !rhs.is_nan()); auto& number_side = lhs.is_number() ? lhs : rhs; auto& bigint_side = lhs.is_number() ? rhs : lhs; return bigint_side.as_bigint().big_integer().compare_to_double(number_side.as_double()) == Crypto::UnsignedBigInteger::CompareResult::DoubleEqualsBigInt; } // 14. Return false. return false; } // 7.2.13 IsLessThan ( x, y, LeftFirst ), https://tc39.es/ecma262/#sec-islessthan ThrowCompletionOr is_less_than(VM& vm, Value lhs, Value rhs, bool left_first) { Value x_primitive; Value y_primitive; // 1. If the LeftFirst flag is true, then if (left_first) { // a. Let px be ? ToPrimitive(x, number). x_primitive = TRY(lhs.to_primitive(vm, Value::PreferredType::Number)); // b. Let py be ? ToPrimitive(y, number). y_primitive = TRY(rhs.to_primitive(vm, Value::PreferredType::Number)); } else { // a. NOTE: The order of evaluation needs to be reversed to preserve left to right evaluation. // b. Let py be ? ToPrimitive(y, number). y_primitive = TRY(lhs.to_primitive(vm, Value::PreferredType::Number)); // c. Let px be ? ToPrimitive(x, number). x_primitive = TRY(rhs.to_primitive(vm, Value::PreferredType::Number)); } // 3. If px is a String and py is a String, then if (x_primitive.is_string() && y_primitive.is_string()) { auto x_string = x_primitive.as_string().deprecated_string(); auto y_string = y_primitive.as_string().deprecated_string(); Utf8View x_code_points { x_string }; Utf8View y_code_points { y_string }; // a. Let lx be the length of px. // b. Let ly be the length of py. // c. For each integer i such that 0 โ‰ค i < min(lx, ly), in ascending order, do for (auto k = x_code_points.begin(), l = y_code_points.begin(); k != x_code_points.end() && l != y_code_points.end(); ++k, ++l) { // i. Let cx be the integer that is the numeric value of the code unit at index i within px. // ii. Let cy be the integer that is the numeric value of the code unit at index i within py. if (*k != *l) { // iii. If cx < cy, return true. if (*k < *l) { return TriState::True; } // iv. If cx > cy, return false. else { return TriState::False; } } } // d. If lx < ly, return true. Otherwise, return false. return x_code_points.length() < y_code_points.length() ? TriState::True : TriState::False; } // 4. Else, // a. If px is a BigInt and py is a String, then if (x_primitive.is_bigint() && y_primitive.is_string()) { // i. Let ny be StringToBigInt(py). auto y_bigint = string_to_bigint(vm, y_primitive.as_string().deprecated_string()); // ii. If ny is undefined, return undefined. if (!y_bigint.has_value()) return TriState::Unknown; // iii. Return BigInt::lessThan(px, ny). if (x_primitive.as_bigint().big_integer() < (*y_bigint)->big_integer()) return TriState::True; return TriState::False; } // b. If px is a String and py is a BigInt, then if (x_primitive.is_string() && y_primitive.is_bigint()) { // i. Let nx be StringToBigInt(px). auto x_bigint = string_to_bigint(vm, x_primitive.as_string().deprecated_string()); // ii. If nx is undefined, return undefined. if (!x_bigint.has_value()) return TriState::Unknown; // iii. Return BigInt::lessThan(nx, py). if ((*x_bigint)->big_integer() < y_primitive.as_bigint().big_integer()) return TriState::True; return TriState::False; } // c. NOTE: Because px and py are primitive values, evaluation order is not important. // d. Let nx be ? ToNumeric(px). auto x_numeric = TRY(x_primitive.to_numeric(vm)); // e. Let ny be ? ToNumeric(py). auto y_numeric = TRY(y_primitive.to_numeric(vm)); // h. If nx or ny is NaN, return undefined. if (x_numeric.is_nan() || y_numeric.is_nan()) return TriState::Unknown; // i. If nx is -โˆž๐”ฝ or ny is +โˆž๐”ฝ, return true. if (x_numeric.is_positive_infinity() || y_numeric.is_negative_infinity()) return TriState::False; // j. If nx is +โˆž๐”ฝ or ny is -โˆž๐”ฝ, return false. if (x_numeric.is_negative_infinity() || y_numeric.is_positive_infinity()) return TriState::True; // f. If Type(nx) is the same as Type(ny), then // i. If nx is a Number, then if (x_numeric.is_number() && y_numeric.is_number()) { // 1. Return Number::lessThan(nx, ny). if (x_numeric.as_double() < y_numeric.as_double()) return TriState::True; else return TriState::False; } // ii. Else, if (x_numeric.is_bigint() && y_numeric.is_bigint()) { // 1. Assert: nx is a BigInt. // 2. Return BigInt::lessThan(nx, ny). if (x_numeric.as_bigint().big_integer() < y_numeric.as_bigint().big_integer()) return TriState::True; else return TriState::False; } // g. Assert: nx is a BigInt and ny is a Number, or nx is a Number and ny is a BigInt. VERIFY((x_numeric.is_number() && y_numeric.is_bigint()) || (x_numeric.is_bigint() && y_numeric.is_number())); // k. If โ„(nx) < โ„(ny), return true; otherwise return false. bool x_lower_than_y; VERIFY(!x_numeric.is_nan() && !y_numeric.is_nan()); if (x_numeric.is_number()) { x_lower_than_y = y_numeric.as_bigint().big_integer().compare_to_double(x_numeric.as_double()) == Crypto::UnsignedBigInteger::CompareResult::DoubleLessThanBigInt; } else { x_lower_than_y = x_numeric.as_bigint().big_integer().compare_to_double(y_numeric.as_double()) == Crypto::UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt; } if (x_lower_than_y) return TriState::True; else return TriState::False; } // 7.3.21 Invoke ( V, P [ , argumentsList ] ), https://tc39.es/ecma262/#sec-invoke ThrowCompletionOr Value::invoke_internal(VM& vm, PropertyKey const& property_key, Optional> arguments) { // 1. If argumentsList is not present, set argumentsList to a new empty List. // 2. Let func be ? GetV(V, P). auto function = TRY(get(vm, property_key)); // 3. Return ? Call(func, V, argumentsList). return call(vm, function, *this, move(arguments)); } }