/* * Copyright (c) 2020-2021, Linus Groh * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include #include namespace JS { DeclarativeEnvironment* new_declarative_environment(Environment&); ObjectEnvironment* new_object_environment(Object&, bool is_with_environment, Environment*); FunctionEnvironment* new_function_environment(ECMAScriptFunctionObject&, Object* new_target); PrivateEnvironment* new_private_environment(VM& vm, PrivateEnvironment* outer); Environment& get_this_environment(VM&); Object* get_super_constructor(VM&); ThrowCompletionOr make_super_property_reference(GlobalObject&, Value actual_this, PropertyKey const&, bool strict); ThrowCompletionOr require_object_coercible(GlobalObject&, Value); ThrowCompletionOr call_impl(GlobalObject&, Value function, Value this_value, Optional = {}); ThrowCompletionOr call_impl(GlobalObject&, FunctionObject& function, Value this_value, Optional = {}); ThrowCompletionOr construct_impl(GlobalObject&, FunctionObject&, Optional = {}, FunctionObject* new_target = nullptr); ThrowCompletionOr length_of_array_like(GlobalObject&, Object const&); ThrowCompletionOr create_list_from_array_like(GlobalObject&, Value, Function(Value)> = {}); ThrowCompletionOr species_constructor(GlobalObject&, Object const&, FunctionObject& default_constructor); ThrowCompletionOr get_function_realm(GlobalObject&, FunctionObject const&); ThrowCompletionOr initialize_bound_name(GlobalObject&, FlyString const&, Value, Environment*); bool is_compatible_property_descriptor(bool extensible, PropertyDescriptor const&, Optional const& current); bool validate_and_apply_property_descriptor(Object*, PropertyKey const&, bool extensible, PropertyDescriptor const&, Optional const& current); ThrowCompletionOr get_prototype_from_constructor(GlobalObject&, FunctionObject const& constructor, Object* (GlobalObject::*intrinsic_default_prototype)()); Object* create_unmapped_arguments_object(GlobalObject&, Span arguments); Object* create_mapped_arguments_object(GlobalObject&, FunctionObject&, Vector const&, Span arguments, Environment&); Value canonical_numeric_index_string(GlobalObject&, PropertyKey const&); ThrowCompletionOr get_substitution(GlobalObject&, Utf16View const& matched, Utf16View const& str, size_t position, Span captures, Value named_captures, Value replacement); enum class CallerMode { Strict, NonStrict }; enum class EvalMode { Direct, Indirect }; ThrowCompletionOr perform_eval(Value, GlobalObject&, CallerMode, EvalMode); ThrowCompletionOr eval_declaration_instantiation(VM& vm, GlobalObject& global_object, Program const& program, Environment* variable_environment, Environment* lexical_environment, PrivateEnvironment* private_environment, bool strict); // 7.3.14 Call ( F, V [ , argumentsList ] ), https://tc39.es/ecma262/#sec-call ALWAYS_INLINE ThrowCompletionOr call(GlobalObject& global_object, Value function, Value this_value, MarkedValueList arguments_list) { return call_impl(global_object, function, this_value, move(arguments_list)); } ALWAYS_INLINE ThrowCompletionOr call(GlobalObject& global_object, Value function, Value this_value, Optional arguments_list) { return call_impl(global_object, function, this_value, move(arguments_list)); } template ALWAYS_INLINE ThrowCompletionOr call(GlobalObject& global_object, Value function, Value this_value, Args&&... args) { if constexpr (sizeof...(Args) > 0) { MarkedValueList arguments_list { global_object.heap() }; (..., arguments_list.append(forward(args))); return call_impl(global_object, function, this_value, move(arguments_list)); } return call_impl(global_object, function, this_value); } ALWAYS_INLINE ThrowCompletionOr call(GlobalObject& global_object, FunctionObject& function, Value this_value, MarkedValueList arguments_list) { return call_impl(global_object, function, this_value, move(arguments_list)); } ALWAYS_INLINE ThrowCompletionOr call(GlobalObject& global_object, FunctionObject& function, Value this_value, Optional arguments_list) { return call_impl(global_object, function, this_value, move(arguments_list)); } template ALWAYS_INLINE ThrowCompletionOr call(GlobalObject& global_object, FunctionObject& function, Value this_value, Args&&... args) { if constexpr (sizeof...(Args) > 0) { MarkedValueList arguments_list { global_object.heap() }; (..., arguments_list.append(forward(args))); return call_impl(global_object, function, this_value, move(arguments_list)); } return call_impl(global_object, function, this_value); } // 7.3.15 Construct ( F [ , argumentsList [ , newTarget ] ] ), https://tc39.es/ecma262/#sec-construct template ALWAYS_INLINE ThrowCompletionOr construct(GlobalObject& global_object, FunctionObject& function, Args&&... args) { if constexpr (sizeof...(Args) > 0) { MarkedValueList arguments_list { global_object.heap() }; (..., arguments_list.append(forward(args))); return construct_impl(global_object, function, move(arguments_list)); } return construct_impl(global_object, function); } ALWAYS_INLINE ThrowCompletionOr construct(GlobalObject& global_object, FunctionObject& function, MarkedValueList arguments_list, FunctionObject* new_target = nullptr) { return construct_impl(global_object, function, move(arguments_list), new_target); } ALWAYS_INLINE ThrowCompletionOr construct(GlobalObject& global_object, FunctionObject& function, Optional arguments_list, FunctionObject* new_target = nullptr) { return construct_impl(global_object, function, move(arguments_list), new_target); } // 10.1.13 OrdinaryCreateFromConstructor ( constructor, intrinsicDefaultProto [ , internalSlotsList ] ), https://tc39.es/ecma262/#sec-ordinarycreatefromconstructor template ThrowCompletionOr ordinary_create_from_constructor(GlobalObject& global_object, FunctionObject const& constructor, Object* (GlobalObject::*intrinsic_default_prototype)(), Args&&... args) { auto* prototype = TRY(get_prototype_from_constructor(global_object, constructor, intrinsic_default_prototype)); return global_object.heap().allocate(global_object, forward(args)..., *prototype); } // x modulo y, https://tc39.es/ecma262/#eqn-modulo template auto modulo(T x, U y) requires(IsArithmetic, IsArithmetic) { // The notation “x modulo y” (y must be finite and non-zero) computes a value k of the same sign as y (or zero) such that abs(k) < abs(y) and x - k = q × y for some integer q. VERIFY(y != 0); if constexpr (IsFloatingPoint || IsFloatingPoint) { if constexpr (IsFloatingPoint) VERIFY(isfinite(y)); return fmod(fmod(x, y) + y, y); } else { return ((x % y) + y) % y; } } auto modulo(Crypto::BigInteger auto const& x, Crypto::BigInteger auto const& y) { VERIFY(y != "0"_bigint); auto result = x.divided_by(y).remainder; if (result.is_negative()) result = result.plus(y); return result; } }