/* * Copyright (c) 2021, Andreas Kling * Copyright (c) 2021-2022, Linus Groh * Copyright (c) 2021, Gunnar Beutner * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace JS::Bytecode { String Instruction::to_string(Bytecode::Executable const& executable) const { #define __BYTECODE_OP(op) \ case Instruction::Type::op: \ return static_cast(*this).to_string_impl(executable); switch (type()) { ENUMERATE_BYTECODE_OPS(__BYTECODE_OP) default: VERIFY_NOT_REACHED(); } #undef __BYTECODE_OP } } namespace JS::Bytecode::Op { static ThrowCompletionOr put_by_property_key(Object* object, Value value, PropertyKey name, Bytecode::Interpreter& interpreter, PropertyKind kind) { auto& vm = interpreter.vm(); if (kind == PropertyKind::Getter || kind == PropertyKind::Setter) { // The generator should only pass us functions for getters and setters. VERIFY(value.is_function()); } switch (kind) { case PropertyKind::Getter: { auto& function = value.as_function(); if (function.name().is_empty() && is(function)) static_cast(&function)->set_name(String::formatted("get {}", name)); object->define_direct_accessor(name, &function, nullptr, Attribute::Configurable | Attribute::Enumerable); break; } case PropertyKind::Setter: { auto& function = value.as_function(); if (function.name().is_empty() && is(function)) static_cast(&function)->set_name(String::formatted("set {}", name)); object->define_direct_accessor(name, nullptr, &function, Attribute::Configurable | Attribute::Enumerable); break; } case PropertyKind::KeyValue: { bool succeeded = TRY(object->internal_set(name, interpreter.accumulator(), object)); if (!succeeded && vm.in_strict_mode()) return vm.throw_completion(ErrorType::ReferenceNullishSetProperty, name, interpreter.accumulator().to_string_without_side_effects()); break; } case PropertyKind::Spread: TRY(object->copy_data_properties(vm, value, {})); break; case PropertyKind::ProtoSetter: if (value.is_object() || value.is_null()) MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr)); break; } return {}; } ThrowCompletionOr Load::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = interpreter.reg(m_src); return {}; } ThrowCompletionOr LoadImmediate::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = m_value; return {}; } ThrowCompletionOr Store::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.reg(m_dst) = interpreter.accumulator(); return {}; } static ThrowCompletionOr abstract_inequals(VM& vm, Value src1, Value src2) { return Value(!TRY(is_loosely_equal(vm, src1, src2))); } static ThrowCompletionOr abstract_equals(VM& vm, Value src1, Value src2) { return Value(TRY(is_loosely_equal(vm, src1, src2))); } static ThrowCompletionOr typed_inequals(VM&, Value src1, Value src2) { return Value(!is_strictly_equal(src1, src2)); } static ThrowCompletionOr typed_equals(VM&, Value src1, Value src2) { return Value(is_strictly_equal(src1, src2)); } #define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \ ThrowCompletionOr OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \ { \ auto& vm = interpreter.vm(); \ auto lhs = interpreter.reg(m_lhs_reg); \ auto rhs = interpreter.accumulator(); \ interpreter.accumulator() = TRY(op_snake_case(vm, lhs, rhs)); \ return {}; \ } \ String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \ { \ return String::formatted(#OpTitleCase " {}", m_lhs_reg); \ } JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP) static ThrowCompletionOr not_(VM&, Value value) { return Value(!value.to_boolean()); } static ThrowCompletionOr typeof_(VM& vm, Value value) { return Value(js_string(vm, value.typeof())); } #define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \ ThrowCompletionOr OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \ { \ auto& vm = interpreter.vm(); \ interpreter.accumulator() = TRY(op_snake_case(vm, interpreter.accumulator())); \ return {}; \ } \ String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \ { \ return #OpTitleCase; \ } JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP) ThrowCompletionOr NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = js_bigint(interpreter.vm().heap(), m_bigint); return {}; } ThrowCompletionOr NewArray::execute_impl(Bytecode::Interpreter& interpreter) const { auto* array = MUST(Array::create(interpreter.realm(), 0)); for (size_t i = 0; i < m_element_count; i++) { auto& value = interpreter.reg(Register(m_elements[0].index() + i)); array->indexed_properties().put(i, value, default_attributes); } interpreter.accumulator() = array; return {}; } // FIXME: Since the accumulator is a Value, we store an object there and have to convert back and forth between that an Iterator records. Not great. // Make sure to put this into the accumulator before the iterator object disappears from the stack to prevent the members from being GC'd. static Object* iterator_to_object(VM& vm, Iterator iterator) { auto& realm = *vm.current_realm(); auto* object = Object::create(realm, nullptr); object->define_direct_property(vm.names.iterator, iterator.iterator, 0); object->define_direct_property(vm.names.next, iterator.next_method, 0); object->define_direct_property(vm.names.done, Value(iterator.done), 0); return object; } static Iterator object_to_iterator(VM& vm, Object& object) { return Iterator { .iterator = &MUST(object.get(vm.names.iterator)).as_object(), .next_method = MUST(object.get(vm.names.next)), .done = MUST(object.get(vm.names.done)).as_bool() }; } ThrowCompletionOr IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto iterator_object = TRY(interpreter.accumulator().to_object(vm)); auto iterator = object_to_iterator(vm, *iterator_object); auto* array = MUST(Array::create(interpreter.realm(), 0)); size_t index = 0; while (true) { auto* iterator_result = TRY(iterator_next(vm, iterator)); auto complete = TRY(iterator_complete(vm, *iterator_result)); if (complete) { interpreter.accumulator() = array; return {}; } auto value = TRY(iterator_value(vm, *iterator_result)); MUST(array->create_data_property_or_throw(index, value)); index++; } return {}; } ThrowCompletionOr NewString::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = js_string(interpreter.vm(), interpreter.current_executable().get_string(m_string)); return {}; } ThrowCompletionOr NewObject::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = Object::create(interpreter.realm(), interpreter.global_object().object_prototype()); return {}; } ThrowCompletionOr NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto source = interpreter.current_executable().get_string(m_source_index); auto flags = interpreter.current_executable().get_string(m_flags_index); interpreter.accumulator() = TRY(regexp_create(vm, js_string(vm, source), js_string(vm, flags))); return {}; } ThrowCompletionOr CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto* from_object = TRY(interpreter.reg(m_from_object).to_object(vm)); auto* to_object = Object::create(interpreter.realm(), interpreter.global_object().object_prototype()); HashTable excluded_names; for (size_t i = 0; i < m_excluded_names_count; ++i) excluded_names.set(interpreter.reg(m_excluded_names[i])); auto own_keys = TRY(from_object->internal_own_property_keys()); for (auto& key : own_keys) { if (!excluded_names.contains(key)) { auto property_key = TRY(key.to_property_key(vm)); auto property_value = TRY(from_object->get(property_key)); to_object->define_direct_property(property_key, property_value, JS::default_attributes); } } interpreter.accumulator() = to_object; return {}; } ThrowCompletionOr ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); interpreter.reg(m_lhs) = TRY(add(vm, interpreter.reg(m_lhs), interpreter.accumulator())); return {}; } ThrowCompletionOr GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto get_reference = [&]() -> ThrowCompletionOr { auto const& string = interpreter.current_executable().get_identifier(m_identifier); if (m_cached_environment_coordinate.has_value()) { auto* environment = vm.running_execution_context().lexical_environment; for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i) environment = environment->outer_environment(); VERIFY(environment); VERIFY(environment->is_declarative_environment()); if (!environment->is_permanently_screwed_by_eval()) { return Reference { *environment, string, vm.in_strict_mode(), m_cached_environment_coordinate }; } m_cached_environment_coordinate = {}; } auto reference = TRY(vm.resolve_binding(string)); if (reference.environment_coordinate().has_value()) m_cached_environment_coordinate = reference.environment_coordinate(); return reference; }; auto reference = TRY(get_reference()); interpreter.accumulator() = TRY(reference.get_value(vm)); return {}; } ThrowCompletionOr DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const& string = interpreter.current_executable().get_identifier(m_identifier); auto reference = TRY(vm.resolve_binding(string)); interpreter.accumulator() = Value(TRY(reference.delete_(vm))); return {}; } ThrowCompletionOr CreateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto make_and_swap_envs = [&](auto*& old_environment) { Environment* environment = new_declarative_environment(*old_environment); swap(old_environment, environment); return environment; }; if (m_mode == EnvironmentMode::Lexical) interpreter.saved_lexical_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().lexical_environment)); else if (m_mode == EnvironmentMode::Var) interpreter.saved_variable_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().variable_environment)); return {}; } ThrowCompletionOr EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& old_environment = vm.running_execution_context().lexical_environment; interpreter.saved_lexical_environment_stack().append(old_environment); auto object = TRY(interpreter.accumulator().to_object(vm)); vm.running_execution_context().lexical_environment = new_object_environment(*object, true, old_environment); return {}; } ThrowCompletionOr CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const& name = interpreter.current_executable().get_identifier(m_identifier); if (m_mode == EnvironmentMode::Lexical) { VERIFY(!m_is_global); // Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us. // Instead of crashing in there, we'll just raise an exception here. if (TRY(vm.lexical_environment()->has_binding(name))) return vm.throw_completion(String::formatted("Lexical environment already has binding '{}'", name)); if (m_is_immutable) vm.lexical_environment()->create_immutable_binding(vm, name, vm.in_strict_mode()); else vm.lexical_environment()->create_mutable_binding(vm, name, vm.in_strict_mode()); } else { if (!m_is_global) { if (m_is_immutable) vm.variable_environment()->create_immutable_binding(vm, name, vm.in_strict_mode()); else vm.variable_environment()->create_mutable_binding(vm, name, vm.in_strict_mode()); } else { // NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted". // The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode. verify_cast(vm.variable_environment())->create_global_var_binding(name, false); } } return {}; } ThrowCompletionOr SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const& name = interpreter.current_executable().get_identifier(m_identifier); auto environment = m_mode == EnvironmentMode::Lexical ? vm.running_execution_context().lexical_environment : vm.running_execution_context().variable_environment; auto reference = TRY(vm.resolve_binding(name, environment)); switch (m_initialization_mode) { case InitializationMode::Initialize: TRY(reference.initialize_referenced_binding(vm, interpreter.accumulator())); break; case InitializationMode::Set: TRY(reference.put_value(vm, interpreter.accumulator())); break; case InitializationMode::InitializeOrSet: VERIFY(reference.is_environment_reference()); VERIFY(reference.base_environment().is_declarative_environment()); TRY(static_cast(reference.base_environment()).initialize_or_set_mutable_binding(vm, name, interpreter.accumulator())); break; } return {}; } ThrowCompletionOr GetById::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto* object = TRY(interpreter.accumulator().to_object(vm)); interpreter.accumulator() = TRY(object->get(interpreter.current_executable().get_identifier(m_property))); return {}; } ThrowCompletionOr PutById::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto* object = TRY(interpreter.reg(m_base).to_object(vm)); PropertyKey name = interpreter.current_executable().get_identifier(m_property); auto value = interpreter.accumulator(); return put_by_property_key(object, value, name, interpreter, m_kind); } ThrowCompletionOr DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto* object = TRY(interpreter.accumulator().to_object(vm)); auto const& identifier = interpreter.current_executable().get_identifier(m_property); bool strict = vm.in_strict_mode(); auto reference = Reference { object, identifier, {}, strict }; interpreter.accumulator() = Value(TRY(reference.delete_(vm))); return {}; }; ThrowCompletionOr Jump::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.jump(*m_true_target); return {}; } ThrowCompletionOr ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); interpreter.accumulator() = TRY(vm.resolve_this_binding()); return {}; } ThrowCompletionOr GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = interpreter.vm().get_new_target(); return {}; } void Jump::replace_references_impl(BasicBlock const& from, BasicBlock const& to) { if (m_true_target.has_value() && &m_true_target->block() == &from) m_true_target = Label { to }; if (m_false_target.has_value() && &m_false_target->block() == &from) m_false_target = Label { to }; } ThrowCompletionOr JumpConditional::execute_impl(Bytecode::Interpreter& interpreter) const { VERIFY(m_true_target.has_value()); VERIFY(m_false_target.has_value()); auto result = interpreter.accumulator(); if (result.to_boolean()) interpreter.jump(m_true_target.value()); else interpreter.jump(m_false_target.value()); return {}; } ThrowCompletionOr JumpNullish::execute_impl(Bytecode::Interpreter& interpreter) const { VERIFY(m_true_target.has_value()); VERIFY(m_false_target.has_value()); auto result = interpreter.accumulator(); if (result.is_nullish()) interpreter.jump(m_true_target.value()); else interpreter.jump(m_false_target.value()); return {}; } ThrowCompletionOr JumpUndefined::execute_impl(Bytecode::Interpreter& interpreter) const { VERIFY(m_true_target.has_value()); VERIFY(m_false_target.has_value()); auto result = interpreter.accumulator(); if (result.is_undefined()) interpreter.jump(m_true_target.value()); else interpreter.jump(m_false_target.value()); return {}; } ThrowCompletionOr Call::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto callee = interpreter.reg(m_callee); if (m_type == CallType::Call && !callee.is_function()) return vm.throw_completion(ErrorType::IsNotA, callee.to_string_without_side_effects(), "function"sv); if (m_type == CallType::Construct && !callee.is_constructor()) return vm.throw_completion(ErrorType::IsNotA, callee.to_string_without_side_effects(), "constructor"sv); auto& function = callee.as_function(); auto this_value = interpreter.reg(m_this_value); MarkedVector argument_values { vm.heap() }; for (size_t i = 0; i < m_argument_count; ++i) argument_values.append(interpreter.reg(m_arguments[i])); Value return_value; if (m_type == CallType::Call) return_value = TRY(call(vm, function, this_value, move(argument_values))); else return_value = TRY(construct(vm, function, move(argument_values))); interpreter.accumulator() = return_value; return {}; } ThrowCompletionOr NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); interpreter.accumulator() = ECMAScriptFunctionObject::create(interpreter.realm(), m_function_node.name(), m_function_node.source_text(), m_function_node.body(), m_function_node.parameters(), m_function_node.function_length(), vm.lexical_environment(), vm.running_execution_context().private_environment, m_function_node.kind(), m_function_node.is_strict_mode(), m_function_node.might_need_arguments_object(), m_function_node.contains_direct_call_to_eval(), m_function_node.is_arrow_function()); return {}; } ThrowCompletionOr Return::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.do_return(interpreter.accumulator().value_or(js_undefined())); return {}; } ThrowCompletionOr Increment::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto old_value = TRY(interpreter.accumulator().to_numeric(vm)); if (old_value.is_number()) interpreter.accumulator() = Value(old_value.as_double() + 1); else interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 })); return {}; } ThrowCompletionOr Decrement::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto old_value = TRY(interpreter.accumulator().to_numeric(vm)); if (old_value.is_number()) interpreter.accumulator() = Value(old_value.as_double() - 1); else interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 })); return {}; } ThrowCompletionOr Throw::execute_impl(Bytecode::Interpreter& interpreter) const { return throw_completion(interpreter.accumulator()); } ThrowCompletionOr EnterUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.enter_unwind_context(m_handler_target, m_finalizer_target); interpreter.jump(m_entry_point); return {}; } void EnterUnwindContext::replace_references_impl(BasicBlock const& from, BasicBlock const& to) { if (&m_entry_point.block() == &from) m_entry_point = Label { to }; if (m_handler_target.has_value() && &m_handler_target->block() == &from) m_handler_target = Label { to }; if (m_finalizer_target.has_value() && &m_finalizer_target->block() == &from) m_finalizer_target = Label { to }; } ThrowCompletionOr FinishUnwind::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.leave_unwind_context(); interpreter.jump(m_next_target); return {}; } void FinishUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to) { if (&m_next_target.block() == &from) m_next_target = Label { to }; } ThrowCompletionOr LeaveEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { if (m_mode == EnvironmentMode::Lexical) interpreter.vm().running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last(); if (m_mode == EnvironmentMode::Var) interpreter.vm().running_execution_context().variable_environment = interpreter.saved_variable_environment_stack().take_last(); return {}; } ThrowCompletionOr LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.leave_unwind_context(); return {}; } ThrowCompletionOr ContinuePendingUnwind::execute_impl(Bytecode::Interpreter& interpreter) const { return interpreter.continue_pending_unwind(m_resume_target); } void ContinuePendingUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to) { if (&m_resume_target.block() == &from) m_resume_target = Label { to }; } ThrowCompletionOr PushDeclarativeEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto* environment = interpreter.vm().heap().allocate_without_realm(interpreter.vm().lexical_environment()); interpreter.vm().running_execution_context().lexical_environment = environment; interpreter.vm().running_execution_context().variable_environment = environment; return {}; } ThrowCompletionOr Yield::execute_impl(Bytecode::Interpreter& interpreter) const { auto yielded_value = interpreter.accumulator().value_or(js_undefined()); auto object = Object::create(interpreter.realm(), nullptr); object->define_direct_property("result", yielded_value, JS::default_attributes); if (m_continuation_label.has_value()) object->define_direct_property("continuation", Value(static_cast(reinterpret_cast(&m_continuation_label->block()))), JS::default_attributes); else object->define_direct_property("continuation", Value(0), JS::default_attributes); interpreter.do_return(object); return {}; } void Yield::replace_references_impl(BasicBlock const& from, BasicBlock const& to) { if (m_continuation_label.has_value() && &m_continuation_label->block() == &from) m_continuation_label = Label { to }; } ThrowCompletionOr GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto* object = TRY(interpreter.reg(m_base).to_object(vm)); auto property_key = TRY(interpreter.accumulator().to_property_key(vm)); interpreter.accumulator() = TRY(object->get(property_key)); return {}; } ThrowCompletionOr PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto* object = TRY(interpreter.reg(m_base).to_object(vm)); auto property_key = TRY(interpreter.reg(m_property).to_property_key(vm)); return put_by_property_key(object, interpreter.accumulator(), property_key, interpreter, m_kind); } ThrowCompletionOr DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto* object = TRY(interpreter.reg(m_base).to_object(vm)); auto property_key = TRY(interpreter.accumulator().to_property_key(vm)); bool strict = vm.in_strict_mode(); auto reference = Reference { object, property_key, {}, strict }; interpreter.accumulator() = Value(TRY(reference.delete_(vm))); return {}; } ThrowCompletionOr GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto iterator = TRY(get_iterator(vm, interpreter.accumulator())); interpreter.accumulator() = iterator_to_object(vm, iterator); return {}; } // 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties ThrowCompletionOr GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const { // While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants: // 1- Returned property keys do not include keys that are Symbols // 2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored // 3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration // 4- A property name will be returned by the iterator's next method at most once in any enumeration. // 5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively; // but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method. // 6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed. // 7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument. // 8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method. // 9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method // Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations). // Invariants 1 and 6 through 9 are implemented in `enumerable_own_property_names`, which implements the EnumerableOwnPropertyNames AO. auto& vm = interpreter.vm(); auto* object = TRY(interpreter.accumulator().to_object(vm)); // Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys, // so we just keep the order consistent anyway. OrderedHashTable properties; HashTable seen_objects; // Collect all keys immediately (invariant no. 5) for (auto* object_to_check = object; object_to_check && !seen_objects.contains(object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) { seen_objects.set(object_to_check); for (auto& key : TRY(object_to_check->enumerable_own_property_names(Object::PropertyKind::Key))) { properties.set(TRY(PropertyKey::from_value(vm, key))); } } Iterator iterator { .iterator = object, .next_method = NativeFunction::create( interpreter.realm(), [seen_items = HashTable(), items = move(properties)](VM& vm, GlobalObject& global_object) mutable -> ThrowCompletionOr { auto& realm = *global_object.associated_realm(); auto iterated_object_value = vm.this_value(); if (!iterated_object_value.is_object()) return vm.throw_completion("Invalid state for GetObjectPropertyIterator.next"); auto& iterated_object = iterated_object_value.as_object(); auto* result_object = Object::create(realm, nullptr); while (true) { if (items.is_empty()) { result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes); return result_object; } auto it = items.begin(); auto key = *it; items.remove(it); // If the key was already seen, skip over it (invariant no. 4) auto result = seen_items.set(key); if (result != AK::HashSetResult::InsertedNewEntry) continue; // If the property is deleted, don't include it (invariant no. 2) if (!TRY(iterated_object.has_property(key))) continue; result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes); if (key.is_number()) result_object->define_direct_property(vm.names.value, JS::Value(key.as_number()), default_attributes); else if (key.is_string()) result_object->define_direct_property(vm.names.value, js_string(vm, key.as_string()), default_attributes); else VERIFY_NOT_REACHED(); // We should not have non-string/number keys. return result_object; } }, 1, vm.names.next), .done = false, }; interpreter.accumulator() = iterator_to_object(vm, move(iterator)); return {}; } ThrowCompletionOr IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto* iterator_object = TRY(interpreter.accumulator().to_object(vm)); auto iterator = object_to_iterator(vm, *iterator_object); interpreter.accumulator() = TRY(iterator_next(vm, iterator)); return {}; } ThrowCompletionOr IteratorResultDone::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto* iterator_result = TRY(interpreter.accumulator().to_object(vm)); auto complete = TRY(iterator_complete(vm, *iterator_result)); interpreter.accumulator() = Value(complete); return {}; } ThrowCompletionOr IteratorResultValue::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto* iterator_result = TRY(interpreter.accumulator().to_object(vm)); interpreter.accumulator() = TRY(iterator_value(vm, *iterator_result)); return {}; } ThrowCompletionOr NewClass::execute_impl(Bytecode::Interpreter& interpreter) const { auto name = m_class_expression.name(); auto scope = interpreter.ast_interpreter_scope(); auto& ast_interpreter = scope.interpreter(); auto class_object = TRY(m_class_expression.class_definition_evaluation(ast_interpreter, name, name.is_null() ? ""sv : name)); interpreter.accumulator() = class_object; return {}; } // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation ThrowCompletionOr TypeofVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // 1. Let val be the result of evaluating UnaryExpression. auto const& string = interpreter.current_executable().get_identifier(m_identifier); auto reference = TRY(vm.resolve_binding(string)); // 2. If val is a Reference Record, then // a. If IsUnresolvableReference(val) is true, return "undefined". if (reference.is_unresolvable()) { interpreter.accumulator() = js_string(vm, "undefined"sv); return {}; } // 3. Set val to ? GetValue(val). auto value = TRY(reference.get_value(vm)); // 4. NOTE: This step is replaced in section B.3.6.3. // 5. Return a String according to Table 41. interpreter.accumulator() = js_string(vm, value.typeof()); return {}; } String Load::to_string_impl(Bytecode::Executable const&) const { return String::formatted("Load {}", m_src); } String LoadImmediate::to_string_impl(Bytecode::Executable const&) const { return String::formatted("LoadImmediate {}", m_value); } String Store::to_string_impl(Bytecode::Executable const&) const { return String::formatted("Store {}", m_dst); } String NewBigInt::to_string_impl(Bytecode::Executable const&) const { return String::formatted("NewBigInt \"{}\"", m_bigint.to_base(10)); } String NewArray::to_string_impl(Bytecode::Executable const&) const { StringBuilder builder; builder.append("NewArray"sv); if (m_element_count != 0) { builder.appendff(" [{}-{}]", m_elements[0], m_elements[1]); } return builder.to_string(); } String IteratorToArray::to_string_impl(Bytecode::Executable const&) const { return "IteratorToArray"; } String NewString::to_string_impl(Bytecode::Executable const& executable) const { return String::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string)); } String NewObject::to_string_impl(Bytecode::Executable const&) const { return "NewObject"; } String NewRegExp::to_string_impl(Bytecode::Executable const& executable) const { return String::formatted("NewRegExp source:{} (\"{}\") flags:{} (\"{}\")", m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index)); } String CopyObjectExcludingProperties::to_string_impl(Bytecode::Executable const&) const { StringBuilder builder; builder.appendff("CopyObjectExcludingProperties from:{}", m_from_object); if (m_excluded_names_count != 0) { builder.append(" excluding:["sv); for (size_t i = 0; i < m_excluded_names_count; ++i) { builder.appendff("{}", m_excluded_names[i]); if (i != m_excluded_names_count - 1) builder.append(','); } builder.append(']'); } return builder.to_string(); } String ConcatString::to_string_impl(Bytecode::Executable const&) const { return String::formatted("ConcatString {}", m_lhs); } String GetVariable::to_string_impl(Bytecode::Executable const& executable) const { return String::formatted("GetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier)); } String DeleteVariable::to_string_impl(Bytecode::Executable const& executable) const { return String::formatted("DeleteVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier)); } String CreateEnvironment::to_string_impl(Bytecode::Executable const&) const { auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable"; return String::formatted("CreateEnvironment mode:{}", mode_string); } String CreateVariable::to_string_impl(Bytecode::Executable const& executable) const { auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable"; return String::formatted("CreateVariable env:{} immutable:{} global:{} {} ({})", mode_string, m_is_immutable, m_is_global, m_identifier, executable.identifier_table->get(m_identifier)); } String EnterObjectEnvironment::to_string_impl(Executable const&) const { return String::formatted("EnterObjectEnvironment"); } String SetVariable::to_string_impl(Bytecode::Executable const& executable) const { auto initialization_mode_name = m_initialization_mode == InitializationMode ::Initialize ? "Initialize" : m_initialization_mode == InitializationMode::Set ? "Set" : "InitializeOrSet"; auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable"; return String::formatted("SetVariable env:{} init:{} {} ({})", mode_string, initialization_mode_name, m_identifier, executable.identifier_table->get(m_identifier)); } String PutById::to_string_impl(Bytecode::Executable const& executable) const { auto kind = m_kind == PropertyKind::Getter ? "getter" : m_kind == PropertyKind::Setter ? "setter" : "property"; return String::formatted("PutById kind:{} base:{}, property:{} ({})", kind, m_base, m_property, executable.identifier_table->get(m_property)); } String GetById::to_string_impl(Bytecode::Executable const& executable) const { return String::formatted("GetById {} ({})", m_property, executable.identifier_table->get(m_property)); } String DeleteById::to_string_impl(Bytecode::Executable const& executable) const { return String::formatted("DeleteById {} ({})", m_property, executable.identifier_table->get(m_property)); } String Jump::to_string_impl(Bytecode::Executable const&) const { if (m_true_target.has_value()) return String::formatted("Jump {}", *m_true_target); return String::formatted("Jump "); } String JumpConditional::to_string_impl(Bytecode::Executable const&) const { auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : ""; auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : ""; return String::formatted("JumpConditional true:{} false:{}", true_string, false_string); } String JumpNullish::to_string_impl(Bytecode::Executable const&) const { auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : ""; auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : ""; return String::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string); } String JumpUndefined::to_string_impl(Bytecode::Executable const&) const { auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : ""; auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : ""; return String::formatted("JumpUndefined undefined:{} not undefined:{}", true_string, false_string); } String Call::to_string_impl(Bytecode::Executable const&) const { StringBuilder builder; builder.appendff("Call callee:{}, this:{}", m_callee, m_this_value); if (m_argument_count != 0) { builder.append(", arguments:["sv); for (size_t i = 0; i < m_argument_count; ++i) { builder.appendff("{}", m_arguments[i]); if (i != m_argument_count - 1) builder.append(','); } builder.append(']'); } return builder.to_string(); } String NewFunction::to_string_impl(Bytecode::Executable const&) const { return "NewFunction"; } String NewClass::to_string_impl(Bytecode::Executable const&) const { return "NewClass"; } String Return::to_string_impl(Bytecode::Executable const&) const { return "Return"; } String Increment::to_string_impl(Bytecode::Executable const&) const { return "Increment"; } String Decrement::to_string_impl(Bytecode::Executable const&) const { return "Decrement"; } String Throw::to_string_impl(Bytecode::Executable const&) const { return "Throw"; } String EnterUnwindContext::to_string_impl(Bytecode::Executable const&) const { auto handler_string = m_handler_target.has_value() ? String::formatted("{}", *m_handler_target) : ""; auto finalizer_string = m_finalizer_target.has_value() ? String::formatted("{}", *m_finalizer_target) : ""; return String::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point); } String FinishUnwind::to_string_impl(Bytecode::Executable const&) const { return String::formatted("FinishUnwind next:{}", m_next_target); } String LeaveEnvironment::to_string_impl(Bytecode::Executable const&) const { auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable"; return String::formatted("LeaveEnvironment env:{}", mode_string); } String LeaveUnwindContext::to_string_impl(Bytecode::Executable const&) const { return "LeaveUnwindContext"; } String ContinuePendingUnwind::to_string_impl(Bytecode::Executable const&) const { return String::formatted("ContinuePendingUnwind resume:{}", m_resume_target); } String PushDeclarativeEnvironment::to_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; builder.append("PushDeclarativeEnvironment"sv); if (!m_variables.is_empty()) { builder.append(" {"sv); Vector names; for (auto& it : m_variables) names.append(executable.get_string(it.key)); builder.append('}'); builder.join(", "sv, names); } return builder.to_string(); } String Yield::to_string_impl(Bytecode::Executable const&) const { if (m_continuation_label.has_value()) return String::formatted("Yield continuation:@{}", m_continuation_label->block().name()); return String::formatted("Yield return"); } String GetByValue::to_string_impl(Bytecode::Executable const&) const { return String::formatted("GetByValue base:{}", m_base); } String PutByValue::to_string_impl(Bytecode::Executable const&) const { auto kind = m_kind == PropertyKind::Getter ? "getter" : m_kind == PropertyKind::Setter ? "setter" : "property"; return String::formatted("PutByValue kind:{} base:{}, property:{}", kind, m_base, m_property); } String DeleteByValue::to_string_impl(Bytecode::Executable const&) const { return String::formatted("DeleteByValue base:{}", m_base); } String GetIterator::to_string_impl(Executable const&) const { return "GetIterator"; } String GetObjectPropertyIterator::to_string_impl(Bytecode::Executable const&) const { return "GetObjectPropertyIterator"; } String IteratorNext::to_string_impl(Executable const&) const { return "IteratorNext"; } String IteratorResultDone::to_string_impl(Executable const&) const { return "IteratorResultDone"; } String IteratorResultValue::to_string_impl(Executable const&) const { return "IteratorResultValue"; } String ResolveThisBinding::to_string_impl(Bytecode::Executable const&) const { return "ResolveThisBinding"sv; } String GetNewTarget::to_string_impl(Bytecode::Executable const&) const { return "GetNewTarget"sv; } String TypeofVariable::to_string_impl(Bytecode::Executable const& executable) const { return String::formatted("TypeofVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier)); } }