/* * Copyright (c) 2020-2022, Linus Groh * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include namespace JS { static const Crypto::SignedBigInteger BIGINT_ONE { 1 }; BigIntConstructor::BigIntConstructor(Realm& realm) : NativeFunction(realm.vm().names.BigInt.as_string(), *realm.intrinsics().function_prototype()) { } void BigIntConstructor::initialize(Realm& realm) { auto& vm = this->vm(); NativeFunction::initialize(realm); // 21.2.2.3 BigInt.prototype, https://tc39.es/ecma262/#sec-bigint.prototype define_direct_property(vm.names.prototype, realm.intrinsics().bigint_prototype(), 0); u8 attr = Attribute::Writable | Attribute::Configurable; define_native_function(realm, vm.names.asIntN, as_int_n, 2, attr); define_native_function(realm, vm.names.asUintN, as_uint_n, 2, attr); define_direct_property(vm.names.length, Value(1), Attribute::Configurable); } // 21.2.1.1 BigInt ( value ), https://tc39.es/ecma262/#sec-bigint-constructor-number-value ThrowCompletionOr BigIntConstructor::call() { auto& vm = this->vm(); auto value = vm.argument(0); // 2. Let prim be ? ToPrimitive(value, number). auto primitive = TRY(value.to_primitive(vm, Value::PreferredType::Number)); // 3. If Type(prim) is Number, return ? NumberToBigInt(prim). if (primitive.is_number()) return TRY(number_to_bigint(vm, primitive)); // 4. Otherwise, return ? ToBigInt(prim). return TRY(primitive.to_bigint(vm)); } // 21.2.1.1 BigInt ( value ), https://tc39.es/ecma262/#sec-bigint-constructor-number-value ThrowCompletionOr BigIntConstructor::construct(FunctionObject&) { return vm().throw_completion(ErrorType::NotAConstructor, "BigInt"); } // 21.2.2.1 BigInt.asIntN ( bits, bigint ), https://tc39.es/ecma262/#sec-bigint.asintn JS_DEFINE_NATIVE_FUNCTION(BigIntConstructor::as_int_n) { // 1. Set bits to ? ToIndex(bits). auto bits = TRY(vm.argument(0).to_index(vm)); // 2. Set bigint to ? ToBigInt(bigint). auto* bigint = TRY(vm.argument(1).to_bigint(vm)); // 3. Let mod be ℝ(bigint) modulo 2^bits. // FIXME: For large values of `bits`, this can likely be improved with a SignedBigInteger API to // drop the most significant bits. auto bits_shift_left = BIGINT_ONE.shift_left(bits); auto mod = modulo(bigint->big_integer(), bits_shift_left); // 4. If mod ≥ 2^(bits-1), return ℤ(mod - 2^bits); otherwise, return ℤ(mod). // NOTE: Some of the below conditionals are non-standard, but are to protect SignedBigInteger from // allocating an absurd amount of memory if `bits - 1` overflows to NumericLimits::max. if ((bits == 0) && (mod >= BIGINT_ONE)) return BigInt::create(vm, mod.minus(bits_shift_left)); if ((bits > 0) && (mod >= BIGINT_ONE.shift_left(bits - 1))) return BigInt::create(vm, mod.minus(bits_shift_left)); return BigInt::create(vm, mod); } // 21.2.2.2 BigInt.asUintN ( bits, bigint ), https://tc39.es/ecma262/#sec-bigint.asuintn JS_DEFINE_NATIVE_FUNCTION(BigIntConstructor::as_uint_n) { // 1. Set bits to ? ToIndex(bits). auto bits = TRY(vm.argument(0).to_index(vm)); // 2. Set bigint to ? ToBigInt(bigint). auto* bigint = TRY(vm.argument(1).to_bigint(vm)); // 3. Return the BigInt value that represents ℝ(bigint) modulo 2bits. // FIXME: For large values of `bits`, this can likely be improved with a SignedBigInteger API to // drop the most significant bits. return BigInt::create(vm, modulo(bigint->big_integer(), BIGINT_ONE.shift_left(bits))); } }