/* * Copyright (c) 2020, Andreas Kling * Copyright (c) 2021-2022, Linus Groh * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include namespace JS { FunctionObject::FunctionObject(Object& prototype) : Object(prototype) { } FunctionObject::~FunctionObject() { } // 10.2.9 SetFunctionName ( F, name [ , prefix ] ), https://tc39.es/ecma262/#sec-setfunctionname void FunctionObject::set_function_name(Variant const& name_arg, Optional const& prefix) { auto& vm = this->vm(); // 1. Assert: F is an extensible object that does not have a "name" own property. VERIFY(m_is_extensible); VERIFY(!storage_has(vm.names.name)); String name; // 2. If Type(name) is Symbol, then if (auto const* property_key = name_arg.get_pointer(); property_key && property_key->is_symbol()) { // a. Let description be name's [[Description]] value. auto const& description = property_key->as_symbol()->raw_description(); // b. If description is undefined, set name to the empty String. if (!description.has_value()) name = String::empty(); // c. Else, set name to the string-concatenation of "[", description, and "]". else name = String::formatted("[{}]", *description); } // 3. Else if name is a Private Name, then else if (auto const* private_name = name_arg.get_pointer()) { // a. Set name to name.[[Description]]. name = private_name->description; } // NOTE: This is necessary as we use a different parameter name. else { name = name_arg.get().to_string(); } // 4. If F has an [[InitialName]] internal slot, then if (is(this)) { // a. Set F.[[InitialName]] to name. // TODO: Remove FunctionObject::name(), implement NativeFunction::initial_name(), and then do this. } // 5. If prefix is present, then if (prefix.has_value()) { // a. Set name to the string-concatenation of prefix, the code unit 0x0020 (SPACE), and name. name = String::formatted("{} {}", *prefix, name); // b. If F has an [[InitialName]] internal slot, then if (is(this)) { // i. Optionally, set F.[[InitialName]] to name. // TODO: See above. } } // 6. Return ! DefinePropertyOrThrow(F, "name", PropertyDescriptor { [[Value]]: name, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }). MUST(define_property_or_throw(vm.names.name, PropertyDescriptor { .value = js_string(vm, move(name)), .writable = false, .enumerable = false, .configurable = true })); } ThrowCompletionOr FunctionObject::bind(Value bound_this_value, Vector arguments) { auto& vm = this->vm(); FunctionObject& target_function = is(*this) ? static_cast(*this).bound_target_function() : *this; auto get_bound_this_object = [&vm, bound_this_value, this]() -> ThrowCompletionOr { if (is(*this) && !static_cast(*this).bound_this().is_empty()) return static_cast(*this).bound_this(); switch (bound_this_value.type()) { case Value::Type::Undefined: case Value::Type::Null: if (vm.in_strict_mode()) return bound_this_value; return &global_object(); default: return TRY(bound_this_value.to_object(global_object())); } }; auto bound_this_object = TRY(get_bound_this_object()); i32 computed_length = 0; auto length_property = TRY(get(vm.names.length)); if (length_property.is_number()) computed_length = max(0, length_property.as_i32() - static_cast(arguments.size())); Object* constructor_prototype = nullptr; auto prototype_property = TRY(target_function.get(vm.names.prototype)); if (prototype_property.is_object()) constructor_prototype = &prototype_property.as_object(); Vector all_bound_arguments; if (is(*this)) all_bound_arguments.extend(static_cast(*this).bound_arguments()); all_bound_arguments.extend(move(arguments)); return heap().allocate(global_object(), global_object(), target_function, bound_this_object, move(all_bound_arguments), computed_length, constructor_prototype); } }