/* * Copyright (c) 2020, Andreas Kling * Copyright (c) 2020, Linus Groh * Copyright (c) 2021, Idan Horowitz * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include namespace JS { MathObject::MathObject(Realm& realm) : Object(*realm.global_object().object_prototype()) { } void MathObject::initialize(Realm& realm) { auto& vm = this->vm(); Object::initialize(realm); u8 attr = Attribute::Writable | Attribute::Configurable; define_native_function(vm.names.abs, abs, 1, attr); define_native_function(vm.names.random, random, 0, attr); define_native_function(vm.names.sqrt, sqrt, 1, attr); define_native_function(vm.names.floor, floor, 1, attr); define_native_function(vm.names.ceil, ceil, 1, attr); define_native_function(vm.names.round, round, 1, attr); define_native_function(vm.names.max, max, 2, attr); define_native_function(vm.names.min, min, 2, attr); define_native_function(vm.names.trunc, trunc, 1, attr); define_native_function(vm.names.sin, sin, 1, attr); define_native_function(vm.names.cos, cos, 1, attr); define_native_function(vm.names.tan, tan, 1, attr); define_native_function(vm.names.pow, pow, 2, attr); define_native_function(vm.names.exp, exp, 1, attr); define_native_function(vm.names.expm1, expm1, 1, attr); define_native_function(vm.names.sign, sign, 1, attr); define_native_function(vm.names.clz32, clz32, 1, attr); define_native_function(vm.names.acos, acos, 1, attr); define_native_function(vm.names.acosh, acosh, 1, attr); define_native_function(vm.names.asin, asin, 1, attr); define_native_function(vm.names.asinh, asinh, 1, attr); define_native_function(vm.names.atan, atan, 1, attr); define_native_function(vm.names.atanh, atanh, 1, attr); define_native_function(vm.names.log1p, log1p, 1, attr); define_native_function(vm.names.cbrt, cbrt, 1, attr); define_native_function(vm.names.atan2, atan2, 2, attr); define_native_function(vm.names.fround, fround, 1, attr); define_native_function(vm.names.hypot, hypot, 2, attr); define_native_function(vm.names.imul, imul, 2, attr); define_native_function(vm.names.log, log, 1, attr); define_native_function(vm.names.log2, log2, 1, attr); define_native_function(vm.names.log10, log10, 1, attr); define_native_function(vm.names.sinh, sinh, 1, attr); define_native_function(vm.names.cosh, cosh, 1, attr); define_native_function(vm.names.tanh, tanh, 1, attr); // 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object define_direct_property(vm.names.E, Value(M_E), 0); define_direct_property(vm.names.LN2, Value(M_LN2), 0); define_direct_property(vm.names.LN10, Value(M_LN10), 0); define_direct_property(vm.names.LOG2E, Value(::log2(M_E)), 0); define_direct_property(vm.names.LOG10E, Value(::log10(M_E)), 0); define_direct_property(vm.names.PI, Value(M_PI), 0); define_direct_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0); define_direct_property(vm.names.SQRT2, Value(M_SQRT2), 0); // 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag define_direct_property(*vm.well_known_symbol_to_string_tag(), js_string(vm, vm.names.Math.as_string()), Attribute::Configurable); } // 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs JS_DEFINE_NATIVE_FUNCTION(MathObject::abs) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan()) return js_nan(); if (number.is_negative_zero()) return Value(0); if (number.is_negative_infinity()) return js_infinity(); return Value(number.as_double() < 0 ? -number.as_double() : number.as_double()); } // 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random JS_DEFINE_NATIVE_FUNCTION(MathObject::random) { double r = (double)get_random() / (double)UINT32_MAX; return Value(r); } // 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan()) return js_nan(); return Value(::sqrt(number.as_double())); } // 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor JS_DEFINE_NATIVE_FUNCTION(MathObject::floor) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan()) return js_nan(); return Value(::floor(number.as_double())); } // 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan()) return js_nan(); auto number_double = number.as_double(); if (number_double < 0 && number_double > -1) return Value(-0.f); return Value(::ceil(number.as_double())); } // 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round JS_DEFINE_NATIVE_FUNCTION(MathObject::round) { auto value = TRY(vm.argument(0).to_number(global_object)).as_double(); double integer = ::ceil(value); if (integer - 0.5 > value) integer--; return Value(integer); } // 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max JS_DEFINE_NATIVE_FUNCTION(MathObject::max) { Vector coerced; for (size_t i = 0; i < vm.argument_count(); ++i) coerced.append(TRY(vm.argument(i).to_number(global_object))); auto highest = js_negative_infinity(); for (auto& number : coerced) { if (number.is_nan()) return js_nan(); if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double()) highest = number; } return highest; } // 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min JS_DEFINE_NATIVE_FUNCTION(MathObject::min) { Vector coerced; for (size_t i = 0; i < vm.argument_count(); ++i) coerced.append(TRY(vm.argument(i).to_number(global_object))); auto lowest = js_infinity(); for (auto& number : coerced) { if (number.is_nan()) return js_nan(); if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double()) lowest = number; } return lowest; } // 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan()) return js_nan(); if (number.as_double() < 0) return MathObject::ceil(vm, global_object); return MathObject::floor(vm, global_object); } // 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin JS_DEFINE_NATIVE_FUNCTION(MathObject::sin) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(global_object)); // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero()) return number; // 3. If n is +∞𝔽 or n is -∞𝔽, return NaN. if (number.is_infinity()) return js_nan(); // 4. Return an implementation-approximated Number value representing the result of the sine of ℝ(n). return Value(::sin(number.as_double())); } // 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos JS_DEFINE_NATIVE_FUNCTION(MathObject::cos) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(global_object)); // 2. If n is NaN, n is +∞𝔽, or n is -∞𝔽, return NaN. if (number.is_nan() || number.is_infinity()) return js_nan(); // 3. If n is +0𝔽 or n is -0𝔽, return 1𝔽. if (number.is_positive_zero() || number.is_negative_zero()) return Value(1); // 4. Return an implementation-approximated Number value representing the result of the cosine of ℝ(n). return Value(::cos(number.as_double())); } // 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan JS_DEFINE_NATIVE_FUNCTION(MathObject::tan) { // Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(global_object)); // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero()) return number; // 3. If n is +∞𝔽, or n is -∞𝔽, return NaN. if (number.is_infinity()) return js_nan(); // 4. Return an implementation-approximated Number value representing the result of the tangent of ℝ(n). return Value(::tan(number.as_double())); } // 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow JS_DEFINE_NATIVE_FUNCTION(MathObject::pow) { auto base = TRY(vm.argument(0).to_number(global_object)); auto exponent = TRY(vm.argument(1).to_number(global_object)); return JS::exp(global_object, base, exponent); } // 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp JS_DEFINE_NATIVE_FUNCTION(MathObject::exp) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan()) return js_nan(); return Value(::exp(number.as_double())); } // 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1 JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan()) return js_nan(); return Value(::expm1(number.as_double())); } // 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign JS_DEFINE_NATIVE_FUNCTION(MathObject::sign) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_positive_zero()) return Value(0); if (number.is_negative_zero()) return Value(-0.0); if (number.as_double() > 0) return Value(1); if (number.as_double() < 0) return Value(-1); return js_nan(); } // 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32 JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32) { auto number = TRY(vm.argument(0).to_u32(global_object)); if (number == 0) return Value(32); return Value(count_leading_zeroes(number)); } // 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos JS_DEFINE_NATIVE_FUNCTION(MathObject::acos) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1) return js_nan(); if (number.as_double() == 1) return Value(0); return Value(::acos(number.as_double())); } // 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh) { auto value = TRY(vm.argument(0).to_number(global_object)).as_double(); if (value < 1) return js_nan(); return Value(::acosh(value)); } // 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin JS_DEFINE_NATIVE_FUNCTION(MathObject::asin) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero()) return number; return Value(::asin(number.as_double())); } // 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh) { return Value(::asinh(TRY(vm.argument(0).to_number(global_object)).as_double())); } // 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan JS_DEFINE_NATIVE_FUNCTION(MathObject::atan) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero()) return number; if (number.is_positive_infinity()) return Value(M_PI_2); if (number.is_negative_infinity()) return Value(-M_PI_2); return Value(::atan(number.as_double())); } // 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh) { auto value = TRY(vm.argument(0).to_number(global_object)).as_double(); if (value > 1 || value < -1) return js_nan(); return Value(::atanh(value)); } // 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p) { auto value = TRY(vm.argument(0).to_number(global_object)).as_double(); if (value < -1) return js_nan(); return Value(::log1p(value)); } // 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt) { return Value(::cbrt(TRY(vm.argument(0).to_number(global_object)).as_double())); } // 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2 JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2) { auto constexpr three_quarters_pi = M_PI_4 + M_PI_2; auto y = TRY(vm.argument(0).to_number(global_object)); auto x = TRY(vm.argument(1).to_number(global_object)); if (y.is_nan() || x.is_nan()) return js_nan(); if (y.is_positive_infinity()) { if (x.is_positive_infinity()) return Value(M_PI_4); else if (x.is_negative_infinity()) return Value(three_quarters_pi); else return Value(M_PI_2); } if (y.is_negative_infinity()) { if (x.is_positive_infinity()) return Value(-M_PI_4); else if (x.is_negative_infinity()) return Value(-three_quarters_pi); else return Value(-M_PI_2); } if (y.is_positive_zero()) { if (x.as_double() > 0 || x.is_positive_zero()) return Value(0.0); else return Value(M_PI); } if (y.is_negative_zero()) { if (x.as_double() > 0 || x.is_positive_zero()) return Value(-0.0); else return Value(-M_PI); } VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero()); if (y.as_double() > 0) { if (x.is_positive_infinity()) return Value(0); else if (x.is_negative_infinity()) return Value(M_PI); else if (x.is_positive_zero() || x.is_negative_zero()) return Value(M_PI_2); } if (y.as_double() < 0) { if (x.is_positive_infinity()) return Value(-0.0); else if (x.is_negative_infinity()) return Value(-M_PI); else if (x.is_positive_zero() || x.is_negative_zero()) return Value(-M_PI_2); } VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero()); return Value(::atan2(y.as_double(), x.as_double())); } // 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround JS_DEFINE_NATIVE_FUNCTION(MathObject::fround) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan()) return js_nan(); return Value((float)number.as_double()); } // 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot) { Vector coerced; for (size_t i = 0; i < vm.argument_count(); ++i) coerced.append(TRY(vm.argument(i).to_number(global_object))); for (auto& number : coerced) { if (number.is_positive_infinity() || number.is_negative_infinity()) return js_infinity(); } auto only_zero = true; double sum_of_squares = 0; for (auto& number : coerced) { if (number.is_nan() || number.is_positive_infinity()) return number; if (number.is_negative_infinity()) return js_infinity(); if (!number.is_positive_zero() && !number.is_negative_zero()) only_zero = false; sum_of_squares += number.as_double() * number.as_double(); } if (only_zero) return Value(0); return Value(::sqrt(sum_of_squares)); } // 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul JS_DEFINE_NATIVE_FUNCTION(MathObject::imul) { auto a = TRY(vm.argument(0).to_u32(global_object)); auto b = TRY(vm.argument(1).to_u32(global_object)); return Value(static_cast(a * b)); } // 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log JS_DEFINE_NATIVE_FUNCTION(MathObject::log) { auto value = TRY(vm.argument(0).to_number(global_object)).as_double(); if (value < 0) return js_nan(); return Value(::log(value)); } // 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2 JS_DEFINE_NATIVE_FUNCTION(MathObject::log2) { auto value = TRY(vm.argument(0).to_number(global_object)).as_double(); if (value < 0) return js_nan(); return Value(::log2(value)); } // 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10 JS_DEFINE_NATIVE_FUNCTION(MathObject::log10) { auto value = TRY(vm.argument(0).to_number(global_object)).as_double(); if (value < 0) return js_nan(); return Value(::log10(value)); } // 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan()) return js_nan(); return Value(::sinh(number.as_double())); } // 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(global_object)); // 2. If n is NaN, return NaN. if (number.is_nan()) return js_nan(); // 3. If n is +∞𝔽 or n is -∞𝔽, return +∞𝔽. if (number.is_positive_infinity() || number.is_negative_infinity()) return js_infinity(); // 4. If n is +0𝔽 or n is -0𝔽, return 1𝔽. if (number.is_positive_zero() || number.is_negative_zero()) return Value(1); // 5. Return an implementation-approximated Number value representing the result of the hyperbolic cosine of ℝ(n). return Value(::cosh(number.as_double())); } // 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh) { auto number = TRY(vm.argument(0).to_number(global_object)); if (number.is_nan()) return js_nan(); if (number.is_positive_infinity()) return Value(1); if (number.is_negative_infinity()) return Value(-1); return Value(::tanh(number.as_double())); } }