/* * Copyright (c) 2020, Andreas Kling * Copyright (c) 2020-2021, Linus Groh * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace JS { class InterpreterNodeScope { AK_MAKE_NONCOPYABLE(InterpreterNodeScope); AK_MAKE_NONMOVABLE(InterpreterNodeScope); public: InterpreterNodeScope(Interpreter& interpreter, const ASTNode& node) : m_interpreter(interpreter) , m_chain_node { nullptr, node } { m_interpreter.vm().call_frame().current_node = &node; m_interpreter.push_ast_node(m_chain_node); } ~InterpreterNodeScope() { m_interpreter.pop_ast_node(); } private: Interpreter& m_interpreter; ExecutingASTNodeChain m_chain_node; }; String ASTNode::class_name() const { // NOTE: We strip the "JS::" prefix. return demangle(typeid(*this).name()).substring(4); } static void update_function_name(Value value, const FlyString& name) { if (!value.is_function()) return; auto& function = value.as_function(); if (is(function) && function.name().is_empty()) static_cast(function).set_name(name); } static String get_function_name(GlobalObject& global_object, Value value) { if (value.is_symbol()) return String::formatted("[{}]", value.as_symbol().description()); if (value.is_string()) return value.as_string().string(); return value.to_string(global_object); } Value ScopeNode::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return interpreter.execute_statement(global_object, *this); } Value Program::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return interpreter.execute_statement(global_object, *this, ScopeType::Block); } Value FunctionDeclaration::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; return {}; } Value FunctionExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return ScriptFunction::create(global_object, name(), body(), parameters(), function_length(), interpreter.current_scope(), is_strict_mode() || interpreter.vm().in_strict_mode(), m_is_arrow_function); } Value ExpressionStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return m_expression->execute(interpreter, global_object); } CallExpression::ThisAndCallee CallExpression::compute_this_and_callee(Interpreter& interpreter, GlobalObject& global_object) const { auto& vm = interpreter.vm(); if (is(*this)) { // Computing |this| is irrelevant for "new" expression. return { js_undefined(), m_callee->execute(interpreter, global_object) }; } if (is(*m_callee)) { // If we are calling super, |this| has not been initialized yet, and would not be meaningful to provide. auto new_target = vm.get_new_target(); VERIFY(new_target.is_function()); return { js_undefined(), new_target }; } if (is(*m_callee)) { auto& member_expression = static_cast(*m_callee); Value callee; Object* this_value = nullptr; if (is(member_expression.object())) { auto super_base = interpreter.current_environment()->get_super_base(); if (super_base.is_nullish()) { vm.throw_exception(global_object, ErrorType::ObjectPrototypeNullOrUndefinedOnSuperPropertyAccess, super_base.to_string_without_side_effects()); return {}; } auto property_name = member_expression.computed_property_name(interpreter, global_object); if (!property_name.is_valid()) return {}; auto reference = Reference(super_base, property_name); callee = reference.get(global_object); if (vm.exception()) return {}; this_value = &vm.this_value(global_object).as_object(); } else { auto reference = member_expression.to_reference(interpreter, global_object); if (vm.exception()) return {}; callee = reference.get(global_object); if (vm.exception()) return {}; this_value = reference.base().to_object(global_object); if (vm.exception()) return {}; } return { this_value, callee }; } return { &global_object, m_callee->execute(interpreter, global_object) }; } Value CallExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto& vm = interpreter.vm(); auto [this_value, callee] = compute_this_and_callee(interpreter, global_object); if (vm.exception()) return {}; VERIFY(!callee.is_empty()); if (!callee.is_function() || (is(*this) && (is(callee.as_object()) && !static_cast(callee.as_object()).has_constructor()))) { String error_message; auto call_type = is(*this) ? "constructor" : "function"; if (is(*m_callee) || is(*m_callee)) { String expression_string; if (is(*m_callee)) { expression_string = static_cast(*m_callee).string(); } else { expression_string = static_cast(*m_callee).to_string_approximation(); } vm.throw_exception(global_object, ErrorType::IsNotAEvaluatedFrom, callee.to_string_without_side_effects(), call_type, expression_string); } else { vm.throw_exception(global_object, ErrorType::IsNotA, callee.to_string_without_side_effects(), call_type); } return {}; } auto& function = callee.as_function(); MarkedValueList arguments(vm.heap()); arguments.ensure_capacity(m_arguments.size()); for (auto& argument : m_arguments) { auto value = argument.value->execute(interpreter, global_object); if (vm.exception()) return {}; if (argument.is_spread) { get_iterator_values(global_object, value, [&](Value iterator_value) { if (vm.exception()) return IterationDecision::Break; arguments.append(iterator_value); return IterationDecision::Continue; }); if (vm.exception()) return {}; } else { arguments.append(value); } } vm.call_frame().current_node = interpreter.current_node(); Object* new_object = nullptr; Value result; if (is(*this)) { result = vm.construct(function, function, move(arguments), global_object); if (result.is_object()) new_object = &result.as_object(); } else if (is(*m_callee)) { // FIXME: This is merely a band-aid to make super() inside catch {} work (which constructs // a new LexicalEnvironment without current function). Implement GetSuperConstructor() // and subsequently GetThisEnvironment() instead. auto* function_environment = interpreter.current_environment(); if (!function_environment->current_function()) function_environment = static_cast(function_environment->parent()); auto* super_constructor = function_environment->current_function()->prototype(); // FIXME: Functions should track their constructor kind. if (!super_constructor || !super_constructor->is_function()) { vm.throw_exception(global_object, ErrorType::NotAConstructor, "Super constructor"); return {}; } result = vm.construct(static_cast(*super_constructor), function, move(arguments), global_object); if (vm.exception()) return {}; function_environment->bind_this_value(global_object, result); } else { result = vm.call(function, this_value, move(arguments)); } if (vm.exception()) return {}; if (is(*this)) { if (result.is_object()) return result; return new_object; } return result; } Value ReturnStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto value = argument() ? argument()->execute(interpreter, global_object) : js_undefined(); if (interpreter.exception()) return {}; interpreter.vm().unwind(ScopeType::Function); return value; } Value IfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto predicate_result = m_predicate->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (predicate_result.to_boolean()) return interpreter.execute_statement(global_object, *m_consequent); if (m_alternate) return interpreter.execute_statement(global_object, *m_alternate); return js_undefined(); } Value WithStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto object_value = m_object->execute(interpreter, global_object); if (interpreter.exception()) return {}; auto* object = object_value.to_object(global_object); if (interpreter.exception()) return {}; VERIFY(object); auto* with_scope = interpreter.heap().allocate(global_object, *object, interpreter.vm().call_frame().scope); TemporaryChange scope_change(interpreter.vm().call_frame().scope, with_scope); interpreter.execute_statement(global_object, m_body); return {}; } Value WhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto last_value = js_undefined(); for (;;) { auto test_result = m_test->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (!test_result.to_boolean()) break; last_value = interpreter.execute_statement(global_object, *m_body).value_or(last_value); if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.vm().stop_unwind(); break; } else { return last_value; } } } return last_value; } Value DoWhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto last_value = js_undefined(); for (;;) { if (interpreter.exception()) return {}; last_value = interpreter.execute_statement(global_object, *m_body).value_or(last_value); if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.vm().stop_unwind(); break; } else { return last_value; } } auto test_result = m_test->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (!test_result.to_boolean()) break; } return last_value; } Value ForStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; RefPtr wrapper; if (m_init && is(*m_init) && static_cast(*m_init).declaration_kind() != DeclarationKind::Var) { wrapper = create_ast_node(source_range()); NonnullRefPtrVector decls; decls.append(*static_cast(m_init.ptr())); wrapper->add_variables(decls); interpreter.enter_scope(*wrapper, ScopeType::Block, global_object); } auto wrapper_cleanup = ScopeGuard([&] { if (wrapper) interpreter.exit_scope(*wrapper); }); auto last_value = js_undefined(); if (m_init) { m_init->execute(interpreter, global_object); if (interpreter.exception()) return {}; } if (m_test) { while (true) { auto test_result = m_test->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (!test_result.to_boolean()) break; last_value = interpreter.execute_statement(global_object, *m_body).value_or(last_value); if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.vm().stop_unwind(); break; } else { return last_value; } } if (m_update) { m_update->execute(interpreter, global_object); if (interpreter.exception()) return {}; } } } else { while (true) { last_value = interpreter.execute_statement(global_object, *m_body).value_or(last_value); if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.vm().stop_unwind(); break; } else { return last_value; } } if (m_update) { m_update->execute(interpreter, global_object); if (interpreter.exception()) return {}; } } } return last_value; } static FlyString variable_from_for_declaration(Interpreter& interpreter, GlobalObject& global_object, const ASTNode& node, RefPtr wrapper) { FlyString variable_name; if (is(node)) { auto& variable_declaration = static_cast(node); VERIFY(!variable_declaration.declarations().is_empty()); if (variable_declaration.declaration_kind() != DeclarationKind::Var) { wrapper = create_ast_node(node.source_range()); interpreter.enter_scope(*wrapper, ScopeType::Block, global_object); } variable_declaration.execute(interpreter, global_object); variable_name = variable_declaration.declarations().first().id().string(); } else if (is(node)) { variable_name = static_cast(node).string(); } else { VERIFY_NOT_REACHED(); } return variable_name; } Value ForInStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; bool has_declaration = is(*m_lhs); if (!has_declaration && !is(*m_lhs)) { // FIXME: Implement "for (foo.bar in baz)", "for (foo[0] in bar)" VERIFY_NOT_REACHED(); } RefPtr wrapper; auto variable_name = variable_from_for_declaration(interpreter, global_object, m_lhs, wrapper); auto wrapper_cleanup = ScopeGuard([&] { if (wrapper) interpreter.exit_scope(*wrapper); }); auto last_value = js_undefined(); auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (rhs_result.is_nullish()) return {}; auto* object = rhs_result.to_object(global_object); while (object) { auto property_names = object->get_enumerable_own_property_names(Object::PropertyKind::Key); for (auto& value : property_names) { interpreter.vm().set_variable(variable_name, value, global_object, has_declaration); if (interpreter.exception()) return {}; last_value = interpreter.execute_statement(global_object, *m_body).value_or(last_value); if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.vm().stop_unwind(); break; } else { return last_value; } } } object = object->prototype(); if (interpreter.exception()) return {}; } return last_value; } Value ForOfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; bool has_declaration = is(*m_lhs); if (!has_declaration && !is(*m_lhs)) { // FIXME: Implement "for (foo.bar of baz)", "for (foo[0] of bar)" VERIFY_NOT_REACHED(); } RefPtr wrapper; auto variable_name = variable_from_for_declaration(interpreter, global_object, m_lhs, wrapper); auto wrapper_cleanup = ScopeGuard([&] { if (wrapper) interpreter.exit_scope(*wrapper); }); auto last_value = js_undefined(); auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; get_iterator_values(global_object, rhs_result, [&](Value value) { interpreter.vm().set_variable(variable_name, value, global_object, has_declaration); last_value = interpreter.execute_statement(global_object, *m_body).value_or(last_value); if (interpreter.exception()) return IterationDecision::Break; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.vm().stop_unwind(); return IterationDecision::Break; } else { return IterationDecision::Break; } } return IterationDecision::Continue; }); if (interpreter.exception()) return {}; return last_value; } Value BinaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto lhs_result = m_lhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; switch (m_op) { case BinaryOp::Addition: return add(global_object, lhs_result, rhs_result); case BinaryOp::Subtraction: return sub(global_object, lhs_result, rhs_result); case BinaryOp::Multiplication: return mul(global_object, lhs_result, rhs_result); case BinaryOp::Division: return div(global_object, lhs_result, rhs_result); case BinaryOp::Modulo: return mod(global_object, lhs_result, rhs_result); case BinaryOp::Exponentiation: return exp(global_object, lhs_result, rhs_result); case BinaryOp::TypedEquals: return Value(strict_eq(lhs_result, rhs_result)); case BinaryOp::TypedInequals: return Value(!strict_eq(lhs_result, rhs_result)); case BinaryOp::AbstractEquals: return Value(abstract_eq(global_object, lhs_result, rhs_result)); case BinaryOp::AbstractInequals: return Value(!abstract_eq(global_object, lhs_result, rhs_result)); case BinaryOp::GreaterThan: return greater_than(global_object, lhs_result, rhs_result); case BinaryOp::GreaterThanEquals: return greater_than_equals(global_object, lhs_result, rhs_result); case BinaryOp::LessThan: return less_than(global_object, lhs_result, rhs_result); case BinaryOp::LessThanEquals: return less_than_equals(global_object, lhs_result, rhs_result); case BinaryOp::BitwiseAnd: return bitwise_and(global_object, lhs_result, rhs_result); case BinaryOp::BitwiseOr: return bitwise_or(global_object, lhs_result, rhs_result); case BinaryOp::BitwiseXor: return bitwise_xor(global_object, lhs_result, rhs_result); case BinaryOp::LeftShift: return left_shift(global_object, lhs_result, rhs_result); case BinaryOp::RightShift: return right_shift(global_object, lhs_result, rhs_result); case BinaryOp::UnsignedRightShift: return unsigned_right_shift(global_object, lhs_result, rhs_result); case BinaryOp::In: return in(global_object, lhs_result, rhs_result); case BinaryOp::InstanceOf: return instance_of(global_object, lhs_result, rhs_result); } VERIFY_NOT_REACHED(); } Value LogicalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto lhs_result = m_lhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; switch (m_op) { case LogicalOp::And: if (lhs_result.to_boolean()) { auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; return rhs_result; } return lhs_result; case LogicalOp::Or: { if (lhs_result.to_boolean()) return lhs_result; auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; return rhs_result; } case LogicalOp::NullishCoalescing: if (lhs_result.is_nullish()) { auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; return rhs_result; } return lhs_result; } VERIFY_NOT_REACHED(); } Reference Expression::to_reference(Interpreter&, GlobalObject&) const { return {}; } Reference Identifier::to_reference(Interpreter& interpreter, GlobalObject&) const { return interpreter.vm().get_reference(string()); } Reference MemberExpression::to_reference(Interpreter& interpreter, GlobalObject& global_object) const { auto object_value = m_object->execute(interpreter, global_object); if (interpreter.exception()) return {}; auto property_name = computed_property_name(interpreter, global_object); if (!property_name.is_valid()) return {}; return { object_value, property_name }; } Value UnaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto& vm = interpreter.vm(); if (m_op == UnaryOp::Delete) { auto reference = m_lhs->to_reference(interpreter, global_object); if (interpreter.exception()) return {}; if (reference.is_unresolvable()) return Value(true); // FIXME: Support deleting locals VERIFY(!reference.is_local_variable()); if (reference.is_global_variable()) return Value(global_object.delete_property(reference.name())); auto* base_object = reference.base().to_object(global_object); if (!base_object) return {}; return Value(base_object->delete_property(reference.name())); } Value lhs_result; if (m_op == UnaryOp::Typeof && is(*m_lhs)) { auto reference = m_lhs->to_reference(interpreter, global_object); if (interpreter.exception()) { return {}; } // FIXME: standard recommends checking with is_unresolvable but it ALWAYS return false here if (reference.is_local_variable() || reference.is_global_variable()) { const auto& name = reference.name(); lhs_result = interpreter.vm().get_variable(name.to_string(), global_object).value_or(js_undefined()); if (interpreter.exception()) return {}; } } else { lhs_result = m_lhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; } switch (m_op) { case UnaryOp::BitwiseNot: return bitwise_not(global_object, lhs_result); case UnaryOp::Not: return Value(!lhs_result.to_boolean()); case UnaryOp::Plus: return unary_plus(global_object, lhs_result); case UnaryOp::Minus: return unary_minus(global_object, lhs_result); case UnaryOp::Typeof: return js_string(vm, lhs_result.typeof()); case UnaryOp::Void: return js_undefined(); case UnaryOp::Delete: VERIFY_NOT_REACHED(); } VERIFY_NOT_REACHED(); } Value SuperExpression::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // The semantics for SuperExpressions are handled in CallExpression::compute_this_and_callee() VERIFY_NOT_REACHED(); } Value ClassMethod::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return m_function->execute(interpreter, global_object); } Value ClassExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto& vm = interpreter.vm(); Value class_constructor_value = m_constructor->execute(interpreter, global_object); if (interpreter.exception()) return {}; update_function_name(class_constructor_value, m_name); VERIFY(class_constructor_value.is_function() && is(class_constructor_value.as_function())); auto* class_constructor = static_cast(&class_constructor_value.as_function()); class_constructor->set_is_class_constructor(); Value super_constructor = js_undefined(); if (!m_super_class.is_null()) { super_constructor = m_super_class->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (!super_constructor.is_function() && !super_constructor.is_null()) { interpreter.vm().throw_exception(global_object, ErrorType::ClassExtendsValueNotAConstructorOrNull, super_constructor.to_string_without_side_effects()); return {}; } class_constructor->set_constructor_kind(Function::ConstructorKind::Derived); Object* prototype = Object::create_empty(global_object); Object* super_constructor_prototype = nullptr; if (!super_constructor.is_null()) { auto super_constructor_prototype_value = super_constructor.as_object().get(vm.names.prototype).value_or(js_undefined()); if (interpreter.exception()) return {}; if (!super_constructor_prototype_value.is_object() && !super_constructor_prototype_value.is_null()) { interpreter.vm().throw_exception(global_object, ErrorType::ClassExtendsValueInvalidPrototype, super_constructor_prototype_value.to_string_without_side_effects()); return {}; } if (super_constructor_prototype_value.is_object()) super_constructor_prototype = &super_constructor_prototype_value.as_object(); } prototype->set_prototype(super_constructor_prototype); prototype->define_property(vm.names.constructor, class_constructor, 0); if (interpreter.exception()) return {}; class_constructor->define_property(vm.names.prototype, prototype, Attribute::Writable); if (interpreter.exception()) return {}; class_constructor->set_prototype(super_constructor.is_null() ? global_object.function_prototype() : &super_constructor.as_object()); } auto class_prototype = class_constructor->get(vm.names.prototype); if (interpreter.exception()) return {}; if (!class_prototype.is_object()) { interpreter.vm().throw_exception(global_object, ErrorType::NotAnObject, "Class prototype"); return {}; } for (const auto& method : m_methods) { auto method_value = method.execute(interpreter, global_object); if (interpreter.exception()) return {}; auto& method_function = method_value.as_function(); auto key = method.key().execute(interpreter, global_object); if (interpreter.exception()) return {}; auto& target = method.is_static() ? *class_constructor : class_prototype.as_object(); method_function.set_home_object(&target); switch (method.kind()) { case ClassMethod::Kind::Method: target.define_property(StringOrSymbol::from_value(global_object, key), method_value); break; case ClassMethod::Kind::Getter: update_function_name(method_value, String::formatted("get {}", get_function_name(global_object, key))); target.define_accessor(StringOrSymbol::from_value(global_object, key), &method_function, nullptr, Attribute::Configurable | Attribute::Enumerable); break; case ClassMethod::Kind::Setter: update_function_name(method_value, String::formatted("set {}", get_function_name(global_object, key))); target.define_accessor(StringOrSymbol::from_value(global_object, key), nullptr, &method_function, Attribute::Configurable | Attribute::Enumerable); break; default: VERIFY_NOT_REACHED(); } if (interpreter.exception()) return {}; } return class_constructor; } Value ClassDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; Value class_constructor = m_class_expression->execute(interpreter, global_object); if (interpreter.exception()) return {}; interpreter.current_scope()->put_to_scope(m_class_expression->name(), { class_constructor, DeclarationKind::Let }); return {}; } static void print_indent(int indent) { out("{}", String::repeated(' ', indent * 2)); } void ASTNode::dump(int indent) const { print_indent(indent); outln("{}", class_name()); } void ScopeNode::dump(int indent) const { ASTNode::dump(indent); if (!m_variables.is_empty()) { print_indent(indent + 1); outln("(Variables)"); for (auto& variable : m_variables) variable.dump(indent + 2); } if (!m_children.is_empty()) { print_indent(indent + 1); outln("(Children)"); for (auto& child : children()) child.dump(indent + 2); } } void BinaryExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case BinaryOp::Addition: op_string = "+"; break; case BinaryOp::Subtraction: op_string = "-"; break; case BinaryOp::Multiplication: op_string = "*"; break; case BinaryOp::Division: op_string = "/"; break; case BinaryOp::Modulo: op_string = "%"; break; case BinaryOp::Exponentiation: op_string = "**"; break; case BinaryOp::TypedEquals: op_string = "==="; break; case BinaryOp::TypedInequals: op_string = "!=="; break; case BinaryOp::AbstractEquals: op_string = "=="; break; case BinaryOp::AbstractInequals: op_string = "!="; break; case BinaryOp::GreaterThan: op_string = ">"; break; case BinaryOp::GreaterThanEquals: op_string = ">="; break; case BinaryOp::LessThan: op_string = "<"; break; case BinaryOp::LessThanEquals: op_string = "<="; break; case BinaryOp::BitwiseAnd: op_string = "&"; break; case BinaryOp::BitwiseOr: op_string = "|"; break; case BinaryOp::BitwiseXor: op_string = "^"; break; case BinaryOp::LeftShift: op_string = "<<"; break; case BinaryOp::RightShift: op_string = ">>"; break; case BinaryOp::UnsignedRightShift: op_string = ">>>"; break; case BinaryOp::In: op_string = "in"; break; case BinaryOp::InstanceOf: op_string = "instanceof"; break; } print_indent(indent); outln("{}", class_name()); m_lhs->dump(indent + 1); print_indent(indent + 1); outln("{}", op_string); m_rhs->dump(indent + 1); } void LogicalExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case LogicalOp::And: op_string = "&&"; break; case LogicalOp::Or: op_string = "||"; break; case LogicalOp::NullishCoalescing: op_string = "??"; break; } print_indent(indent); outln("{}", class_name()); m_lhs->dump(indent + 1); print_indent(indent + 1); outln("{}", op_string); m_rhs->dump(indent + 1); } void UnaryExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case UnaryOp::BitwiseNot: op_string = "~"; break; case UnaryOp::Not: op_string = "!"; break; case UnaryOp::Plus: op_string = "+"; break; case UnaryOp::Minus: op_string = "-"; break; case UnaryOp::Typeof: op_string = "typeof "; break; case UnaryOp::Void: op_string = "void "; break; case UnaryOp::Delete: op_string = "delete "; break; } print_indent(indent); outln("{}", class_name()); print_indent(indent + 1); outln("{}", op_string); m_lhs->dump(indent + 1); } void CallExpression::dump(int indent) const { print_indent(indent); if (is(*this)) outln("CallExpression [new]"); else outln("CallExpression"); m_callee->dump(indent + 1); for (auto& argument : m_arguments) argument.value->dump(indent + 1); } void ClassDeclaration::dump(int indent) const { ASTNode::dump(indent); m_class_expression->dump(indent + 1); } void ClassExpression::dump(int indent) const { print_indent(indent); outln("ClassExpression: \"{}\"", m_name); print_indent(indent); outln("(Constructor)"); m_constructor->dump(indent + 1); if (!m_super_class.is_null()) { print_indent(indent); outln("(Super Class)"); m_super_class->dump(indent + 1); } print_indent(indent); outln("(Methods)"); for (auto& method : m_methods) method.dump(indent + 1); } void ClassMethod::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("(Key)"); m_key->dump(indent + 1); const char* kind_string = nullptr; switch (m_kind) { case Kind::Method: kind_string = "Method"; break; case Kind::Getter: kind_string = "Getter"; break; case Kind::Setter: kind_string = "Setter"; break; } print_indent(indent); outln("Kind: {}", kind_string); print_indent(indent); outln("Static: {}", m_is_static); print_indent(indent); outln("(Function)"); m_function->dump(indent + 1); } void StringLiteral::dump(int indent) const { print_indent(indent); outln("StringLiteral \"{}\"", m_value); } void SuperExpression::dump(int indent) const { print_indent(indent); outln("super"); } void NumericLiteral::dump(int indent) const { print_indent(indent); outln("NumericLiteral {}", m_value); } void BigIntLiteral::dump(int indent) const { print_indent(indent); outln("BigIntLiteral {}", m_value); } void BooleanLiteral::dump(int indent) const { print_indent(indent); outln("BooleanLiteral {}", m_value); } void NullLiteral::dump(int indent) const { print_indent(indent); outln("null"); } void FunctionNode::dump(int indent, const String& class_name) const { print_indent(indent); outln("{} '{}'", class_name, name()); if (!m_parameters.is_empty()) { print_indent(indent + 1); outln("(Parameters)\n"); for (auto& parameter : m_parameters) { print_indent(indent + 2); if (parameter.is_rest) out("..."); outln("{}", parameter.name); if (parameter.default_value) parameter.default_value->dump(indent + 3); } } if (!m_variables.is_empty()) { print_indent(indent + 1); outln("(Variables)"); for (auto& variable : m_variables) variable.dump(indent + 2); } print_indent(indent + 1); outln("(Body)"); body().dump(indent + 2); } void FunctionDeclaration::dump(int indent) const { FunctionNode::dump(indent, class_name()); } void FunctionExpression::dump(int indent) const { FunctionNode::dump(indent, class_name()); } void ReturnStatement::dump(int indent) const { ASTNode::dump(indent); if (argument()) argument()->dump(indent + 1); } void IfStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("If"); predicate().dump(indent + 1); consequent().dump(indent + 1); if (alternate()) { print_indent(indent); outln("Else"); alternate()->dump(indent + 1); } } void WhileStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("While"); test().dump(indent + 1); body().dump(indent + 1); } void WithStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); outln("Object"); object().dump(indent + 2); print_indent(indent + 1); outln("Body"); body().dump(indent + 2); } void DoWhileStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("DoWhile"); test().dump(indent + 1); body().dump(indent + 1); } void ForStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("For"); if (init()) init()->dump(indent + 1); if (test()) test()->dump(indent + 1); if (update()) update()->dump(indent + 1); body().dump(indent + 1); } void ForInStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("ForIn"); lhs().dump(indent + 1); rhs().dump(indent + 1); body().dump(indent + 1); } void ForOfStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("ForOf"); lhs().dump(indent + 1); rhs().dump(indent + 1); body().dump(indent + 1); } Value Identifier::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto value = interpreter.vm().get_variable(string(), global_object); if (value.is_empty()) { if (!interpreter.exception()) interpreter.vm().throw_exception(global_object, ErrorType::UnknownIdentifier, string()); return {}; } return value; } void Identifier::dump(int indent) const { print_indent(indent); outln("Identifier \"{}\"", m_string); } void SpreadExpression::dump(int indent) const { ASTNode::dump(indent); m_target->dump(indent + 1); } Value SpreadExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return m_target->execute(interpreter, global_object); } Value ThisExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return interpreter.vm().resolve_this_binding(global_object); } void ThisExpression::dump(int indent) const { ASTNode::dump(indent); } Value AssignmentExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; #define EXECUTE_LHS_AND_RHS() \ do { \ lhs_result = m_lhs->execute(interpreter, global_object); \ if (interpreter.exception()) \ return {}; \ rhs_result = m_rhs->execute(interpreter, global_object); \ if (interpreter.exception()) \ return {}; \ } while (0) Value lhs_result; Value rhs_result; switch (m_op) { case AssignmentOp::Assignment: break; case AssignmentOp::AdditionAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = add(global_object, lhs_result, rhs_result); break; case AssignmentOp::SubtractionAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = sub(global_object, lhs_result, rhs_result); break; case AssignmentOp::MultiplicationAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = mul(global_object, lhs_result, rhs_result); break; case AssignmentOp::DivisionAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = div(global_object, lhs_result, rhs_result); break; case AssignmentOp::ModuloAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = mod(global_object, lhs_result, rhs_result); break; case AssignmentOp::ExponentiationAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = exp(global_object, lhs_result, rhs_result); break; case AssignmentOp::BitwiseAndAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = bitwise_and(global_object, lhs_result, rhs_result); break; case AssignmentOp::BitwiseOrAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = bitwise_or(global_object, lhs_result, rhs_result); break; case AssignmentOp::BitwiseXorAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = bitwise_xor(global_object, lhs_result, rhs_result); break; case AssignmentOp::LeftShiftAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = left_shift(global_object, lhs_result, rhs_result); break; case AssignmentOp::RightShiftAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = right_shift(global_object, lhs_result, rhs_result); break; case AssignmentOp::UnsignedRightShiftAssignment: EXECUTE_LHS_AND_RHS(); rhs_result = unsigned_right_shift(global_object, lhs_result, rhs_result); break; case AssignmentOp::AndAssignment: lhs_result = m_lhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (!lhs_result.to_boolean()) return lhs_result; rhs_result = m_rhs->execute(interpreter, global_object); break; case AssignmentOp::OrAssignment: lhs_result = m_lhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (lhs_result.to_boolean()) return lhs_result; rhs_result = m_rhs->execute(interpreter, global_object); break; case AssignmentOp::NullishAssignment: lhs_result = m_lhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (!lhs_result.is_nullish()) return lhs_result; rhs_result = m_rhs->execute(interpreter, global_object); break; } if (interpreter.exception()) return {}; auto reference = m_lhs->to_reference(interpreter, global_object); if (interpreter.exception()) return {}; if (m_op == AssignmentOp::Assignment) { rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; } if (reference.is_unresolvable()) { interpreter.vm().throw_exception(global_object, ErrorType::InvalidLeftHandAssignment); return {}; } reference.put(global_object, rhs_result); if (interpreter.exception()) return {}; return rhs_result; } Value UpdateExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto reference = m_argument->to_reference(interpreter, global_object); if (interpreter.exception()) return {}; auto old_value = reference.get(global_object); if (interpreter.exception()) return {}; old_value = old_value.to_numeric(global_object); if (interpreter.exception()) return {}; Value new_value; switch (m_op) { case UpdateOp::Increment: if (old_value.is_number()) new_value = Value(old_value.as_double() + 1); else new_value = js_bigint(interpreter.heap(), old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 })); break; case UpdateOp::Decrement: if (old_value.is_number()) new_value = Value(old_value.as_double() - 1); else new_value = js_bigint(interpreter.heap(), old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 })); break; default: VERIFY_NOT_REACHED(); } reference.put(global_object, new_value); if (interpreter.exception()) return {}; return m_prefixed ? new_value : old_value; } void AssignmentExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case AssignmentOp::Assignment: op_string = "="; break; case AssignmentOp::AdditionAssignment: op_string = "+="; break; case AssignmentOp::SubtractionAssignment: op_string = "-="; break; case AssignmentOp::MultiplicationAssignment: op_string = "*="; break; case AssignmentOp::DivisionAssignment: op_string = "/="; break; case AssignmentOp::ModuloAssignment: op_string = "%="; break; case AssignmentOp::ExponentiationAssignment: op_string = "**="; break; case AssignmentOp::BitwiseAndAssignment: op_string = "&="; break; case AssignmentOp::BitwiseOrAssignment: op_string = "|="; break; case AssignmentOp::BitwiseXorAssignment: op_string = "^="; break; case AssignmentOp::LeftShiftAssignment: op_string = "<<="; break; case AssignmentOp::RightShiftAssignment: op_string = ">>="; break; case AssignmentOp::UnsignedRightShiftAssignment: op_string = ">>>="; break; case AssignmentOp::AndAssignment: op_string = "&&="; break; case AssignmentOp::OrAssignment: op_string = "||="; break; case AssignmentOp::NullishAssignment: op_string = "\?\?="; break; } ASTNode::dump(indent); print_indent(indent + 1); outln("{}", op_string); m_lhs->dump(indent + 1); m_rhs->dump(indent + 1); } void UpdateExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case UpdateOp::Increment: op_string = "++"; break; case UpdateOp::Decrement: op_string = "--"; break; } ASTNode::dump(indent); if (m_prefixed) { print_indent(indent + 1); outln("{}", op_string); } m_argument->dump(indent + 1); if (!m_prefixed) { print_indent(indent + 1); outln("{}", op_string); } } Value VariableDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; for (auto& declarator : m_declarations) { if (auto* init = declarator.init()) { auto initalizer_result = init->execute(interpreter, global_object); if (interpreter.exception()) return {}; auto variable_name = declarator.id().string(); if (is(*init)) update_function_name(initalizer_result, variable_name); interpreter.vm().set_variable(variable_name, initalizer_result, global_object, true); } } return {}; } Value VariableDeclarator::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // NOTE: VariableDeclarator execution is handled by VariableDeclaration. VERIFY_NOT_REACHED(); } void VariableDeclaration::dump(int indent) const { const char* declaration_kind_string = nullptr; switch (m_declaration_kind) { case DeclarationKind::Let: declaration_kind_string = "Let"; break; case DeclarationKind::Var: declaration_kind_string = "Var"; break; case DeclarationKind::Const: declaration_kind_string = "Const"; break; } ASTNode::dump(indent); print_indent(indent + 1); outln("{}", declaration_kind_string); for (auto& declarator : m_declarations) declarator.dump(indent + 1); } void VariableDeclarator::dump(int indent) const { ASTNode::dump(indent); m_id->dump(indent + 1); if (m_init) m_init->dump(indent + 1); } void ObjectProperty::dump(int indent) const { ASTNode::dump(indent); m_key->dump(indent + 1); m_value->dump(indent + 1); } void ObjectExpression::dump(int indent) const { ASTNode::dump(indent); for (auto& property : m_properties) { property.dump(indent + 1); } } void ExpressionStatement::dump(int indent) const { ASTNode::dump(indent); m_expression->dump(indent + 1); } Value ObjectProperty::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // NOTE: ObjectProperty execution is handled by ObjectExpression. VERIFY_NOT_REACHED(); } Value ObjectExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto* object = Object::create_empty(global_object); for (auto& property : m_properties) { auto key = property.key().execute(interpreter, global_object); if (interpreter.exception()) return {}; if (property.type() == ObjectProperty::Type::Spread) { if (key.is_array()) { auto& array_to_spread = static_cast(key.as_object()); for (auto& entry : array_to_spread.indexed_properties()) { object->indexed_properties().put(object, entry.index(), entry.value_and_attributes(&array_to_spread).value); if (interpreter.exception()) return {}; } } else if (key.is_object()) { auto& obj_to_spread = key.as_object(); for (auto& it : obj_to_spread.shape().property_table_ordered()) { if (it.value.attributes.is_enumerable()) { object->define_property(it.key, obj_to_spread.get(it.key)); if (interpreter.exception()) return {}; } } } else if (key.is_string()) { auto& str_to_spread = key.as_string().string(); for (size_t i = 0; i < str_to_spread.length(); i++) { object->define_property(i, js_string(interpreter.heap(), str_to_spread.substring(i, 1))); if (interpreter.exception()) return {}; } } continue; } auto value = property.value().execute(interpreter, global_object); if (interpreter.exception()) return {}; if (value.is_function() && property.is_method()) value.as_function().set_home_object(object); String name = get_function_name(global_object, key); if (property.type() == ObjectProperty::Type::Getter) { name = String::formatted("get {}", name); } else if (property.type() == ObjectProperty::Type::Setter) { name = String::formatted("set {}", name); } update_function_name(value, name); switch (property.type()) { case ObjectProperty::Type::Getter: VERIFY(value.is_function()); object->define_accessor(PropertyName::from_value(global_object, key), &value.as_function(), nullptr, Attribute::Configurable | Attribute::Enumerable); break; case ObjectProperty::Type::Setter: VERIFY(value.is_function()); object->define_accessor(PropertyName::from_value(global_object, key), nullptr, &value.as_function(), Attribute::Configurable | Attribute::Enumerable); break; case ObjectProperty::Type::KeyValue: object->define_property(PropertyName::from_value(global_object, key), value); break; case ObjectProperty::Type::Spread: default: VERIFY_NOT_REACHED(); } if (interpreter.exception()) return {}; } return object; } void MemberExpression::dump(int indent) const { print_indent(indent); outln("{}(computed={})", class_name(), is_computed()); m_object->dump(indent + 1); m_property->dump(indent + 1); } PropertyName MemberExpression::computed_property_name(Interpreter& interpreter, GlobalObject& global_object) const { if (!is_computed()) { VERIFY(is(*m_property)); return static_cast(*m_property).string(); } auto value = m_property->execute(interpreter, global_object); if (interpreter.exception()) return {}; VERIFY(!value.is_empty()); return PropertyName::from_value(global_object, value); } String MemberExpression::to_string_approximation() const { String object_string = ""; if (is(*m_object)) object_string = static_cast(*m_object).string(); if (is_computed()) return String::formatted("{}[]", object_string); VERIFY(is(*m_property)); return String::formatted("{}.{}", object_string, static_cast(*m_property).string()); } Value MemberExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto reference = to_reference(interpreter, global_object); if (interpreter.exception()) return {}; return reference.get(global_object); } void MetaProperty::dump(int indent) const { String name; if (m_type == MetaProperty::Type::NewTarget) name = "new.target"; else if (m_type == MetaProperty::Type::ImportMeta) name = "import.meta"; else VERIFY_NOT_REACHED(); print_indent(indent); outln("{} {}", class_name(), name); } Value MetaProperty::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; if (m_type == MetaProperty::Type::NewTarget) return interpreter.vm().get_new_target().value_or(js_undefined()); if (m_type == MetaProperty::Type::ImportMeta) TODO(); VERIFY_NOT_REACHED(); } Value StringLiteral::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; return js_string(interpreter.heap(), m_value); } Value NumericLiteral::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; return Value(m_value); } Value BigIntLiteral::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; return js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base10(m_value.substring(0, m_value.length() - 1))); } Value BooleanLiteral::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; return Value(m_value); } Value NullLiteral::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; return js_null(); } void RegExpLiteral::dump(int indent) const { print_indent(indent); outln("{} (/{}/{})", class_name(), pattern(), flags()); } Value RegExpLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return RegExpObject::create(global_object, pattern(), flags()); } void ArrayExpression::dump(int indent) const { ASTNode::dump(indent); for (auto& element : m_elements) { if (element) { element->dump(indent + 1); } else { print_indent(indent + 1); outln(""); } } } Value ArrayExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto* array = Array::create(global_object); for (auto& element : m_elements) { auto value = Value(); if (element) { value = element->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (is(*element)) { get_iterator_values(global_object, value, [&](Value iterator_value) { array->indexed_properties().append(iterator_value); return IterationDecision::Continue; }); if (interpreter.exception()) return {}; continue; } } array->indexed_properties().append(value); } return array; } void TemplateLiteral::dump(int indent) const { ASTNode::dump(indent); for (auto& expression : m_expressions) expression.dump(indent + 1); } Value TemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; StringBuilder string_builder; for (auto& expression : m_expressions) { auto expr = expression.execute(interpreter, global_object); if (interpreter.exception()) return {}; auto string = expr.to_string(global_object); if (interpreter.exception()) return {}; string_builder.append(string); } return js_string(interpreter.heap(), string_builder.build()); } void TaggedTemplateLiteral::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); outln("(Tag)"); m_tag->dump(indent + 2); print_indent(indent + 1); outln("(Template Literal)"); m_template_literal->dump(indent + 2); } Value TaggedTemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto& vm = interpreter.vm(); auto tag = m_tag->execute(interpreter, global_object); if (vm.exception()) return {}; if (!tag.is_function()) { vm.throw_exception(global_object, ErrorType::NotAFunction, tag.to_string_without_side_effects()); return {}; } auto& tag_function = tag.as_function(); auto& expressions = m_template_literal->expressions(); auto* strings = Array::create(global_object); MarkedValueList arguments(vm.heap()); arguments.append(strings); for (size_t i = 0; i < expressions.size(); ++i) { auto value = expressions[i].execute(interpreter, global_object); if (vm.exception()) return {}; // tag`${foo}` -> "", foo, "" -> tag(["", ""], foo) // tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux) if (i % 2 == 0) { strings->indexed_properties().append(value); } else { arguments.append(value); } } auto* raw_strings = Array::create(global_object); for (auto& raw_string : m_template_literal->raw_strings()) { auto value = raw_string.execute(interpreter, global_object); if (vm.exception()) return {}; raw_strings->indexed_properties().append(value); } strings->define_property(vm.names.raw, raw_strings, 0); return vm.call(tag_function, js_undefined(), move(arguments)); } void TryStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("(Block)"); block().dump(indent + 1); if (handler()) { print_indent(indent); outln("(Handler)"); handler()->dump(indent + 1); } if (finalizer()) { print_indent(indent); outln("(Finalizer)"); finalizer()->dump(indent + 1); } } void CatchClause::dump(int indent) const { print_indent(indent); if (m_parameter.is_null()) outln("CatchClause"); else outln("CatchClause ({})", m_parameter); body().dump(indent + 1); } void ThrowStatement::dump(int indent) const { ASTNode::dump(indent); argument().dump(indent + 1); } Value TryStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto result = interpreter.execute_statement(global_object, m_block, ScopeType::Try); if (auto* exception = interpreter.exception()) { if (m_handler) { interpreter.vm().clear_exception(); HashMap parameters; parameters.set(m_handler->parameter(), Variable { exception->value(), DeclarationKind::Var }); auto* catch_scope = interpreter.heap().allocate(global_object, move(parameters), interpreter.vm().call_frame().scope); TemporaryChange scope_change(interpreter.vm().call_frame().scope, catch_scope); result = interpreter.execute_statement(global_object, m_handler->body()); } } if (m_finalizer) { // Keep, if any, and then clear the current exception so we can // execute() the finalizer without an exception in our way. auto* previous_exception = interpreter.exception(); interpreter.vm().clear_exception(); // Remember what scope type we were unwinding to, and temporarily // clear it as well (e.g. return from handler). auto unwind_until = interpreter.vm().unwind_until(); interpreter.vm().stop_unwind(); auto finalizer_result = m_finalizer->execute(interpreter, global_object); if (interpreter.vm().should_unwind()) { // This was NOT a 'normal' completion (e.g. return from finalizer). result = finalizer_result; } else { // Continue unwinding to whatever we found ourselves unwinding // to when the finalizer was entered (e.g. return from handler, // which is unaffected by normal completion from finalizer). interpreter.vm().unwind(unwind_until); // If we previously had an exception and the finalizer didn't // throw a new one, restore the old one. if (previous_exception && !interpreter.exception()) interpreter.vm().set_exception(*previous_exception); } } return result.value_or(js_undefined()); } Value CatchClause::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // NOTE: CatchClause execution is handled by TryStatement. VERIFY_NOT_REACHED(); return {}; } Value ThrowStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto value = m_argument->execute(interpreter, global_object); if (interpreter.vm().exception()) return {}; interpreter.vm().throw_exception(global_object, value); return {}; } Value SwitchStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto discriminant_result = m_discriminant->execute(interpreter, global_object); if (interpreter.exception()) return {}; bool falling_through = false; for (auto& switch_case : m_cases) { if (!falling_through && switch_case.test()) { auto test_result = switch_case.test()->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (!strict_eq(discriminant_result, test_result)) continue; } falling_through = true; for (auto& statement : switch_case.consequent()) { auto last_value = statement.execute(interpreter, global_object); if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) { // No stop_unwind(), the outer loop will handle that - we just need to break out of the switch/case. return {}; } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.vm().stop_unwind(); return {}; } else { return last_value; } } } } return js_undefined(); } Value SwitchCase::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // NOTE: SwitchCase execution is handled by SwitchStatement. VERIFY_NOT_REACHED(); return {}; } Value BreakStatement::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; interpreter.vm().unwind(ScopeType::Breakable, m_target_label); return {}; } Value ContinueStatement::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; interpreter.vm().unwind(ScopeType::Continuable, m_target_label); return {}; } void SwitchStatement::dump(int indent) const { ASTNode::dump(indent); m_discriminant->dump(indent + 1); for (auto& switch_case : m_cases) { switch_case.dump(indent + 1); } } void SwitchCase::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); if (m_test) { outln("(Test)"); m_test->dump(indent + 2); } else { outln("(Default)"); } print_indent(indent + 1); outln("(Consequent)"); for (auto& statement : m_consequent) statement.dump(indent + 2); } Value ConditionalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto test_result = m_test->execute(interpreter, global_object); if (interpreter.exception()) return {}; Value result; if (test_result.to_boolean()) { result = m_consequent->execute(interpreter, global_object); } else { result = m_alternate->execute(interpreter, global_object); } if (interpreter.exception()) return {}; return result; } void ConditionalExpression::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); outln("(Test)"); m_test->dump(indent + 2); print_indent(indent + 1); outln("(Consequent)"); m_consequent->dump(indent + 2); print_indent(indent + 1); outln("(Alternate)"); m_alternate->dump(indent + 2); } void SequenceExpression::dump(int indent) const { ASTNode::dump(indent); for (auto& expression : m_expressions) expression.dump(indent + 1); } Value SequenceExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; Value last_value; for (auto& expression : m_expressions) { last_value = expression.execute(interpreter, global_object); if (interpreter.exception()) return {}; } return last_value; } Value DebuggerStatement::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // Sorry, no JavaScript debugger available (yet)! return {}; } void ScopeNode::add_variables(NonnullRefPtrVector variables) { m_variables.append(move(variables)); } void ScopeNode::add_functions(NonnullRefPtrVector functions) { m_functions.append(move(functions)); } }