/* * Copyright (c) 2020-2022, Linus Groh * Copyright (c) 2022, Tim Flynn * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include namespace JS { static Crypto::SignedBigInteger const s_one_billion_bigint { 1'000'000'000 }; static Crypto::SignedBigInteger const s_one_million_bigint { 1'000'000 }; static Crypto::SignedBigInteger const s_one_thousand_bigint { 1'000 }; NonnullGCPtr Date::create(Realm& realm, double date_value) { return realm.heap().allocate(realm, date_value, *realm.intrinsics().date_prototype()); } Date::Date(double date_value, Object& prototype) : Object(ConstructWithPrototypeTag::Tag, prototype) , m_date_value(date_value) { } DeprecatedString Date::iso_date_string() const { int year = year_from_time(m_date_value); StringBuilder builder; if (year < 0) builder.appendff("-{:06}", -year); else if (year > 9999) builder.appendff("+{:06}", year); else builder.appendff("{:04}", year); builder.append('-'); builder.appendff("{:02}", month_from_time(m_date_value) + 1); builder.append('-'); builder.appendff("{:02}", date_from_time(m_date_value)); builder.append('T'); builder.appendff("{:02}", hour_from_time(m_date_value)); builder.append(':'); builder.appendff("{:02}", min_from_time(m_date_value)); builder.append(':'); builder.appendff("{:02}", sec_from_time(m_date_value)); builder.append('.'); builder.appendff("{:03}", ms_from_time(m_date_value)); builder.append('Z'); return builder.build(); } // DayWithinYear(t), https://tc39.es/ecma262/#eqn-DayWithinYear u16 day_within_year(double t) { if (!Value(t).is_finite_number()) return 0; // Day(t) - DayFromYear(YearFromTime(t)) return static_cast(day(t) - day_from_year(year_from_time(t))); } // DateFromTime(t), https://tc39.es/ecma262/#sec-date-number u8 date_from_time(double t) { switch (month_from_time(t)) { // DayWithinYear(t) + 1𝔽 if MonthFromTime(t) = +0𝔽 case 0: return day_within_year(t) + 1; // DayWithinYear(t) - 30𝔽 if MonthFromTime(t) = 1𝔽 case 1: return day_within_year(t) - 30; // DayWithinYear(t) - 58𝔽 - InLeapYear(t) if MonthFromTime(t) = 2𝔽 case 2: return day_within_year(t) - 58 - in_leap_year(t); // DayWithinYear(t) - 89𝔽 - InLeapYear(t) if MonthFromTime(t) = 3𝔽 case 3: return day_within_year(t) - 89 - in_leap_year(t); // DayWithinYear(t) - 119𝔽 - InLeapYear(t) if MonthFromTime(t) = 4𝔽 case 4: return day_within_year(t) - 119 - in_leap_year(t); // DayWithinYear(t) - 150𝔽 - InLeapYear(t) if MonthFromTime(t) = 5𝔽 case 5: return day_within_year(t) - 150 - in_leap_year(t); // DayWithinYear(t) - 180𝔽 - InLeapYear(t) if MonthFromTime(t) = 6𝔽 case 6: return day_within_year(t) - 180 - in_leap_year(t); // DayWithinYear(t) - 211𝔽 - InLeapYear(t) if MonthFromTime(t) = 7𝔽 case 7: return day_within_year(t) - 211 - in_leap_year(t); // DayWithinYear(t) - 242𝔽 - InLeapYear(t) if MonthFromTime(t) = 8𝔽 case 8: return day_within_year(t) - 242 - in_leap_year(t); // DayWithinYear(t) - 272𝔽 - InLeapYear(t) if MonthFromTime(t) = 9𝔽 case 9: return day_within_year(t) - 272 - in_leap_year(t); // DayWithinYear(t) - 303𝔽 - InLeapYear(t) if MonthFromTime(t) = 10𝔽 case 10: return day_within_year(t) - 303 - in_leap_year(t); // DayWithinYear(t) - 333𝔽 - InLeapYear(t) if MonthFromTime(t) = 11𝔽 case 11: return day_within_year(t) - 333 - in_leap_year(t); default: VERIFY_NOT_REACHED(); } } // DaysInYear(y), https://tc39.es/ecma262/#eqn-DaysInYear u16 days_in_year(i32 y) { // 365𝔽 if (ℝ(y) modulo 4) ≠ 0 if (y % 4 != 0) return 365; // 366𝔽 if (ℝ(y) modulo 4) = 0 and (ℝ(y) modulo 100) ≠ 0 if (y % 4 == 0 && y % 100 != 0) return 366; // 365𝔽 if (ℝ(y) modulo 100) = 0 and (ℝ(y) modulo 400) ≠ 0 if (y % 100 == 0 && y % 400 != 0) return 365; // 366𝔽 if (ℝ(y) modulo 400) = 0 if (y % 400 == 0) return 366; VERIFY_NOT_REACHED(); } // DayFromYear(y), https://tc39.es/ecma262/#eqn-DaysFromYear double day_from_year(i32 y) { // 𝔽(365 × (ℝ(y) - 1970) + floor((ℝ(y) - 1969) / 4) - floor((ℝ(y) - 1901) / 100) + floor((ℝ(y) - 1601) / 400)) return 365.0 * (y - 1970) + floor((y - 1969) / 4.0) - floor((y - 1901) / 100.0) + floor((y - 1601) / 400.0); } // TimeFromYear(y), https://tc39.es/ecma262/#eqn-TimeFromYear double time_from_year(i32 y) { // msPerDay × DayFromYear(y) return ms_per_day * day_from_year(y); } // YearFromTime(t), https://tc39.es/ecma262/#eqn-YearFromTime i32 year_from_time(double t) { // the largest integral Number y (closest to +∞) such that TimeFromYear(y) ≤ t if (!Value(t).is_finite_number()) return NumericLimits::max(); // Approximation using average number of milliseconds per year. We might have to adjust this guess afterwards. auto year = static_cast(t / (365.2425 * ms_per_day) + 1970); auto year_t = time_from_year(year); if (year_t > t) year--; else if (year_t + days_in_year(year) * ms_per_day <= t) year++; return year; } // InLeapYear(t), https://tc39.es/ecma262/#eqn-InLeapYear bool in_leap_year(double t) { // +0𝔽 if DaysInYear(YearFromTime(t)) = 365𝔽 // 1𝔽 if DaysInYear(YearFromTime(t)) = 366𝔽 return days_in_year(year_from_time(t)) == 366; } // MonthFromTime(t), https://tc39.es/ecma262/#eqn-MonthFromTime u8 month_from_time(double t) { auto in_leap_year = JS::in_leap_year(t); auto day_within_year = JS::day_within_year(t); // +0𝔽 if +0𝔽 ≤ DayWithinYear(t) < 31𝔽 if (day_within_year < 31) return 0; // 1𝔽 if 31𝔽 ≤ DayWithinYear(t) < 59𝔽 + InLeapYear(t) if (31 <= day_within_year && day_within_year < 59 + in_leap_year) return 1; // 2𝔽 if 59𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 90𝔽 + InLeapYear(t) if (59 + in_leap_year <= day_within_year && day_within_year < 90 + in_leap_year) return 2; // 3𝔽 if 90𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 120𝔽 + InLeapYear(t) if (90 + in_leap_year <= day_within_year && day_within_year < 120 + in_leap_year) return 3; // 4𝔽 if 120𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 151𝔽 + InLeapYear(t) if (120 + in_leap_year <= day_within_year && day_within_year < 151 + in_leap_year) return 4; // 5𝔽 if 151𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 181𝔽 + InLeapYear(t) if (151 + in_leap_year <= day_within_year && day_within_year < 181 + in_leap_year) return 5; // 6𝔽 if 181𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 212𝔽 + InLeapYear(t) if (181 + in_leap_year <= day_within_year && day_within_year < 212 + in_leap_year) return 6; // 7𝔽 if 212𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 243𝔽 + InLeapYear(t) if (212 + in_leap_year <= day_within_year && day_within_year < 243 + in_leap_year) return 7; // 8𝔽 if 243𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 273𝔽 + InLeapYear(t) if (243 + in_leap_year <= day_within_year && day_within_year < 273 + in_leap_year) return 8; // 9𝔽 if 273𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 304𝔽 + InLeapYear(t) if (273 + in_leap_year <= day_within_year && day_within_year < 304 + in_leap_year) return 9; // 10𝔽 if 304𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 334𝔽 + InLeapYear(t) if (304 + in_leap_year <= day_within_year && day_within_year < 334 + in_leap_year) return 10; // 11𝔽 if 334𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 365𝔽 + InLeapYear(t) if (334 + in_leap_year <= day_within_year && day_within_year < 365 + in_leap_year) return 11; VERIFY_NOT_REACHED(); } // HourFromTime(t), https://tc39.es/ecma262/#eqn-HourFromTime u8 hour_from_time(double t) { if (!Value(t).is_finite_number()) return 0; // 𝔽(floor(ℝ(t / msPerHour)) modulo HoursPerDay) return static_cast(modulo(floor(t / ms_per_hour), hours_per_day)); } // MinFromTime(t), https://tc39.es/ecma262/#eqn-MinFromTime u8 min_from_time(double t) { if (!Value(t).is_finite_number()) return 0; // 𝔽(floor(ℝ(t / msPerMinute)) modulo MinutesPerHour) return static_cast(modulo(floor(t / ms_per_minute), minutes_per_hour)); } // SecFromTime(t), https://tc39.es/ecma262/#eqn-SecFromTime u8 sec_from_time(double t) { if (!Value(t).is_finite_number()) return 0; // 𝔽(floor(ℝ(t / msPerSecond)) modulo SecondsPerMinute) return static_cast(modulo(floor(t / ms_per_second), seconds_per_minute)); } // msFromTime(t), https://tc39.es/ecma262/#eqn-msFromTime u16 ms_from_time(double t) { if (!Value(t).is_finite_number()) return 0; // 𝔽(ℝ(t) modulo ℝ(msPerSecond)) return static_cast(modulo(t, ms_per_second)); } // 21.4.1.6 Week Day, https://tc39.es/ecma262/#sec-week-day u8 week_day(double t) { if (!Value(t).is_finite_number()) return 0; // 𝔽(ℝ(Day(t) + 4𝔽) modulo 7) return static_cast(modulo(day(t) + 4, 7)); } // 21.4.1.7 GetUTCEpochNanoseconds ( year, month, day, hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/ecma262/#sec-getutcepochnanoseconds Crypto::SignedBigInteger get_utc_epoch_nanoseconds(i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond, u16 microsecond, u16 nanosecond) { // 1. Let date be MakeDay(𝔽(year), 𝔽(month - 1), 𝔽(day)). auto date = make_day(year, month - 1, day); // 2. Let time be MakeTime(𝔽(hour), 𝔽(minute), 𝔽(second), 𝔽(millisecond)). auto time = make_time(hour, minute, second, millisecond); // 3. Let ms be MakeDate(date, time). auto ms = make_date(date, time); // 4. Assert: ms is an integral Number. VERIFY(ms == trunc(ms)); // 5. Return ℤ(ℝ(ms) × 10^6 + microsecond × 10^3 + nanosecond). auto result = Crypto::SignedBigInteger { ms }.multiplied_by(s_one_million_bigint); result = result.plus(Crypto::SignedBigInteger { static_cast(microsecond) }.multiplied_by(s_one_thousand_bigint)); result = result.plus(Crypto::SignedBigInteger { static_cast(nanosecond) }); return result; } static i64 clip_bigint_to_sane_time(Crypto::SignedBigInteger const& value) { static Crypto::SignedBigInteger const min_bigint { NumericLimits::min() }; static Crypto::SignedBigInteger const max_bigint { NumericLimits::max() }; // The provided epoch (nano)seconds value is potentially out of range for AK::Time and subsequently // get_time_zone_offset(). We can safely assume that the TZDB has no useful information that far // into the past and future anyway, so clamp it to the i64 range. if (value < min_bigint) return NumericLimits::min(); if (value > max_bigint) return NumericLimits::max(); // FIXME: Can we do this without string conversion? return value.to_base(10).to_int().value(); } // 21.4.1.8 GetNamedTimeZoneEpochNanoseconds ( timeZoneIdentifier, year, month, day, hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/ecma262/#sec-getnamedtimezoneepochnanoseconds Vector get_named_time_zone_epoch_nanoseconds(StringView time_zone_identifier, i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond, u16 microsecond, u16 nanosecond) { auto local_nanoseconds = get_utc_epoch_nanoseconds(year, month, day, hour, minute, second, millisecond, microsecond, nanosecond); auto local_time = Time::from_nanoseconds(clip_bigint_to_sane_time(local_nanoseconds)); // FIXME: LibTimeZone does not behave exactly as the spec expects. It does not consider repeated or skipped time points. auto offset = TimeZone::get_time_zone_offset(time_zone_identifier, local_time); // Can only fail if the time zone identifier is invalid, which cannot be the case here. VERIFY(offset.has_value()); return { local_nanoseconds.minus(Crypto::SignedBigInteger { offset->seconds }.multiplied_by(s_one_billion_bigint)) }; } // 21.4.1.9 GetNamedTimeZoneOffsetNanoseconds ( timeZoneIdentifier, epochNanoseconds ), https://tc39.es/ecma262/#sec-getnamedtimezoneoffsetnanoseconds i64 get_named_time_zone_offset_nanoseconds(StringView time_zone_identifier, Crypto::SignedBigInteger const& epoch_nanoseconds) { // Only called with validated time zone identifier as argument. auto time_zone = TimeZone::time_zone_from_string(time_zone_identifier); VERIFY(time_zone.has_value()); // Since Time::from_seconds() and Time::from_nanoseconds() both take an i64, converting to // seconds first gives us a greater range. The TZDB doesn't have sub-second offsets. auto seconds = epoch_nanoseconds.divided_by(s_one_billion_bigint).quotient; auto time = Time::from_seconds(clip_bigint_to_sane_time(seconds)); auto offset = TimeZone::get_time_zone_offset(*time_zone, time); VERIFY(offset.has_value()); return offset->seconds * 1'000'000'000; } // 21.4.1.10 DefaultTimeZone ( ), https://tc39.es/ecma262/#sec-defaulttimezone // 6.4.3 DefaultTimeZone ( ), https://tc39.es/ecma402/#sup-defaulttimezone StringView default_time_zone() { return TimeZone::current_time_zone(); } // 21.4.1.11 LocalTime ( t ), https://tc39.es/ecma262/#sec-localtime double local_time(double time) { // 1. Let localTimeZone be DefaultTimeZone(). auto local_time_zone = default_time_zone(); double offset_nanoseconds { 0 }; // 2. If IsTimeZoneOffsetString(localTimeZone) is true, then if (is_time_zone_offset_string(local_time_zone)) { // a. Let offsetNs be ParseTimeZoneOffsetString(localTimeZone). offset_nanoseconds = parse_time_zone_offset_string(local_time_zone); } // 3. Else, else { // a. Let offsetNs be GetNamedTimeZoneOffsetNanoseconds(localTimeZone, ℤ(ℝ(t) × 10^6)). auto time_bigint = Crypto::SignedBigInteger { time }.multiplied_by(s_one_million_bigint); offset_nanoseconds = get_named_time_zone_offset_nanoseconds(local_time_zone, time_bigint); } // 4. Let offsetMs be truncate(offsetNs / 10^6). auto offset_milliseconds = trunc(offset_nanoseconds / 1e6); // 5. Return t + 𝔽(offsetMs). return time + offset_milliseconds; } // 21.4.1.12 UTC ( t ), https://tc39.es/ecma262/#sec-utc-t double utc_time(double time) { // 1. Let localTimeZone be DefaultTimeZone(). auto local_time_zone = default_time_zone(); double offset_nanoseconds { 0 }; // 2. If IsTimeZoneOffsetString(localTimeZone) is true, then if (is_time_zone_offset_string(local_time_zone)) { // a. Let offsetNs be ParseTimeZoneOffsetString(localTimeZone). offset_nanoseconds = parse_time_zone_offset_string(local_time_zone); } // 3. Else, else { // a. Let possibleInstants be GetNamedTimeZoneEpochNanoseconds(localTimeZone, ℝ(YearFromTime(t)), ℝ(MonthFromTime(t)) + 1, ℝ(DateFromTime(t)), ℝ(HourFromTime(t)), ℝ(MinFromTime(t)), ℝ(SecFromTime(t)), ℝ(msFromTime(t)), 0, 0). auto possible_instants = get_named_time_zone_epoch_nanoseconds(local_time_zone, year_from_time(time), month_from_time(time) + 1, date_from_time(time), hour_from_time(time), min_from_time(time), sec_from_time(time), ms_from_time(time), 0, 0); // b. NOTE: The following steps ensure that when t represents local time repeating multiple times at a negative time zone transition (e.g. when the daylight saving time ends or the time zone offset is decreased due to a time zone rule change) or skipped local time at a positive time zone transition (e.g. when the daylight saving time starts or the time zone offset is increased due to a time zone rule change), t is interpreted using the time zone offset before the transition. Crypto::SignedBigInteger disambiguated_instant; // c. If possibleInstants is not empty, then if (!possible_instants.is_empty()) { // i. Let disambiguatedInstant be possibleInstants[0]. disambiguated_instant = move(possible_instants.first()); } // d. Else, else { // i. NOTE: t represents a local time skipped at a positive time zone transition (e.g. due to daylight saving time starting or a time zone rule change increasing the UTC offset). // ii. Let possibleInstantsBefore be GetNamedTimeZoneEpochNanoseconds(localTimeZone, ℝ(YearFromTime(tBefore)), ℝ(MonthFromTime(tBefore)) + 1, ℝ(DateFromTime(tBefore)), ℝ(HourFromTime(tBefore)), ℝ(MinFromTime(tBefore)), ℝ(SecFromTime(tBefore)), ℝ(msFromTime(tBefore)), 0, 0), where tBefore is the largest integral Number < t for which possibleInstantsBefore is not empty (i.e., tBefore represents the last local time before the transition). // iii. Let disambiguatedInstant be the last element of possibleInstantsBefore. // FIXME: This branch currently cannot be reached with our implementation, because LibTimeZone does not handle skipped time points. // When GetNamedTimeZoneEpochNanoseconds is updated to use a LibTimeZone API which does handle them, implement these steps. VERIFY_NOT_REACHED(); } // e. Let offsetNs be GetNamedTimeZoneOffsetNanoseconds(localTimeZone, disambiguatedInstant). offset_nanoseconds = get_named_time_zone_offset_nanoseconds(local_time_zone, disambiguated_instant); } // 4. Let offsetMs be truncate(offsetNs / 10^6). auto offset_milliseconds = trunc(offset_nanoseconds / 1e6); // 5. Return t - 𝔽(offsetMs). return time - offset_milliseconds; } // 21.4.1.14 MakeTime ( hour, min, sec, ms ), https://tc39.es/ecma262/#sec-maketime double make_time(double hour, double min, double sec, double ms) { // 1. If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN. if (!isfinite(hour) || !isfinite(min) || !isfinite(sec) || !isfinite(ms)) return NAN; // 2. Let h be 𝔽(! ToIntegerOrInfinity(hour)). auto h = to_integer_or_infinity(hour); // 3. Let m be 𝔽(! ToIntegerOrInfinity(min)). auto m = to_integer_or_infinity(min); // 4. Let s be 𝔽(! ToIntegerOrInfinity(sec)). auto s = to_integer_or_infinity(sec); // 5. Let milli be 𝔽(! ToIntegerOrInfinity(ms)). auto milli = to_integer_or_infinity(ms); // 6. Let t be ((h * msPerHour + m * msPerMinute) + s * msPerSecond) + milli, performing the arithmetic according to IEEE 754-2019 rules (that is, as if using the ECMAScript operators * and +). // NOTE: C++ arithmetic abides by IEEE 754 rules auto t = ((h * ms_per_hour + m * ms_per_minute) + s * ms_per_second) + milli; // 7. Return t. return t; } // Day(t), https://tc39.es/ecma262/#eqn-Day double day(double time_value) { return floor(time_value / ms_per_day); } // TimeWithinDay(t), https://tc39.es/ecma262/#eqn-TimeWithinDay double time_within_day(double time) { // 𝔽(ℝ(t) modulo ℝ(msPerDay)) return modulo(time, ms_per_day); } // 21.4.1.15 MakeDay ( year, month, date ), https://tc39.es/ecma262/#sec-makeday double make_day(double year, double month, double date) { // 1. If year is not finite or month is not finite or date is not finite, return NaN. if (!isfinite(year) || !isfinite(month) || !isfinite(date)) return NAN; // 2. Let y be 𝔽(! ToIntegerOrInfinity(year)). auto y = to_integer_or_infinity(year); // 3. Let m be 𝔽(! ToIntegerOrInfinity(month)). auto m = to_integer_or_infinity(month); // 4. Let dt be 𝔽(! ToIntegerOrInfinity(date)). auto dt = to_integer_or_infinity(date); // 5. Let ym be y + 𝔽(floor(ℝ(m) / 12)). auto ym = y + floor(m / 12); // 6. If ym is not finite, return NaN. if (!isfinite(ym)) return NAN; // 7. Let mn be 𝔽(ℝ(m) modulo 12). auto mn = modulo(m, 12); // 8. Find a finite time value t such that YearFromTime(t) is ym and MonthFromTime(t) is mn and DateFromTime(t) is 1𝔽; but if this is not possible (because some argument is out of range), return NaN. if (!AK::is_within_range(ym) || !AK::is_within_range(mn + 1)) return NAN; // FIXME: We are avoiding AK::years_to_days_since_epoch here because it is implemented by looping over // the range [1970, ym), which will spin for any time value with an extremely large year. auto t = time_from_year(ym) + (day_of_year(static_cast(ym), static_cast(mn) + 1, 1) * ms_per_day); // 9. Return Day(t) + dt - 1𝔽. return day(static_cast(t)) + dt - 1; } // 21.4.1.16 MakeDate ( day, time ), https://tc39.es/ecma262/#sec-makedate double make_date(double day, double time) { // 1. If day is not finite or time is not finite, return NaN. if (!isfinite(day) || !isfinite(time)) return NAN; // 2. Let tv be day × msPerDay + time. auto tv = day * ms_per_day + time; // 3. If tv is not finite, return NaN. if (!isfinite(tv)) return NAN; // 4. Return tv. return tv; } // 21.4.1.17 TimeClip ( time ), https://tc39.es/ecma262/#sec-timeclip double time_clip(double time) { // 1. If time is not finite, return NaN. if (!isfinite(time)) return NAN; // 2. If abs(ℝ(time)) > 8.64 × 10^15, return NaN. if (fabs(time) > 8.64E15) return NAN; // 3. Return 𝔽(! ToIntegerOrInfinity(time)). return to_integer_or_infinity(time); } // 21.4.1.19.1 IsTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-istimezoneoffsetstring bool is_time_zone_offset_string(StringView offset_string) { // 1. Let parseResult be ParseText(StringToCodePoints(offsetString), UTCOffset). auto parse_result = Temporal::parse_iso8601(Temporal::Production::TimeZoneNumericUTCOffset, offset_string); // 2. If parseResult is a List of errors, return false. // 3. Return true. return parse_result.has_value(); } // 21.4.1.19.2 ParseTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-parsetimezoneoffsetstring double parse_time_zone_offset_string(StringView offset_string) { // 1. Let parseResult be ParseText(StringToCodePoints(offsetString), UTCOffset). auto parse_result = Temporal::parse_iso8601(Temporal::Production::TimeZoneNumericUTCOffset, offset_string); // 2. Assert: parseResult is not a List of errors. VERIFY(parse_result.has_value()); // 3. Assert: parseResult contains a TemporalSign Parse Node. VERIFY(parse_result->time_zone_utc_offset_sign.has_value()); // 4. Let parsedSign be the source text matched by the TemporalSign Parse Node contained within parseResult. auto parsed_sign = *parse_result->time_zone_utc_offset_sign; i8 sign { 0 }; // 5. If parsedSign is the single code point U+002D (HYPHEN-MINUS) or U+2212 (MINUS SIGN), then if (parsed_sign.is_one_of("-"sv, "\xE2\x88\x92"sv)) { // a. Let sign be -1. sign = -1; } // 6. Else, else { // a. Let sign be 1. sign = 1; } // 7. NOTE: Applications of StringToNumber below do not lose precision, since each of the parsed values is guaranteed to be a sufficiently short string of decimal digits. // 8. Assert: parseResult contains an Hour Parse Node. VERIFY(parse_result->time_zone_utc_offset_hour.has_value()); // 9. Let parsedHours be the source text matched by the Hour Parse Node contained within parseResult. auto parsed_hours = *parse_result->time_zone_utc_offset_hour; // 10. Let hours be ℝ(StringToNumber(CodePointsToString(parsedHours))). auto hours = string_to_number(parsed_hours)->as_double(); double minutes { 0 }; double seconds { 0 }; double nanoseconds { 0 }; // 11. If parseResult does not contain a MinuteSecond Parse Node, then if (!parse_result->time_zone_utc_offset_minute.has_value()) { // a. Let minutes be 0. minutes = 0; } // 12. Else, else { // a. Let parsedMinutes be the source text matched by the first MinuteSecond Parse Node contained within parseResult. auto parsed_minutes = *parse_result->time_zone_utc_offset_minute; // b. Let minutes be ℝ(StringToNumber(CodePointsToString(parsedMinutes))). minutes = string_to_number(parsed_minutes)->as_double(); } // 13. If parseResult does not contain two MinuteSecond Parse Nodes, then if (!parse_result->time_zone_utc_offset_second.has_value()) { // a. Let seconds be 0. seconds = 0; } // 14. Else, else { // a. Let parsedSeconds be the source text matched by the second secondSecond Parse Node contained within parseResult. auto parsed_seconds = *parse_result->time_zone_utc_offset_second; // b. Let seconds be ℝ(StringToNumber(CodePointsToString(parsedSeconds))). seconds = string_to_number(parsed_seconds)->as_double(); } // 15. If parseResult does not contain a TemporalDecimalFraction Parse Node, then if (!parse_result->time_zone_utc_offset_fraction.has_value()) { // a. Let nanoseconds be 0. nanoseconds = 0; } // 16. Else, else { // a. Let parsedFraction be the source text matched by the TemporalDecimalFraction Parse Node contained within parseResult. auto parsed_fraction = *parse_result->time_zone_utc_offset_fraction; // b. Let fraction be the string-concatenation of CodePointsToString(parsedFraction) and "000000000". auto fraction = DeprecatedString::formatted("{}000000000", parsed_fraction); // c. Let nanosecondsString be the substring of fraction from 1 to 10. auto nanoseconds_string = fraction.substring_view(1, 9); // d. Let nanoseconds be ℝ(StringToNumber(nanosecondsString)). nanoseconds = string_to_number(nanoseconds_string)->as_double(); } // 17. Return sign × (((hours × 60 + minutes) × 60 + seconds) × 10^9 + nanoseconds). // NOTE: Using scientific notation (1e9) ensures the result of this expression is a double, // which is important - otherwise it's all integers and the result overflows! return sign * (((hours * 60 + minutes) * 60 + seconds) * 1e9 + nanoseconds); } }