/* * Copyright (c) 2020, Andreas Kling * Copyright (c) 2020-2021, Linus Groh * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace JS { // 10.1.12 OrdinaryObjectCreate ( proto [ , additionalInternalSlotsList ] ), https://tc39.es/ecma262/#sec-ordinaryobjectcreate Object* Object::create(GlobalObject& global_object, Object* prototype) { if (!prototype) return global_object.heap().allocate(global_object, *global_object.empty_object_shape()); else if (prototype == global_object.object_prototype()) return global_object.heap().allocate(global_object, *global_object.new_object_shape()); else return global_object.heap().allocate(global_object, *prototype); } Object::Object(GlobalObjectTag) { // This is the global object m_shape = heap().allocate_without_global_object(*this); } Object::Object(ConstructWithoutPrototypeTag, GlobalObject& global_object) { m_shape = heap().allocate_without_global_object(global_object); } Object::Object(Object& prototype) { m_shape = prototype.global_object().empty_object_shape(); auto success = internal_set_prototype_of(&prototype); VERIFY(success); } Object::Object(Shape& shape) : m_shape(&shape) { m_storage.resize(shape.property_count()); } void Object::initialize(GlobalObject&) { } Object::~Object() { } // 7.2 Testing and Comparison Operations, https://tc39.es/ecma262/#sec-testing-and-comparison-operations // 7.2.5 IsExtensible ( O ), https://tc39.es/ecma262/#sec-isextensible-o bool Object::is_extensible() const { return internal_is_extensible(); } // 7.3 Operations on Objects, https://tc39.es/ecma262/#sec-operations-on-objects // 7.3.2 Get ( O, P ), https://tc39.es/ecma262/#sec-get-o-p Value Object::get(PropertyName const& property_name) const { // 1. Assert: Type(O) is Object. // 2. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 3. Return ? O.[[Get]](P, O). return internal_get(property_name, this); } // 7.3.3 GetV ( V, P ) is defined as Value::get(). // 7.3.4 Set ( O, P, V, Throw ), https://tc39.es/ecma262/#sec-set-o-p-v-throw bool Object::set(PropertyName const& property_name, Value value, ShouldThrowExceptions throw_exceptions) { VERIFY(!value.is_empty()); auto& vm = this->vm(); // 1. Assert: Type(O) is Object. // 2. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 3. Assert: Type(Throw) is Boolean. // 4. Let success be ? O.[[Set]](P, V, O). auto success = internal_set(property_name, value, this); if (vm.exception()) return {}; // 5. If success is false and Throw is true, throw a TypeError exception. if (!success && throw_exceptions == ShouldThrowExceptions::Yes) { // FIXME: Improve/contextualize error message vm.throw_exception(global_object(), ErrorType::ObjectSetReturnedFalse); return {}; } // 6. Return success. return success; } // 7.3.5 CreateDataProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createdataproperty bool Object::create_data_property(PropertyName const& property_name, Value value) { // 1. Assert: Type(O) is Object. // 2. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }. auto new_descriptor = PropertyDescriptor { .value = value, .writable = true, .enumerable = true, .configurable = true, }; // 4. Return ? O.[[DefineOwnProperty]](P, newDesc). return internal_define_own_property(property_name, new_descriptor); } // 7.3.6 CreateMethodProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createmethodproperty bool Object::create_method_property(PropertyName const& property_name, Value value) { VERIFY(!value.is_empty()); // 1. Assert: Type(O) is Object. // 2. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }. auto new_descriptor = PropertyDescriptor { .value = value, .writable = true, .enumerable = false, .configurable = true, }; // 4. Return ? O.[[DefineOwnProperty]](P, newDesc). return internal_define_own_property(property_name, new_descriptor); } // 7.3.7 CreateDataPropertyOrThrow ( O, P, V ), https://tc39.es/ecma262/#sec-createdatapropertyorthrow bool Object::create_data_property_or_throw(PropertyName const& property_name, Value value) { VERIFY(!value.is_empty()); auto& vm = this->vm(); // 1. Assert: Type(O) is Object. // 2. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 3. Let success be ? CreateDataProperty(O, P, V). auto success = create_data_property(property_name, value); if (vm.exception()) return {}; // 4. If success is false, throw a TypeError exception. if (!success) { // FIXME: Improve/contextualize error message vm.throw_exception(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse); return {}; } // 5. Return success. return success; } // 7.3.6 CreateNonEnumerableDataPropertyOrThrow ( O, P, V ), https://tc39.es/proposal-error-cause/#sec-createnonenumerabledatapropertyorthrow bool Object::create_non_enumerable_data_property_or_throw(PropertyName const& property_name, Value value) { VERIFY(!value.is_empty()); VERIFY(property_name.is_valid()); // 1. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }. auto new_description = PropertyDescriptor { .value = value, .writable = true, .enumerable = false, .configurable = true }; // 2. Return ? DefinePropertyOrThrow(O, P, newDesc). return define_property_or_throw(property_name, new_description); } // 7.3.8 DefinePropertyOrThrow ( O, P, desc ), https://tc39.es/ecma262/#sec-definepropertyorthrow bool Object::define_property_or_throw(PropertyName const& property_name, PropertyDescriptor const& property_descriptor) { auto& vm = this->vm(); // 1. Assert: Type(O) is Object. // 2. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 3. Let success be ? O.[[DefineOwnProperty]](P, desc). auto success = internal_define_own_property(property_name, property_descriptor); if (vm.exception()) return {}; // 4. If success is false, throw a TypeError exception. if (!success) { // FIXME: Improve/contextualize error message vm.throw_exception(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse); return {}; } // 5. Return success. return success; } // 7.3.9 DeletePropertyOrThrow ( O, P ), https://tc39.es/ecma262/#sec-deletepropertyorthrow bool Object::delete_property_or_throw(PropertyName const& property_name) { auto& vm = this->vm(); // 1. Assert: Type(O) is Object. // 2. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 3. Let success be ? O.[[Delete]](P). auto success = internal_delete(property_name); if (vm.exception()) return {}; // 4. If success is false, throw a TypeError exception. if (!success) { // FIXME: Improve/contextualize error message vm.throw_exception(global_object(), ErrorType::ObjectDeleteReturnedFalse); return {}; } // 5. Return success. return success; } // 7.3.11 HasProperty ( O, P ), https://tc39.es/ecma262/#sec-hasproperty bool Object::has_property(PropertyName const& property_name) const { // 1. Assert: Type(O) is Object. // 2. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 3. Return ? O.[[HasProperty]](P). return internal_has_property(property_name); } // 7.3.12 HasOwnProperty ( O, P ), https://tc39.es/ecma262/#sec-hasownproperty bool Object::has_own_property(PropertyName const& property_name) const { auto& vm = this->vm(); // 1. Assert: Type(O) is Object. // 2. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 3. Let desc be ? O.[[GetOwnProperty]](P). auto descriptor = internal_get_own_property(property_name); if (vm.exception()) return {}; // 4. If desc is undefined, return false. if (!descriptor.has_value()) return false; // 5. Return true. return true; } // 7.3.15 SetIntegrityLevel ( O, level ), https://tc39.es/ecma262/#sec-setintegritylevel bool Object::set_integrity_level(IntegrityLevel level) { auto& vm = this->vm(); auto& global_object = this->global_object(); // 1. Assert: Type(O) is Object. // 2. Assert: level is either sealed or frozen. VERIFY(level == IntegrityLevel::Sealed || level == IntegrityLevel::Frozen); // 3. Let status be ? O.[[PreventExtensions]](). auto status = internal_prevent_extensions(); if (vm.exception()) return {}; // 4. If status is false, return false. if (!status) return false; // 5. Let keys be ? O.[[OwnPropertyKeys]](). auto keys = internal_own_property_keys(); if (vm.exception()) return {}; // 6. If level is sealed, then if (level == IntegrityLevel::Sealed) { // a. For each element k of keys, do for (auto& key : keys) { auto property_name = PropertyName::from_value(global_object, key); // i. Perform ? DefinePropertyOrThrow(O, k, PropertyDescriptor { [[Configurable]]: false }). define_property_or_throw(property_name, { .configurable = false }); if (vm.exception()) return {}; } } // 7. Else, else { // a. Assert: level is frozen. // b. For each element k of keys, do for (auto& key : keys) { auto property_name = PropertyName::from_value(global_object, key); // i. Let currentDesc be ? O.[[GetOwnProperty]](k). auto current_descriptor = internal_get_own_property(property_name); if (vm.exception()) return {}; // ii. If currentDesc is not undefined, then if (!current_descriptor.has_value()) continue; PropertyDescriptor descriptor; // 1. If IsAccessorDescriptor(currentDesc) is true, then if (current_descriptor->is_accessor_descriptor()) { // a. Let desc be the PropertyDescriptor { [[Configurable]]: false }. descriptor = { .configurable = false }; } // 2. Else, else { // a. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]: false }. descriptor = { .writable = false, .configurable = false }; } // 3. Perform ? DefinePropertyOrThrow(O, k, desc). define_property_or_throw(property_name, descriptor); if (vm.exception()) return {}; } } // 8. Return true. return true; } // 7.3.16 TestIntegrityLevel ( O, level ), https://tc39.es/ecma262/#sec-testintegritylevel bool Object::test_integrity_level(IntegrityLevel level) const { auto& vm = this->vm(); // 1. Assert: Type(O) is Object. // 2. Assert: level is either sealed or frozen. VERIFY(level == IntegrityLevel::Sealed || level == IntegrityLevel::Frozen); // 3. Let extensible be ? IsExtensible(O). auto extensible = is_extensible(); if (vm.exception()) return {}; // 4. If extensible is true, return false. // 5. NOTE: If the object is extensible, none of its properties are examined. if (extensible) return false; // 6. Let keys be ? O.[[OwnPropertyKeys]](). auto keys = internal_own_property_keys(); if (vm.exception()) return {}; // 7. For each element k of keys, do for (auto& key : keys) { auto property_name = PropertyName::from_value(global_object(), key); // a. Let currentDesc be ? O.[[GetOwnProperty]](k). auto current_descriptor = internal_get_own_property(property_name); if (vm.exception()) return {}; // b. If currentDesc is not undefined, then if (!current_descriptor.has_value()) continue; // i. If currentDesc.[[Configurable]] is true, return false. if (*current_descriptor->configurable) return false; // ii. If level is frozen and IsDataDescriptor(currentDesc) is true, then if (level == IntegrityLevel::Frozen && current_descriptor->is_data_descriptor()) { // 1. If currentDesc.[[Writable]] is true, return false. if (*current_descriptor->writable) return false; } } // 8. Return true. return true; } // 7.3.23 EnumerableOwnPropertyNames ( O, kind ), https://tc39.es/ecma262/#sec-enumerableownpropertynames MarkedValueList Object::enumerable_own_property_names(PropertyKind kind) const { // NOTE: This has been flattened for readability, so some `else` branches in the // spec text have been replaced with `continue`s in the loop below. auto& vm = this->vm(); auto& global_object = this->global_object(); // 1. Assert: Type(O) is Object. // 2. Let ownKeys be ? O.[[OwnPropertyKeys]](). auto own_keys = internal_own_property_keys(); if (vm.exception()) return MarkedValueList { heap() }; // 3. Let properties be a new empty List. auto properties = MarkedValueList { heap() }; // 4. For each element key of ownKeys, do for (auto& key : own_keys) { // a. If Type(key) is String, then if (!key.is_string()) continue; auto property_name = PropertyName::from_value(global_object, key); // i. Let desc be ? O.[[GetOwnProperty]](key). auto descriptor = internal_get_own_property(property_name); if (vm.exception()) return MarkedValueList { heap() }; // ii. If desc is not undefined and desc.[[Enumerable]] is true, then if (descriptor.has_value() && *descriptor->enumerable) { // 1. If kind is key, append key to properties. if (kind == PropertyKind::Key) { properties.append(key); continue; } // 2. Else, // a. Let value be ? Get(O, key). auto value = get(property_name); if (vm.exception()) return MarkedValueList { heap() }; // b. If kind is value, append value to properties. if (kind == PropertyKind::Value) { properties.append(value); continue; } // c. Else, // i. Assert: kind is key+value. VERIFY(kind == PropertyKind::KeyAndValue); // ii. Let entry be ! CreateArrayFromList(« key, value »). auto entry = Array::create_from(global_object, { key, value }); // iii. Append entry to properties. properties.append(entry); } } // 5. Return properties. return properties; } // 10.1 Ordinary Object Internal Methods and Internal Slots, https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots // 10.1.1 [[GetPrototypeOf]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-getprototypeof Object* Object::internal_get_prototype_of() const { // 1. Return O.[[Prototype]]. return const_cast(prototype()); } // 10.1.2 [[SetPrototypeOf]] ( V ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-setprototypeof-v bool Object::internal_set_prototype_of(Object* new_prototype) { // 1. Assert: Either Type(V) is Object or Type(V) is Null. // 2. Let current be O.[[Prototype]]. // 3. If SameValue(V, current) is true, return true. if (prototype() == new_prototype) return true; // 4. Let extensible be O.[[Extensible]]. // 5. If extensible is false, return false. if (!m_is_extensible) return false; // 6. Let p be V. auto* prototype = new_prototype; // 7. Let done be false. // 8. Repeat, while done is false, while (prototype) { // a. If p is null, set done to true. // b. Else if SameValue(p, O) is true, return false. if (prototype == this) return false; // c. Else, // i. If p.[[GetPrototypeOf]] is not the ordinary object internal method defined in 10.1.1, set done to true. // NOTE: This is a best-effort implementation; we don't have a good way of detecting whether certain virtual // Object methods have been overridden by a given object, but as ProxyObject is the only one doing that for // [[SetPrototypeOf]], this check does the trick. if (is(prototype)) break; // ii. Else, set p to p.[[Prototype]]. prototype = prototype->prototype(); } // 9. Set O.[[Prototype]] to V. auto& shape = this->shape(); if (shape.is_unique()) shape.set_prototype_without_transition(new_prototype); else m_shape = shape.create_prototype_transition(new_prototype); // 10. Return true. return true; } // 10.1.3 [[IsExtensible]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-isextensible bool Object::internal_is_extensible() const { // 1. Return O.[[Extensible]]. return m_is_extensible; } // 10.1.4 [[PreventExtensions]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-preventextensions bool Object::internal_prevent_extensions() { // 1. Set O.[[Extensible]] to false. m_is_extensible = false; // 2. Return true. return true; } // 10.1.5 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-getownproperty-p Optional Object::internal_get_own_property(PropertyName const& property_name) const { // 1. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 2. If O does not have an own property with key P, return undefined. if (!storage_has(property_name)) return {}; // 3. Let D be a newly created Property Descriptor with no fields. PropertyDescriptor descriptor; // 4. Let X be O's own property whose key is P. auto [value, attributes] = *storage_get(property_name); // 5. If X is a data property, then if (!value.is_accessor()) { // a. Set D.[[Value]] to the value of X's [[Value]] attribute. descriptor.value = value.value_or(js_undefined()); // b. Set D.[[Writable]] to the value of X's [[Writable]] attribute. descriptor.writable = attributes.is_writable(); } // 6. Else, else { // a. Assert: X is an accessor property. // b. Set D.[[Get]] to the value of X's [[Get]] attribute. descriptor.get = value.as_accessor().getter(); // c. Set D.[[Set]] to the value of X's [[Set]] attribute. descriptor.set = value.as_accessor().setter(); } // 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute. descriptor.enumerable = attributes.is_enumerable(); // 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute. descriptor.configurable = attributes.is_configurable(); // 9. Return D. return descriptor; } // 10.1.6 [[DefineOwnProperty]] ( P, Desc ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-defineownproperty-p-desc bool Object::internal_define_own_property(PropertyName const& property_name, PropertyDescriptor const& property_descriptor) { VERIFY(property_name.is_valid()); auto& vm = this->vm(); // 1. Let current be ? O.[[GetOwnProperty]](P). auto current = internal_get_own_property(property_name); if (vm.exception()) return {}; // 2. Let extensible be ? IsExtensible(O). auto extensible = is_extensible(); if (vm.exception()) return {}; // 3. Return ValidateAndApplyPropertyDescriptor(O, P, extensible, Desc, current). return validate_and_apply_property_descriptor(this, property_name, extensible, property_descriptor, current); } // 10.1.7 [[HasProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-hasproperty-p bool Object::internal_has_property(PropertyName const& property_name) const { auto& vm = this->vm(); // 1. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 2. Let hasOwn be ? O.[[GetOwnProperty]](P). auto has_own = internal_get_own_property(property_name); if (vm.exception()) return {}; // 3. If hasOwn is not undefined, return true. if (has_own.has_value()) return true; // 4. Let parent be ? O.[[GetPrototypeOf]](). auto parent = internal_get_prototype_of(); if (vm.exception()) return {}; // 5. If parent is not null, then if (parent) { // a. Return ? parent.[[HasProperty]](P). return parent->internal_has_property(property_name); } // 6. Return false. return false; } // 10.1.8 [[Get]] ( P, Receiver ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-get-p-receiver Value Object::internal_get(PropertyName const& property_name, Value receiver) const { VERIFY(!receiver.is_empty()); auto& vm = this->vm(); // 1. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 2. Let desc be ? O.[[GetOwnProperty]](P). auto descriptor = internal_get_own_property(property_name); if (vm.exception()) return {}; // 3. If desc is undefined, then if (!descriptor.has_value()) { // a. Let parent be ? O.[[GetPrototypeOf]](). auto parent = internal_get_prototype_of(); if (vm.exception()) return {}; // b. If parent is null, return undefined. if (!parent) return js_undefined(); // c. Return ? parent.[[Get]](P, Receiver). return parent->internal_get(property_name, receiver); } // 4. If IsDataDescriptor(desc) is true, return desc.[[Value]]. if (descriptor->is_data_descriptor()) return *descriptor->value; // 5. Assert: IsAccessorDescriptor(desc) is true. VERIFY(descriptor->is_accessor_descriptor()); // 6. Let getter be desc.[[Get]]. auto* getter = *descriptor->get; // 7. If getter is undefined, return undefined. if (!getter) return js_undefined(); // 8. Return ? Call(getter, Receiver). return vm.call(*getter, receiver); } static bool ordinary_set_with_own_descriptor(Object&, PropertyName const&, Value, Value, Optional); // 10.1.9 [[Set]] ( P, V, Receiver ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-set-p-v-receiver bool Object::internal_set(PropertyName const& property_name, Value value, Value receiver) { VERIFY(!value.is_empty()); VERIFY(!receiver.is_empty()); auto& vm = this->vm(); // 1. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 2. Let ownDesc be ? O.[[GetOwnProperty]](P). auto own_descriptor = internal_get_own_property(property_name); if (vm.exception()) return {}; // 3. Return OrdinarySetWithOwnDescriptor(O, P, V, Receiver, ownDesc). return ordinary_set_with_own_descriptor(*this, property_name, value, receiver, own_descriptor); } // 10.1.9.2 OrdinarySetWithOwnDescriptor ( O, P, V, Receiver, ownDesc ), https://tc39.es/ecma262/#sec-ordinarysetwithowndescriptor bool ordinary_set_with_own_descriptor(Object& object, PropertyName const& property_name, Value value, Value receiver, Optional own_descriptor) { auto& vm = object.vm(); // 1. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 2. If ownDesc is undefined, then if (!own_descriptor.has_value()) { // a. Let parent be ? O.[[GetPrototypeOf]](). auto parent = object.internal_get_prototype_of(); if (vm.exception()) return {}; // b. If parent is not null, then if (parent) { // i. Return ? parent.[[Set]](P, V, Receiver). return parent->internal_set(property_name, value, receiver); } // c. Else, else { // i. Set ownDesc to the PropertyDescriptor { [[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }. own_descriptor = PropertyDescriptor { .value = js_undefined(), .writable = true, .enumerable = true, .configurable = true, }; } } // 3. If IsDataDescriptor(ownDesc) is true, then if (own_descriptor->is_data_descriptor()) { // a. If ownDesc.[[Writable]] is false, return false. if (!*own_descriptor->writable) return false; // b. If Type(Receiver) is not Object, return false. if (!receiver.is_object()) return false; // c. Let existingDescriptor be ? Receiver.[[GetOwnProperty]](P). auto existing_descriptor = receiver.as_object().internal_get_own_property(property_name); if (vm.exception()) return {}; // d. If existingDescriptor is not undefined, then if (existing_descriptor.has_value()) { // i. If IsAccessorDescriptor(existingDescriptor) is true, return false. if (existing_descriptor->is_accessor_descriptor()) return false; // ii. If existingDescriptor.[[Writable]] is false, return false. if (!*existing_descriptor->writable) return false; // iii. Let valueDesc be the PropertyDescriptor { [[Value]]: V }. auto value_descriptor = PropertyDescriptor { .value = value }; // iv. Return ? Receiver.[[DefineOwnProperty]](P, valueDesc). return receiver.as_object().internal_define_own_property(property_name, value_descriptor); } // e. Else, else { // i. Assert: Receiver does not currently have a property P. VERIFY(!receiver.as_object().storage_has(property_name)); // ii. Return ? CreateDataProperty(Receiver, P, V). return receiver.as_object().create_data_property(property_name, value); } } // 4. Assert: IsAccessorDescriptor(ownDesc) is true. VERIFY(own_descriptor->is_accessor_descriptor()); // 5. Let setter be ownDesc.[[Set]]. auto* setter = *own_descriptor->set; // 6. If setter is undefined, return false. if (!setter) return false; // 7. Perform ? Call(setter, Receiver, « V »). (void)vm.call(*setter, receiver, value); // 8. Return true. return true; } // 10.1.10 [[Delete]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-delete-p bool Object::internal_delete(PropertyName const& property_name) { auto& vm = this->vm(); // 1. Assert: IsPropertyKey(P) is true. VERIFY(property_name.is_valid()); // 2. Let desc be ? O.[[GetOwnProperty]](P). auto descriptor = internal_get_own_property(property_name); if (vm.exception()) return {}; // 3. If desc is undefined, return true. if (!descriptor.has_value()) return true; // 4. If desc.[[Configurable]] is true, then if (*descriptor->configurable) { // a. Remove the own property with name P from O. storage_delete(property_name); // b. Return true. return true; } // 5. Return false. return false; } // 10.1.11 [[OwnPropertyKeys]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-ownpropertykeys MarkedValueList Object::internal_own_property_keys() const { auto& vm = this->vm(); // 1. Let keys be a new empty List. MarkedValueList keys { heap() }; // 2. For each own property key P of O such that P is an array index, in ascending numeric index order, do for (auto& entry : m_indexed_properties) { // a. Add P as the last element of keys. keys.append(js_string(vm, String::number(entry.index()))); } // 3. For each own property key P of O such that Type(P) is String and P is not an array index, in ascending chronological order of property creation, do for (auto& it : shape().property_table_ordered()) { if (it.key.is_string()) { // a. Add P as the last element of keys. keys.append(it.key.to_value(vm)); } } // 4. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property creation, do for (auto& it : shape().property_table_ordered()) { if (it.key.is_symbol()) { // a. Add P as the last element of keys. keys.append(it.key.to_value(vm)); } } // 5. Return keys. return keys; } // 10.4.7.2 SetImmutablePrototype ( O, V ), https://tc39.es/ecma262/#sec-set-immutable-prototype bool Object::set_immutable_prototype(Object* prototype) { auto& vm = this->vm(); // 1. Assert: Either Type(V) is Object or Type(V) is Null. // 2. Let current be ? O.[[GetPrototypeOf]](). auto* current = internal_get_prototype_of(); if (vm.exception()) return {}; // 3. If SameValue(V, current) is true, return true. if (prototype == current) return true; // 4. Return false. return false; } Optional Object::storage_get(PropertyName const& property_name) const { VERIFY(property_name.is_valid()); Value value; PropertyAttributes attributes; if (property_name.is_number()) { auto value_and_attributes = m_indexed_properties.get(property_name.as_number()); if (!value_and_attributes.has_value()) return {}; value = value_and_attributes->value; attributes = value_and_attributes->attributes; } else { auto metadata = shape().lookup(property_name.to_string_or_symbol()); if (!metadata.has_value()) return {}; value = m_storage[metadata->offset]; attributes = metadata->attributes; } return ValueAndAttributes { .value = value, .attributes = attributes }; } bool Object::storage_has(PropertyName const& property_name) const { VERIFY(property_name.is_valid()); if (property_name.is_number()) return m_indexed_properties.has_index(property_name.as_number()); return shape().lookup(property_name.to_string_or_symbol()).has_value(); } void Object::storage_set(PropertyName const& property_name, ValueAndAttributes const& value_and_attributes) { VERIFY(property_name.is_valid()); auto [value, attributes] = value_and_attributes; if (property_name.is_number()) { auto index = property_name.as_number(); m_indexed_properties.put(index, value, attributes); return; } auto property_name_string_or_symbol = property_name.to_string_or_symbol(); // NOTE: We don't do transitions or check for attribute changes during object initialization, // which makes building common runtime objects significantly faster. Transitions are primarily // interesting when scripts add properties to objects. if (!m_initialized) { if (m_shape->is_unique()) m_shape->add_property_to_unique_shape(property_name_string_or_symbol, attributes); else m_shape->add_property_without_transition(property_name_string_or_symbol, attributes); m_storage.append(value); return; } auto metadata = shape().lookup(property_name_string_or_symbol); if (!metadata.has_value()) { if (!m_shape->is_unique() && shape().property_count() > 100) { // If you add more than 100 properties to an object, let's stop doing // transitions to avoid filling up the heap with shapes. ensure_shape_is_unique(); } if (m_shape->is_unique()) m_shape->add_property_to_unique_shape(property_name_string_or_symbol, attributes); else if (!m_transitions_enabled) m_shape->add_property_without_transition(property_name_string_or_symbol, attributes); else set_shape(*m_shape->create_put_transition(property_name_string_or_symbol, attributes)); m_storage.append(value); return; } if (attributes != metadata->attributes) { if (m_shape->is_unique()) m_shape->reconfigure_property_in_unique_shape(property_name_string_or_symbol, attributes); else if (!m_transitions_enabled) VERIFY_NOT_REACHED(); // We currently don't have a way of doing this, and it's not used anywhere either. else set_shape(*m_shape->create_configure_transition(property_name_string_or_symbol, attributes)); } m_storage[metadata->offset] = value; } void Object::storage_delete(PropertyName const& property_name) { VERIFY(property_name.is_valid()); VERIFY(storage_has(property_name)); if (property_name.is_number()) return m_indexed_properties.remove(property_name.as_number()); auto metadata = shape().lookup(property_name.to_string_or_symbol()); VERIFY(metadata.has_value()); ensure_shape_is_unique(); shape().remove_property_from_unique_shape(property_name.to_string_or_symbol(), metadata->offset); m_storage.remove(metadata->offset); } void Object::define_native_accessor(PropertyName const& property_name, Function getter, Function setter, PropertyAttributes attribute) { auto& vm = this->vm(); String formatted_property_name; if (property_name.is_number()) { formatted_property_name = property_name.to_string(); } else if (property_name.is_string()) { formatted_property_name = property_name.as_string(); } else { formatted_property_name = String::formatted("[{}]", property_name.as_symbol()->description()); } FunctionObject* getter_function = nullptr; if (getter) { auto name = String::formatted("get {}", formatted_property_name); getter_function = NativeFunction::create(global_object(), name, move(getter)); getter_function->define_direct_property_without_transition(vm.names.length, Value(0), Attribute::Configurable); getter_function->define_direct_property_without_transition(vm.names.name, js_string(vm, name), Attribute::Configurable); } FunctionObject* setter_function = nullptr; if (setter) { auto name = String::formatted("set {}", formatted_property_name); setter_function = NativeFunction::create(global_object(), name, move(setter)); setter_function->define_direct_property_without_transition(vm.names.length, Value(1), Attribute::Configurable); setter_function->define_direct_property_without_transition(vm.names.name, js_string(vm, name), Attribute::Configurable); } return define_direct_accessor(property_name, getter_function, setter_function, attribute); } void Object::define_direct_accessor(PropertyName const& property_name, FunctionObject* getter, FunctionObject* setter, PropertyAttributes attributes) { VERIFY(property_name.is_valid()); auto existing_property = storage_get(property_name).value_or({}).value; auto* accessor = existing_property.is_accessor() ? &existing_property.as_accessor() : nullptr; if (!accessor) { accessor = Accessor::create(vm(), getter, setter); define_direct_property(property_name, accessor, attributes); } else { if (getter) accessor->set_getter(getter); if (setter) accessor->set_setter(setter); } } void Object::define_direct_property_without_transition(PropertyName const& property_name, Value value, PropertyAttributes attributes) { TemporaryChange disable_transitions(m_transitions_enabled, false); define_direct_property(property_name, value, attributes); } void Object::define_direct_accessor_without_transition(PropertyName const& property_name, FunctionObject* getter, FunctionObject* setter, PropertyAttributes attributes) { TemporaryChange disable_transitions(m_transitions_enabled, false); define_direct_accessor(property_name, getter, setter, attributes); } void Object::ensure_shape_is_unique() { if (shape().is_unique()) return; m_shape = m_shape->create_unique_clone(); } // Simple side-effect free property lookup, following the prototype chain. Non-standard. Value Object::get_without_side_effects(const PropertyName& property_name) const { auto* object = this; while (object) { auto value_and_attributes = object->storage_get(property_name); if (value_and_attributes.has_value()) return value_and_attributes->value; object = object->prototype(); } return {}; } void Object::define_native_function(PropertyName const& property_name, Function native_function, i32 length, PropertyAttributes attribute) { auto& vm = this->vm(); String function_name; if (property_name.is_string()) { function_name = property_name.as_string(); } else { function_name = String::formatted("[{}]", property_name.as_symbol()->description()); } auto* function = NativeFunction::create(global_object(), function_name, move(native_function)); function->define_direct_property_without_transition(vm.names.length, Value(length), Attribute::Configurable); function->define_direct_property_without_transition(vm.names.name, js_string(vm, function_name), Attribute::Configurable); define_direct_property(property_name, function, attribute); } // 20.1.2.3.1 ObjectDefineProperties ( O, Properties ), https://tc39.es/ecma262/#sec-objectdefineproperties Object* Object::define_properties(Value properties) { auto& vm = this->vm(); auto& global_object = this->global_object(); // 1. Assert: Type(O) is Object. // 2. Let props be ? ToObject(Properties). auto* props = properties.to_object(global_object); if (vm.exception()) return {}; // 3. Let keys be ? props.[[OwnPropertyKeys]](). auto keys = props->internal_own_property_keys(); if (vm.exception()) return {}; struct NameAndDescriptor { PropertyName name; PropertyDescriptor descriptor; }; // 4. Let descriptors be a new empty List. Vector descriptors; // 5. For each element nextKey of keys, do for (auto& next_key : keys) { auto property_name = PropertyName::from_value(global_object, next_key); // a. Let propDesc be ? props.[[GetOwnProperty]](nextKey). auto property_descriptor = props->internal_get_own_property(property_name); if (vm.exception()) return {}; // b. If propDesc is not undefined and propDesc.[[Enumerable]] is true, then if (property_descriptor.has_value() && *property_descriptor->enumerable) { // i. Let descObj be ? Get(props, nextKey). auto descriptor_object = props->get(property_name); if (vm.exception()) return {}; // ii. Let desc be ? ToPropertyDescriptor(descObj). auto descriptor = to_property_descriptor(global_object, descriptor_object); if (vm.exception()) return {}; // iii. Append the pair (a two element List) consisting of nextKey and desc to the end of descriptors. descriptors.append({ property_name, descriptor }); } } // 6. For each element pair of descriptors, do for (auto& [name, descriptor] : descriptors) { // a. Let P be the first element of pair. // b. Let desc be the second element of pair. // c. Perform ? DefinePropertyOrThrow(O, P, desc). define_property_or_throw(name, descriptor); if (vm.exception()) return {}; } // 7. Return O. return this; } void Object::visit_edges(Cell::Visitor& visitor) { Cell::visit_edges(visitor); visitor.visit(m_shape); for (auto& value : m_storage) visitor.visit(value); m_indexed_properties.for_each_value([&visitor](auto& value) { visitor.visit(value); }); } // 7.1.1.1 OrdinaryToPrimitive ( O, hint ), https://tc39.es/ecma262/#sec-ordinarytoprimitive Value Object::ordinary_to_primitive(Value::PreferredType preferred_type) const { VERIFY(preferred_type == Value::PreferredType::String || preferred_type == Value::PreferredType::Number); auto& vm = this->vm(); AK::Array method_names; if (preferred_type == Value::PreferredType::String) method_names = { vm.names.toString, vm.names.valueOf }; else method_names = { vm.names.valueOf, vm.names.toString }; for (auto& method_name : method_names) { auto method = get(method_name); if (vm.exception()) return {}; if (method.is_function()) { auto result = vm.call(method.as_function(), const_cast(this)); if (!result.is_object()) return result; } } vm.throw_exception(global_object(), ErrorType::Convert, "object", preferred_type == Value::PreferredType::String ? "string" : "number"); return {}; } }