/* * Copyright (c) 2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include namespace JS::Bytecode { class Generator { public: enum class SurroundingScopeKind { Global, Function, Block, }; static CodeGenerationErrorOr> generate(ASTNode const&, FunctionKind = FunctionKind::Normal); Register allocate_register(); void ensure_enough_space(size_t size) { // Make sure there's always enough space for a single jump at the end. if (!m_current_basic_block->can_grow(size + sizeof(Op::Jump))) { auto& new_block = make_block(); emit().set_targets( Label { new_block }, {}); switch_to_basic_block(new_block); } } template OpType& emit(Args&&... args) { VERIFY(!is_current_block_terminated()); // If the block doesn't have enough space, switch to another block if constexpr (!OpType::IsTerminator) ensure_enough_space(sizeof(OpType)); void* slot = next_slot(); grow(sizeof(OpType)); new (slot) OpType(forward(args)...); if constexpr (OpType::IsTerminator) m_current_basic_block->terminate({}, static_cast(slot)); return *static_cast(slot); } template OpType& emit_with_extra_register_slots(size_t extra_register_slots, Args&&... args) { VERIFY(!is_current_block_terminated()); size_t size_to_allocate = round_up_to_power_of_two(sizeof(OpType) + extra_register_slots * sizeof(Register), alignof(void*)); // If the block doesn't have enough space, switch to another block if constexpr (!OpType::IsTerminator) ensure_enough_space(size_to_allocate); void* slot = next_slot(); grow(size_to_allocate); new (slot) OpType(forward(args)...); if constexpr (OpType::IsTerminator) m_current_basic_block->terminate({}, static_cast(slot)); return *static_cast(slot); } CodeGenerationErrorOr emit_load_from_reference(JS::ASTNode const&); CodeGenerationErrorOr emit_store_to_reference(JS::ASTNode const&); CodeGenerationErrorOr emit_delete_reference(JS::ASTNode const&); void begin_continuable_scope(Label continue_target, Vector const& language_label_set); void end_continuable_scope(); void begin_breakable_scope(Label breakable_target, Vector const& language_label_set); void end_breakable_scope(); [[nodiscard]] Label nearest_continuable_scope() const; [[nodiscard]] Label nearest_breakable_scope() const; void switch_to_basic_block(BasicBlock& block) { m_current_basic_block = █ } [[nodiscard]] BasicBlock& current_block() { return *m_current_basic_block; } BasicBlock& make_block(DeprecatedString name = {}) { if (name.is_empty()) name = DeprecatedString::number(m_next_block++); m_root_basic_blocks.append(BasicBlock::create(name)); return m_root_basic_blocks.last(); } bool is_current_block_terminated() const { return m_current_basic_block->is_terminated(); } StringTableIndex intern_string(DeprecatedString string) { return m_string_table->insert(move(string)); } IdentifierTableIndex intern_identifier(FlyString string) { return m_identifier_table->insert(move(string)); } bool is_in_generator_or_async_function() const { return m_enclosing_function_kind == FunctionKind::Async || m_enclosing_function_kind == FunctionKind::Generator; } bool is_in_generator_function() const { return m_enclosing_function_kind == FunctionKind::Generator; } bool is_in_async_function() const { return m_enclosing_function_kind == FunctionKind::Async; } enum class BindingMode { Lexical, Var, Global, }; struct LexicalScope { SurroundingScopeKind kind; BindingMode mode; HashTable known_bindings; }; void register_binding(IdentifierTableIndex identifier, BindingMode mode = BindingMode::Lexical) { m_variable_scopes.last_matching([&](auto& x) { return x.mode == BindingMode::Global || x.mode == mode; })->known_bindings.set(identifier); } bool has_binding(IdentifierTableIndex identifier, Optional const& specific_binding_mode = {}) const { for (auto index = m_variable_scopes.size(); index > 0; --index) { auto& scope = m_variable_scopes[index - 1]; if (scope.mode != BindingMode::Global && specific_binding_mode.value_or(scope.mode) != scope.mode) continue; if (scope.known_bindings.contains(identifier)) return true; } return false; } bool has_binding_in_current_scope(IdentifierTableIndex identifier) const { if (m_variable_scopes.is_empty()) return false; return m_variable_scopes.last().known_bindings.contains(identifier); } void begin_variable_scope(BindingMode mode = BindingMode::Lexical, SurroundingScopeKind kind = SurroundingScopeKind::Block); void end_variable_scope(); enum class BlockBoundaryType { Break, Continue, Unwind, ReturnToFinally, LeaveLexicalEnvironment, LeaveVariableEnvironment, }; template void perform_needed_unwinds(bool is_break_node = false) requires(OpType::IsTerminator) { Optional boundary_to_stop_at; if constexpr (IsSame || IsSame) VERIFY(!is_break_node); else if constexpr (IsSame) boundary_to_stop_at = BlockBoundaryType::Unwind; else boundary_to_stop_at = is_break_node ? BlockBoundaryType::Break : BlockBoundaryType::Continue; for (size_t i = m_boundaries.size(); i > 0; --i) { auto boundary = m_boundaries[i - 1]; if (boundary_to_stop_at.has_value() && boundary == *boundary_to_stop_at) break; using enum BlockBoundaryType; switch (boundary) { case Unwind: emit(); break; case LeaveLexicalEnvironment: emit(Bytecode::Op::EnvironmentMode::Lexical); break; case LeaveVariableEnvironment: emit(Bytecode::Op::EnvironmentMode::Var); break; case Break: case Continue: break; case ReturnToFinally: // FIXME: In the case of breaks/continues we need to tell the `finally` to break/continue // For now let's ignore the finally to avoid a crash if (IsSame) break; return; }; } } Label perform_needed_unwinds_for_labelled_break_and_return_target_block(FlyString const& break_label); Label perform_needed_unwinds_for_labelled_continue_and_return_target_block(FlyString const& continue_label); void start_boundary(BlockBoundaryType type) { m_boundaries.append(type); } void end_boundary(BlockBoundaryType type) { VERIFY(m_boundaries.last() == type); m_boundaries.take_last(); } private: Generator(); ~Generator() = default; void grow(size_t); void* next_slot(); struct LabelableScope { Label bytecode_target; Vector language_label_set; }; BasicBlock* m_current_basic_block { nullptr }; NonnullOwnPtrVector m_root_basic_blocks; NonnullOwnPtr m_string_table; NonnullOwnPtr m_identifier_table; u32 m_next_register { 2 }; u32 m_next_block { 1 }; FunctionKind m_enclosing_function_kind { FunctionKind::Normal }; Vector m_continuable_scopes; Vector m_breakable_scopes; Vector m_variable_scopes; Vector m_boundaries; }; }