/* * Copyright (c) 2020, Stephan Unverwerth * Copyright (c) 2020-2022, Linus Groh * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace JS { ECMAScriptFunctionObject* ECMAScriptFunctionObject::create(Realm& realm, FlyString name, String source_text, Statement const& ecmascript_code, Vector parameters, i32 m_function_length, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant class_field_initializer_name) { Object* prototype = nullptr; switch (kind) { case FunctionKind::Normal: prototype = realm.intrinsics().function_prototype(); break; case FunctionKind::Generator: prototype = realm.intrinsics().generator_function_prototype(); break; case FunctionKind::Async: prototype = realm.intrinsics().async_function_prototype(); break; case FunctionKind::AsyncGenerator: prototype = realm.intrinsics().async_generator_function_prototype(); break; } return realm.heap().allocate(realm, move(name), move(source_text), ecmascript_code, move(parameters), m_function_length, parent_environment, private_environment, *prototype, kind, is_strict, might_need_arguments_object, contains_direct_call_to_eval, is_arrow_function, move(class_field_initializer_name)); } ECMAScriptFunctionObject* ECMAScriptFunctionObject::create(Realm& realm, FlyString name, Object& prototype, String source_text, Statement const& ecmascript_code, Vector parameters, i32 m_function_length, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant class_field_initializer_name) { return realm.heap().allocate(realm, move(name), move(source_text), ecmascript_code, move(parameters), m_function_length, parent_environment, private_environment, prototype, kind, is_strict, might_need_arguments_object, contains_direct_call_to_eval, is_arrow_function, move(class_field_initializer_name)); } ECMAScriptFunctionObject::ECMAScriptFunctionObject(FlyString name, String source_text, Statement const& ecmascript_code, Vector formal_parameters, i32 function_length, Environment* parent_environment, PrivateEnvironment* private_environment, Object& prototype, FunctionKind kind, bool strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant class_field_initializer_name) : FunctionObject(prototype) , m_name(move(name)) , m_function_length(function_length) , m_environment(parent_environment) , m_private_environment(private_environment) , m_formal_parameters(move(formal_parameters)) , m_ecmascript_code(ecmascript_code) , m_realm(&prototype.shape().realm()) , m_source_text(move(source_text)) , m_class_field_initializer_name(move(class_field_initializer_name)) , m_strict(strict) , m_might_need_arguments_object(might_need_arguments_object) , m_contains_direct_call_to_eval(contains_direct_call_to_eval) , m_is_arrow_function(is_arrow_function) , m_kind(kind) { // NOTE: This logic is from OrdinaryFunctionCreate, https://tc39.es/ecma262/#sec-ordinaryfunctioncreate // 9. If thisMode is lexical-this, set F.[[ThisMode]] to lexical. if (m_is_arrow_function) m_this_mode = ThisMode::Lexical; // 10. Else if Strict is true, set F.[[ThisMode]] to strict. else if (m_strict) m_this_mode = ThisMode::Strict; else // 11. Else, set F.[[ThisMode]] to global. m_this_mode = ThisMode::Global; // 15. Set F.[[ScriptOrModule]] to GetActiveScriptOrModule(). m_script_or_module = vm().get_active_script_or_module(); // 15.1.3 Static Semantics: IsSimpleParameterList, https://tc39.es/ecma262/#sec-static-semantics-issimpleparameterlist m_has_simple_parameter_list = all_of(m_formal_parameters, [&](auto& parameter) { if (parameter.is_rest) return false; if (parameter.default_value) return false; if (!parameter.binding.template has()) return false; return true; }); } void ECMAScriptFunctionObject::initialize(Realm& realm) { auto& vm = this->vm(); Base::initialize(realm); // Note: The ordering of these properties must be: length, name, prototype which is the order // they are defined in the spec: https://tc39.es/ecma262/#sec-function-instances . // This is observable through something like: https://tc39.es/ecma262/#sec-ordinaryownpropertykeys // which must give the properties in chronological order which in this case is the order they // are defined in the spec. MUST(define_property_or_throw(vm.names.length, { .value = Value(m_function_length), .writable = false, .enumerable = false, .configurable = true })); MUST(define_property_or_throw(vm.names.name, { .value = js_string(vm, m_name.is_null() ? "" : m_name), .writable = false, .enumerable = false, .configurable = true })); if (!m_is_arrow_function) { Object* prototype = nullptr; switch (m_kind) { case FunctionKind::Normal: prototype = vm.heap().allocate(realm, *realm.intrinsics().new_ordinary_function_prototype_object_shape()); MUST(prototype->define_property_or_throw(vm.names.constructor, { .value = this, .writable = true, .enumerable = false, .configurable = true })); break; case FunctionKind::Generator: // prototype is "g1.prototype" in figure-2 (https://tc39.es/ecma262/img/figure-2.png) prototype = Object::create(realm, realm.intrinsics().generator_function_prototype_prototype()); break; case FunctionKind::Async: break; case FunctionKind::AsyncGenerator: prototype = Object::create(realm, realm.intrinsics().async_generator_function_prototype_prototype()); break; } // 27.7.4 AsyncFunction Instances, https://tc39.es/ecma262/#sec-async-function-instances // AsyncFunction instances do not have a prototype property as they are not constructible. if (m_kind != FunctionKind::Async) define_direct_property(vm.names.prototype, prototype, Attribute::Writable); } } // 10.2.1 [[Call]] ( thisArgument, argumentsList ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-call-thisargument-argumentslist ThrowCompletionOr ECMAScriptFunctionObject::internal_call(Value this_argument, MarkedVector arguments_list) { auto& vm = this->vm(); // 1. Let callerContext be the running execution context. // NOTE: No-op, kept by the VM in its execution context stack. ExecutionContext callee_context(heap()); // Non-standard callee_context.arguments.extend(move(arguments_list)); if (auto* interpreter = vm.interpreter_if_exists()) callee_context.current_node = interpreter->current_node(); // 2. Let calleeContext be PrepareForOrdinaryCall(F, undefined). // NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check. TRY(prepare_for_ordinary_call(callee_context, nullptr)); // 3. Assert: calleeContext is now the running execution context. VERIFY(&vm.running_execution_context() == &callee_context); // 4. If F.[[IsClassConstructor]] is true, then if (m_is_class_constructor) { // a. Let error be a newly created TypeError object. // b. NOTE: error is created in calleeContext with F's associated Realm Record. auto throw_completion = vm.throw_completion(ErrorType::ClassConstructorWithoutNew, m_name); // c. Remove calleeContext from the execution context stack and restore callerContext as the running execution context. vm.pop_execution_context(); // d. Return ThrowCompletion(error). return throw_completion; } // 5. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument). ordinary_call_bind_this(callee_context, this_argument); // 6. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)). auto result = ordinary_call_evaluate_body(); // 7. Remove calleeContext from the execution context stack and restore callerContext as the running execution context. vm.pop_execution_context(); // 8. If result.[[Type]] is return, return result.[[Value]]. if (result.type() == Completion::Type::Return) return result.value(); // 9. ReturnIfAbrupt(result). if (result.is_abrupt()) { VERIFY(result.is_error()); return result; } // 10. Return undefined. return js_undefined(); } // 10.2.2 [[Construct]] ( argumentsList, newTarget ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-construct-argumentslist-newtarget ThrowCompletionOr ECMAScriptFunctionObject::internal_construct(MarkedVector arguments_list, FunctionObject& new_target) { auto& vm = this->vm(); // 1. Let callerContext be the running execution context. // NOTE: No-op, kept by the VM in its execution context stack. // 2. Let kind be F.[[ConstructorKind]]. auto kind = m_constructor_kind; Object* this_argument = nullptr; // 3. If kind is base, then if (kind == ConstructorKind::Base) { // a. Let thisArgument be ? OrdinaryCreateFromConstructor(newTarget, "%Object.prototype%"). this_argument = TRY(ordinary_create_from_constructor(vm, new_target, &Intrinsics::object_prototype)); } ExecutionContext callee_context(heap()); // Non-standard callee_context.arguments.extend(move(arguments_list)); if (auto* interpreter = vm.interpreter_if_exists()) callee_context.current_node = interpreter->current_node(); // 4. Let calleeContext be PrepareForOrdinaryCall(F, newTarget). // NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check. TRY(prepare_for_ordinary_call(callee_context, &new_target)); // 5. Assert: calleeContext is now the running execution context. VERIFY(&vm.running_execution_context() == &callee_context); // 6. If kind is base, then if (kind == ConstructorKind::Base) { // a. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument). ordinary_call_bind_this(callee_context, this_argument); // b. Let initializeResult be Completion(InitializeInstanceElements(thisArgument, F)). auto initialize_result = vm.initialize_instance_elements(*this_argument, *this); // c. If initializeResult is an abrupt completion, then if (initialize_result.is_throw_completion()) { // i. Remove calleeContext from the execution context stack and restore callerContext as the running execution context. vm.pop_execution_context(); // ii. Return ? initializeResult. return initialize_result.throw_completion(); } } // 7. Let constructorEnv be the LexicalEnvironment of calleeContext. auto* constructor_env = callee_context.lexical_environment; // 8. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)). auto result = ordinary_call_evaluate_body(); // 9. Remove calleeContext from the execution context stack and restore callerContext as the running execution context. vm.pop_execution_context(); // 10. If result.[[Type]] is return, then if (result.type() == Completion::Type::Return) { // FIXME: This is leftover from untangling the call/construct mess - doesn't belong here in any way, but removing it breaks derived classes. // Likely fixed by making ClassDefinitionEvaluation fully spec compliant. if (kind == ConstructorKind::Derived && result.value()->is_object()) { auto prototype = TRY(new_target.get(vm.names.prototype)); if (prototype.is_object()) TRY(result.value()->as_object().internal_set_prototype_of(&prototype.as_object())); } // EOF (End of FIXME) // a. If Type(result.[[Value]]) is Object, return result.[[Value]]. if (result.value()->is_object()) return &result.value()->as_object(); // b. If kind is base, return thisArgument. if (kind == ConstructorKind::Base) return this_argument; // c. If result.[[Value]] is not undefined, throw a TypeError exception. if (!result.value()->is_undefined()) return vm.throw_completion(ErrorType::DerivedConstructorReturningInvalidValue); } // 11. Else, ReturnIfAbrupt(result). else if (result.is_abrupt()) { VERIFY(result.is_error()); return result; } // 12. Let thisBinding be ? constructorEnv.GetThisBinding(). auto this_binding = TRY(constructor_env->get_this_binding(vm)); // 13. Assert: Type(thisBinding) is Object. VERIFY(this_binding.is_object()); // 14. Return thisBinding. return &this_binding.as_object(); } void ECMAScriptFunctionObject::visit_edges(Visitor& visitor) { Base::visit_edges(visitor); visitor.visit(m_environment); visitor.visit(m_private_environment); visitor.visit(m_realm); visitor.visit(m_home_object); for (auto& field : m_fields) { if (auto* property_key_ptr = field.name.get_pointer(); property_key_ptr && property_key_ptr->is_symbol()) visitor.visit(property_key_ptr->as_symbol()); } m_script_or_module.visit( [](Empty) {}, [&](auto& script_or_module) { visitor.visit(script_or_module.ptr()); }); } // 10.2.7 MakeMethod ( F, homeObject ), https://tc39.es/ecma262/#sec-makemethod void ECMAScriptFunctionObject::make_method(Object& home_object) { // 1. Set F.[[HomeObject]] to homeObject. m_home_object = &home_object; // 2. Return unused. } // 10.2.11 FunctionDeclarationInstantiation ( func, argumentsList ), https://tc39.es/ecma262/#sec-functiondeclarationinstantiation ThrowCompletionOr ECMAScriptFunctionObject::function_declaration_instantiation(Interpreter* interpreter) { auto& vm = this->vm(); auto& realm = *vm.current_realm(); auto& callee_context = vm.running_execution_context(); // Needed to extract declarations and functions ScopeNode const* scope_body = nullptr; if (is(*m_ecmascript_code)) scope_body = static_cast(m_ecmascript_code.ptr()); bool has_parameter_expressions = false; // FIXME: Maybe compute has duplicates at parse time? (We need to anyway since it's an error in some cases) bool has_duplicates = false; HashTable parameter_names; for (auto& parameter : m_formal_parameters) { if (parameter.default_value) has_parameter_expressions = true; parameter.binding.visit( [&](FlyString const& name) { if (parameter_names.set(name) != AK::HashSetResult::InsertedNewEntry) has_duplicates = true; }, [&](NonnullRefPtr const& pattern) { if (pattern->contains_expression()) has_parameter_expressions = true; pattern->for_each_bound_name([&](auto& name) { if (parameter_names.set(name) != AK::HashSetResult::InsertedNewEntry) has_duplicates = true; }); }); } auto arguments_object_needed = m_might_need_arguments_object; if (this_mode() == ThisMode::Lexical) arguments_object_needed = false; if (parameter_names.contains(vm.names.arguments.as_string())) arguments_object_needed = false; HashTable function_names; Vector functions_to_initialize; if (scope_body) { scope_body->for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) { if (function_names.set(function.name()) == AK::HashSetResult::InsertedNewEntry) functions_to_initialize.append(function); }); auto const& arguments_name = vm.names.arguments.as_string(); if (!has_parameter_expressions && function_names.contains(arguments_name)) arguments_object_needed = false; if (!has_parameter_expressions && arguments_object_needed) { scope_body->for_each_lexically_declared_name([&](auto const& name) { if (name == arguments_name) arguments_object_needed = false; }); } } else { arguments_object_needed = false; } Environment* environment; if (is_strict_mode() || !has_parameter_expressions) { environment = callee_context.lexical_environment; } else { environment = new_declarative_environment(*callee_context.lexical_environment); VERIFY(callee_context.variable_environment == callee_context.lexical_environment); callee_context.lexical_environment = environment; } for (auto const& parameter_name : parameter_names) { if (MUST(environment->has_binding(parameter_name))) continue; MUST(environment->create_mutable_binding(vm, parameter_name, false)); if (has_duplicates) MUST(environment->initialize_binding(vm, parameter_name, js_undefined())); } if (arguments_object_needed) { Object* arguments_object; if (is_strict_mode() || !has_simple_parameter_list()) arguments_object = create_unmapped_arguments_object(vm, vm.running_execution_context().arguments); else arguments_object = create_mapped_arguments_object(vm, *this, formal_parameters(), vm.running_execution_context().arguments, *environment); if (is_strict_mode()) MUST(environment->create_immutable_binding(vm, vm.names.arguments.as_string(), false)); else MUST(environment->create_mutable_binding(vm, vm.names.arguments.as_string(), false)); MUST(environment->initialize_binding(vm, vm.names.arguments.as_string(), arguments_object)); parameter_names.set(vm.names.arguments.as_string()); } // We now treat parameterBindings as parameterNames. // The spec makes an iterator here to do IteratorBindingInitialization but we just do it manually auto& execution_context_arguments = vm.running_execution_context().arguments; size_t default_parameter_index = 0; for (size_t i = 0; i < m_formal_parameters.size(); ++i) { auto& parameter = m_formal_parameters[i]; if (parameter.default_value) ++default_parameter_index; TRY(parameter.binding.visit( [&](auto const& param) -> ThrowCompletionOr { Value argument_value; if (parameter.is_rest) { auto* array = MUST(Array::create(realm, 0)); for (size_t rest_index = i; rest_index < execution_context_arguments.size(); ++rest_index) array->indexed_properties().append(execution_context_arguments[rest_index]); argument_value = array; } else if (i < execution_context_arguments.size() && !execution_context_arguments[i].is_undefined()) { argument_value = execution_context_arguments[i]; } else if (parameter.default_value) { if (auto* bytecode_interpreter = Bytecode::Interpreter::current()) { auto value_and_frame = bytecode_interpreter->run_and_return_frame(*m_default_parameter_bytecode_executables[default_parameter_index - 1], nullptr); if (value_and_frame.value.is_error()) return value_and_frame.value.release_error(); // Resulting value is in the accumulator. argument_value = value_and_frame.frame->registers.at(0); } else if (interpreter) { argument_value = TRY(parameter.default_value->execute(*interpreter)).release_value(); } } else { argument_value = js_undefined(); } Environment* used_environment = has_duplicates ? nullptr : environment; if constexpr (IsSame) { Reference reference = TRY(vm.resolve_binding(param, used_environment)); // Here the difference from hasDuplicates is important if (has_duplicates) return reference.put_value(vm, argument_value); else return reference.initialize_referenced_binding(vm, argument_value); } else if (IsSame const&, decltype(param)>) { // Here the difference from hasDuplicates is important return vm.binding_initialization(param, argument_value, used_environment); } })); } Environment* var_environment; HashTable instantiated_var_names; if (scope_body) instantiated_var_names.ensure_capacity(scope_body->var_declaration_count()); if (!has_parameter_expressions) { if (scope_body) { scope_body->for_each_var_declared_name([&](auto const& name) { if (!parameter_names.contains(name) && instantiated_var_names.set(name) == AK::HashSetResult::InsertedNewEntry) { MUST(environment->create_mutable_binding(vm, name, false)); MUST(environment->initialize_binding(vm, name, js_undefined())); } }); } var_environment = environment; } else { var_environment = new_declarative_environment(*environment); callee_context.variable_environment = var_environment; if (scope_body) { scope_body->for_each_var_declared_name([&](auto const& name) { if (instantiated_var_names.set(name) != AK::HashSetResult::InsertedNewEntry) return; MUST(var_environment->create_mutable_binding(vm, name, false)); Value initial_value; if (!parameter_names.contains(name) || function_names.contains(name)) initial_value = js_undefined(); else initial_value = MUST(environment->get_binding_value(vm, name, false)); MUST(var_environment->initialize_binding(vm, name, initial_value)); }); } } // B.3.2.1 Changes to FunctionDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation if (!m_strict && scope_body) { scope_body->for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) { auto& function_name = function_declaration.name(); if (parameter_names.contains(function_name)) return; // The spec says 'initializedBindings' here but that does not exist and it then adds it to 'instantiatedVarNames' so it probably means 'instantiatedVarNames'. if (!instantiated_var_names.contains(function_name) && function_name != vm.names.arguments.as_string()) { MUST(var_environment->create_mutable_binding(vm, function_name, false)); MUST(var_environment->initialize_binding(vm, function_name, js_undefined())); instantiated_var_names.set(function_name); } function_declaration.set_should_do_additional_annexB_steps(); }); } Environment* lex_environment; // 30. If strict is false, then if (!is_strict_mode()) { // Optimization: We avoid creating empty top-level declarative environments in non-strict mode, if both of these conditions are true: // 1. there is no direct call to eval() within this function // 2. there are no lexical declarations that would go into the environment bool can_elide_declarative_environment = !m_contains_direct_call_to_eval && (!scope_body || !scope_body->has_lexical_declarations()); if (can_elide_declarative_environment) { lex_environment = var_environment; } else { // a. Let lexEnv be NewDeclarativeEnvironment(varEnv). // b. NOTE: Non-strict functions use a separate Environment Record for top-level lexical declarations so that a direct eval // can determine whether any var scoped declarations introduced by the eval code conflict with pre-existing top-level // lexically scoped declarations. This is not needed for strict functions because a strict direct eval always places // all declarations into a new Environment Record. lex_environment = new_declarative_environment(*var_environment); } } else { // 31. Else, let lexEnv be varEnv. lex_environment = var_environment; } // 32. Set the LexicalEnvironment of calleeContext to lexEnv. callee_context.lexical_environment = lex_environment; if (!scope_body) return {}; if (!Bytecode::Interpreter::current()) { scope_body->for_each_lexically_scoped_declaration([&](Declaration const& declaration) { declaration.for_each_bound_name([&](auto const& name) { if (declaration.is_constant_declaration()) MUST(lex_environment->create_immutable_binding(vm, name, true)); else MUST(lex_environment->create_mutable_binding(vm, name, false)); }); }); } auto* private_environment = callee_context.private_environment; for (auto& declaration : functions_to_initialize) { auto* function = ECMAScriptFunctionObject::create(realm, declaration.name(), declaration.source_text(), declaration.body(), declaration.parameters(), declaration.function_length(), lex_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object(), declaration.contains_direct_call_to_eval()); MUST(var_environment->set_mutable_binding(vm, declaration.name(), function, false)); } return {}; } // 10.2.1.1 PrepareForOrdinaryCall ( F, newTarget ), https://tc39.es/ecma262/#sec-prepareforordinarycall ThrowCompletionOr ECMAScriptFunctionObject::prepare_for_ordinary_call(ExecutionContext& callee_context, Object* new_target) { auto& vm = this->vm(); // Non-standard callee_context.is_strict_mode = m_strict; // 1. Let callerContext be the running execution context. // 2. Let calleeContext be a new ECMAScript code execution context. // NOTE: In the specification, PrepareForOrdinaryCall "returns" a new callee execution context. // To avoid heap allocations, we put our ExecutionContext objects on the C++ stack instead. // Whoever calls us should put an ExecutionContext on their stack and pass that as the `callee_context`. // 3. Set the Function of calleeContext to F. callee_context.function = this; callee_context.function_name = m_name; // 4. Let calleeRealm be F.[[Realm]]. auto* callee_realm = m_realm; // NOTE: This non-standard fallback is needed until we can guarantee that literally // every function has a realm - especially in LibWeb that's sometimes not the case // when a function is created while no JS is running, as we currently need to rely on // that (:acid2:, I know - see set_event_handler_attribute() for an example). // If there's no 'current realm' either, we can't continue and crash. if (!callee_realm) callee_realm = vm.current_realm(); VERIFY(callee_realm); // 5. Set the Realm of calleeContext to calleeRealm. callee_context.realm = callee_realm; // 6. Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]]. callee_context.script_or_module = m_script_or_module; // 7. Let localEnv be NewFunctionEnvironment(F, newTarget). auto* local_environment = new_function_environment(*this, new_target); // 8. Set the LexicalEnvironment of calleeContext to localEnv. callee_context.lexical_environment = local_environment; // 9. Set the VariableEnvironment of calleeContext to localEnv. callee_context.variable_environment = local_environment; // 10. Set the PrivateEnvironment of calleeContext to F.[[PrivateEnvironment]]. callee_context.private_environment = m_private_environment; // 11. If callerContext is not already suspended, suspend callerContext. // FIXME: We don't have this concept yet. // 12. Push calleeContext onto the execution context stack; calleeContext is now the running execution context. TRY(vm.push_execution_context(callee_context, {})); // 13. NOTE: Any exception objects produced after this point are associated with calleeRealm. // 14. Return calleeContext. // NOTE: See the comment after step 2 above about how contexts are allocated on the C++ stack. return {}; } // 10.2.1.2 OrdinaryCallBindThis ( F, calleeContext, thisArgument ), https://tc39.es/ecma262/#sec-ordinarycallbindthis void ECMAScriptFunctionObject::ordinary_call_bind_this(ExecutionContext& callee_context, Value this_argument) { auto& vm = this->vm(); // 1. Let thisMode be F.[[ThisMode]]. auto this_mode = m_this_mode; // If thisMode is lexical, return unused. if (this_mode == ThisMode::Lexical) return; // 3. Let calleeRealm be F.[[Realm]]. auto* callee_realm = m_realm; // NOTE: This non-standard fallback is needed until we can guarantee that literally // every function has a realm - especially in LibWeb that's sometimes not the case // when a function is created while no JS is running, as we currently need to rely on // that (:acid2:, I know - see set_event_handler_attribute() for an example). // If there's no 'current realm' either, we can't continue and crash. if (!callee_realm) callee_realm = vm.current_realm(); VERIFY(callee_realm); // 4. Let localEnv be the LexicalEnvironment of calleeContext. auto* local_env = callee_context.lexical_environment; Value this_value; // 5. If thisMode is strict, let thisValue be thisArgument. if (this_mode == ThisMode::Strict) { this_value = this_argument; } // 6. Else, else { // a. If thisArgument is undefined or null, then if (this_argument.is_nullish()) { // i. Let globalEnv be calleeRealm.[[GlobalEnv]]. // ii. Assert: globalEnv is a global Environment Record. auto& global_env = callee_realm->global_environment(); // iii. Let thisValue be globalEnv.[[GlobalThisValue]]. this_value = &global_env.global_this_value(); } // b. Else, else { // i. Let thisValue be ! ToObject(thisArgument). this_value = MUST(this_argument.to_object(vm)); // ii. NOTE: ToObject produces wrapper objects using calleeRealm. VERIFY(vm.current_realm() == callee_realm); } } // 7. Assert: localEnv is a function Environment Record. // 8. Assert: The next step never returns an abrupt completion because localEnv.[[ThisBindingStatus]] is not initialized. // 9. Perform ! localEnv.BindThisValue(thisValue). MUST(verify_cast(local_env)->bind_this_value(vm, this_value)); // 10. Return unused. } // 27.7.5.1 AsyncFunctionStart ( promiseCapability, asyncFunctionBody ), https://tc39.es/ecma262/#sec-async-functions-abstract-operations-async-function-start void ECMAScriptFunctionObject::async_function_start(PromiseCapability const& promise_capability) { auto& vm = this->vm(); // 1. Let runningContext be the running execution context. auto& running_context = vm.running_execution_context(); // 2. Let asyncContext be a copy of runningContext. auto async_context = running_context.copy(); // 3. NOTE: Copying the execution state is required for AsyncBlockStart to resume its execution. It is ill-defined to resume a currently executing context. // 4. Perform AsyncBlockStart(promiseCapability, asyncFunctionBody, asyncContext). async_block_start(vm, m_ecmascript_code, promise_capability, async_context); // 5. Return unused. } // 27.7.5.2 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/ecma262/#sec-asyncblockstart void async_block_start(VM& vm, NonnullRefPtr const& async_body, PromiseCapability const& promise_capability, ExecutionContext& async_context) { auto& realm = *vm.current_realm(); // 1. Assert: promiseCapability is a PromiseCapability Record. // 2. Let runningContext be the running execution context. auto& running_context = vm.running_execution_context(); // 3. Set the code evaluation state of asyncContext such that when evaluation is resumed for that execution context the following steps will be performed: auto* execution_steps = NativeFunction::create(realm, "", [&async_body, &promise_capability](auto& vm) -> ThrowCompletionOr { // a. Let result be the result of evaluating asyncBody. auto result = async_body->execute(vm.interpreter()); // b. Assert: If we return here, the async function either threw an exception or performed an implicit or explicit return; all awaiting is done. // c. Remove asyncContext from the execution context stack and restore the execution context that is at the top of the execution context stack as the running execution context. vm.pop_execution_context(); // d. If result.[[Type]] is normal, then if (result.type() == Completion::Type::Normal) { // i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « undefined »). MUST(call(vm, *promise_capability.resolve(), js_undefined(), js_undefined())); } // e. Else if result.[[Type]] is return, then else if (result.type() == Completion::Type::Return) { // i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « result.[[Value]] »). MUST(call(vm, *promise_capability.resolve(), js_undefined(), *result.value())); } // f. Else, else { // i. Assert: result.[[Type]] is throw. VERIFY(result.type() == Completion::Type::Throw); // ii. Perform ! Call(promiseCapability.[[Reject]], undefined, « result.[[Value]] »). MUST(call(vm, *promise_capability.reject(), js_undefined(), *result.value())); } // g. Return unused. // NOTE: We don't support returning an empty/optional/unused value here. return js_undefined(); }); // 4. Push asyncContext onto the execution context stack; asyncContext is now the running execution context. auto push_result = vm.push_execution_context(async_context, {}); if (push_result.is_error()) return; // 5. Resume the suspended evaluation of asyncContext. Let result be the value returned by the resumed computation. auto result = call(vm, *execution_steps, async_context.this_value.is_empty() ? js_undefined() : async_context.this_value); // 6. Assert: When we return here, asyncContext has already been removed from the execution context stack and runningContext is the currently running execution context. VERIFY(&vm.running_execution_context() == &running_context); // 7. Assert: result is a normal completion with a value of unused. The possible sources of this value are Await or, if the async function doesn't await anything, step 3.g above. VERIFY(result.has_value() && result.value().is_undefined()); // 8. Return unused. } // 10.2.1.4 OrdinaryCallEvaluateBody ( F, argumentsList ), https://tc39.es/ecma262/#sec-ordinarycallevaluatebody // 15.8.4 Runtime Semantics: EvaluateAsyncFunctionBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatefunctionbody Completion ECMAScriptFunctionObject::ordinary_call_evaluate_body() { auto& vm = this->vm(); auto& realm = *vm.current_realm(); auto* bytecode_interpreter = Bytecode::Interpreter::current(); if (m_kind == FunctionKind::AsyncGenerator) return vm.throw_completion(ErrorType::NotImplemented, "Async Generator function execution"); if (bytecode_interpreter) { if (!m_bytecode_executable) { auto compile = [&](auto& node, auto kind, auto name) -> ThrowCompletionOr> { auto executable_result = Bytecode::Generator::generate(node, kind); if (executable_result.is_error()) return vm.throw_completion(ErrorType::NotImplemented, executable_result.error().to_string()); auto bytecode_executable = executable_result.release_value(); bytecode_executable->name = name; auto& passes = Bytecode::Interpreter::optimization_pipeline(); passes.perform(*bytecode_executable); if constexpr (JS_BYTECODE_DEBUG) { dbgln("Optimisation passes took {}us", passes.elapsed()); dbgln("Compiled Bytecode::Block for function '{}':", m_name); } if (Bytecode::g_dump_bytecode) bytecode_executable->dump(); return bytecode_executable; }; m_bytecode_executable = TRY(compile(*m_ecmascript_code, m_kind, m_name)); size_t default_parameter_index = 0; for (auto& parameter : m_formal_parameters) { if (!parameter.default_value) continue; auto executable = TRY(compile(*parameter.default_value, FunctionKind::Normal, String::formatted("default parameter #{} for {}", default_parameter_index, m_name))); m_default_parameter_bytecode_executables.append(move(executable)); } } TRY(function_declaration_instantiation(nullptr)); auto result_and_frame = bytecode_interpreter->run_and_return_frame(*m_bytecode_executable, nullptr); VERIFY(result_and_frame.frame != nullptr); if (result_and_frame.value.is_error()) return result_and_frame.value.release_error(); auto result = result_and_frame.value.release_value(); // NOTE: Running the bytecode should eventually return a completion. // Until it does, we assume "return" and include the undefined fallback from the call site. if (m_kind == FunctionKind::Normal) return { Completion::Type::Return, result.value_or(js_undefined()), {} }; auto generator_object = TRY(GeneratorObject::create(realm, result, this, vm.running_execution_context().copy(), move(*result_and_frame.frame))); // NOTE: Async functions are entirely transformed to generator functions, and wrapped in a custom driver that returns a promise // See AwaitExpression::generate_bytecode() for the transformation. if (m_kind == FunctionKind::Async) return { Completion::Type::Return, TRY(AsyncFunctionDriverWrapper::create(realm, generator_object)), {} }; VERIFY(m_kind == FunctionKind::Generator); return { Completion::Type::Return, generator_object, {} }; } else { if (m_kind == FunctionKind::Generator) return vm.throw_completion(ErrorType::NotImplemented, "Generator function execution in AST interpreter"); OwnPtr local_interpreter; Interpreter* ast_interpreter = vm.interpreter_if_exists(); if (!ast_interpreter) { local_interpreter = Interpreter::create_with_existing_realm(realm); ast_interpreter = local_interpreter.ptr(); } VM::InterpreterExecutionScope scope(*ast_interpreter); // FunctionBody : FunctionStatementList if (m_kind == FunctionKind::Normal) { // 1. Perform ? FunctionDeclarationInstantiation(functionObject, argumentsList). TRY(function_declaration_instantiation(ast_interpreter)); // 2. Return the result of evaluating FunctionStatementList. return m_ecmascript_code->execute(*ast_interpreter); } // AsyncFunctionBody : FunctionBody else if (m_kind == FunctionKind::Async) { // 1. Let promiseCapability be ! NewPromiseCapability(%Promise%). auto promise_capability = MUST(new_promise_capability(vm, realm.intrinsics().promise_constructor())); // 2. Let declResult be Completion(FunctionDeclarationInstantiation(functionObject, argumentsList)). auto declaration_result = function_declaration_instantiation(ast_interpreter); // 3. If declResult is an abrupt completion, then if (declaration_result.is_throw_completion()) { // a. Perform ! Call(promiseCapability.[[Reject]], undefined, « declResult.[[Value]] »). MUST(call(vm, *promise_capability->reject(), js_undefined(), *declaration_result.throw_completion().value())); } // 4. Else, else { // a. Perform AsyncFunctionStart(promiseCapability, FunctionBody). async_function_start(promise_capability); } // 5. Return Completion Record { [[Type]]: return, [[Value]]: promiseCapability.[[Promise]], [[Target]]: empty }. return Completion { Completion::Type::Return, promise_capability->promise(), {} }; } } VERIFY_NOT_REACHED(); } void ECMAScriptFunctionObject::set_name(FlyString const& name) { VERIFY(!name.is_null()); auto& vm = this->vm(); m_name = name; MUST(define_property_or_throw(vm.names.name, { .value = js_string(vm, m_name), .writable = false, .enumerable = false, .configurable = true })); } }