/* * Copyright (c) 2020-2021, Andreas Kling * Copyright (c) 2020-2021, Linus Groh * Copyright (c) 2021, David Tuin * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace JS { class InterpreterNodeScope { AK_MAKE_NONCOPYABLE(InterpreterNodeScope); AK_MAKE_NONMOVABLE(InterpreterNodeScope); public: InterpreterNodeScope(Interpreter& interpreter, ASTNode const& node) : m_interpreter(interpreter) , m_chain_node { nullptr, node } { m_interpreter.vm().running_execution_context().current_node = &node; m_interpreter.push_ast_node(m_chain_node); } ~InterpreterNodeScope() { m_interpreter.pop_ast_node(); } private: Interpreter& m_interpreter; ExecutingASTNodeChain m_chain_node; }; String ASTNode::class_name() const { // NOTE: We strip the "JS::" prefix. return demangle(typeid(*this).name()).substring(4); } static void update_function_name(Value value, FlyString const& name) { if (!value.is_function()) return; auto& function = value.as_function(); if (is(function) && function.name().is_empty()) static_cast(function).set_name(name); } static ThrowCompletionOr get_function_name(GlobalObject& global_object, Value value) { if (value.is_symbol()) return String::formatted("[{}]", value.as_symbol().description()); if (value.is_string()) return value.as_string().string(); return value.to_string(global_object); } Value ScopeNode::evaluate_statements(Interpreter& interpreter, GlobalObject& global_object) const { // FIXME: This should use completions but for now we just use the vm to communicate things. auto& vm = interpreter.vm(); Value last_value; for (auto& node : children()) { auto value = node.execute(interpreter, global_object); if (!value.is_empty()) last_value = value; if (vm.should_unwind()) { break; } } return last_value; } Value FunctionBody::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; // Note: Scoping should have already been setup by whoever is calling this FunctionBody. auto function_result = evaluate_statements(interpreter, global_object); if (interpreter.exception()) return {}; if (interpreter.vm().unwind_until() != ScopeType::Function) function_result = js_undefined(); else interpreter.vm().stop_unwind(); return function_result; } // 14.2.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation Value BlockStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto& vm = interpreter.vm(); Environment* old_environment { nullptr }; ArmedScopeGuard restore_environment = [&] { vm.running_execution_context().lexical_environment = old_environment; }; // Optimization: We only need a new lexical environment if there are any lexical declarations. :^) if (has_lexical_declarations()) { old_environment = vm.running_execution_context().lexical_environment; auto* block_environment = new_declarative_environment(*old_environment); block_declaration_instantiation(global_object, block_environment); vm.running_execution_context().lexical_environment = block_environment; } else { restore_environment.disarm(); } auto block_value = evaluate_statements(interpreter, global_object); if (!labels().is_empty() && vm.should_unwind_until(ScopeType::Breakable, labels())) vm.stop_unwind(); if (vm.exception()) return {}; return block_value; } Value Program::execute(Interpreter& interpreter, GlobalObject& global_object) const { // FIXME: This tries to be "ScriptEvaluation" and "evaluating scriptBody" at once. It shouldn't. // Clean this up and update perform_eval() / perform_shadow_realm_eval() InterpreterNodeScope node_scope { interpreter, *this }; VERIFY(interpreter.lexical_environment() && interpreter.lexical_environment()->is_global_environment()); auto& global_env = static_cast(*interpreter.lexical_environment()); TRY_OR_DISCARD(global_declaration_instantiation(interpreter, global_object, global_env)); return evaluate_statements(interpreter, global_object); } Value FunctionDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; if (m_is_hoisted) { // Perform special annexB steps see step 3 of: https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation auto* variable_environment = interpreter.vm().running_execution_context().variable_environment; auto* lexical_environment = interpreter.vm().running_execution_context().lexical_environment; auto function_object = MUST(lexical_environment->get_binding_value(global_object, name(), false)); MUST(variable_environment->set_mutable_binding(global_object, name(), function_object, false)); } return {}; } Value FunctionExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return instantiate_ordinary_function_expression(interpreter, global_object, name()); } // 15.2.5 Runtime Semantics: InstantiateOrdinaryFunctionExpression, https://tc39.es/ecma262/#sec-runtime-semantics-instantiateordinaryfunctionexpression Value FunctionExpression::instantiate_ordinary_function_expression(Interpreter& interpreter, GlobalObject& global_object, FlyString given_name) const { if (given_name.is_empty()) given_name = ""; auto has_own_name = !name().is_empty(); auto const& used_name = has_own_name ? name() : given_name; auto* scope = interpreter.lexical_environment(); if (has_own_name) { VERIFY(scope); scope = new_declarative_environment(*scope); MUST(scope->create_immutable_binding(global_object, name(), false)); } auto* private_scope = interpreter.vm().running_execution_context().private_environment; auto closure = ECMAScriptFunctionObject::create(global_object, used_name, body(), parameters(), function_length(), scope, private_scope, kind(), is_strict_mode(), might_need_arguments_object(), contains_direct_call_to_eval(), is_arrow_function()); // FIXME: 6. Perform SetFunctionName(closure, name). // FIXME: 7. Perform MakeConstructor(closure). if (has_own_name) MUST(scope->initialize_binding(global_object, name(), closure)); return closure; } Value ExpressionStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return m_expression->execute(interpreter, global_object); } CallExpression::ThisAndCallee CallExpression::compute_this_and_callee(Interpreter& interpreter, GlobalObject& global_object, Reference const& callee_reference) const { if (callee_reference.is_property_reference()) { auto this_value = callee_reference.get_this_value(); auto callee = TRY_OR_DISCARD(callee_reference.get_value(global_object)); return { this_value, callee }; } // [[Call]] will handle that in non-strict mode the this value becomes the global object return { js_undefined(), callee_reference.is_unresolvable() ? m_callee->execute(interpreter, global_object) : TRY_OR_DISCARD(callee_reference.get_value(global_object)) }; } // 13.3.8.1 Runtime Semantics: ArgumentListEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation static void argument_list_evaluation(Interpreter& interpreter, GlobalObject& global_object, Vector const& arguments, MarkedValueList& list) { auto& vm = global_object.vm(); list.ensure_capacity(arguments.size()); for (auto& argument : arguments) { auto value = argument.value->execute(interpreter, global_object); if (vm.exception()) return; if (argument.is_spread) { auto result = get_iterator_values(global_object, value, [&](Value iterator_value) -> Optional { list.append(iterator_value); return {}; }); if (result.is_error()) return; } else { list.append(value); } } } // 13.3.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-new-operator-runtime-semantics-evaluation // 13.3.5.1.1 EvaluateNew ( constructExpr, arguments ), https://tc39.es/ecma262/#sec-evaluatenew Value NewExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto& vm = interpreter.vm(); // 1. Let ref be the result of evaluating constructExpr. // 2. Let constructor be ? GetValue(ref). auto constructor = m_callee->execute(interpreter, global_object); if (vm.exception()) return {}; // 3. If arguments is empty, let argList be a new empty List. // 4. Else, // a. Let argList be ? ArgumentListEvaluation of arguments. MarkedValueList arg_list(vm.heap()); argument_list_evaluation(interpreter, global_object, m_arguments, arg_list); if (interpreter.exception()) return {}; // 5. If IsConstructor(constructor) is false, throw a TypeError exception. if (!constructor.is_constructor()) { throw_type_error_for_callee(interpreter, global_object, constructor, "constructor"sv); return {}; } // 6. Return ? Construct(constructor, argList). return TRY_OR_DISCARD(construct(global_object, constructor.as_function(), move(arg_list))); } void CallExpression::throw_type_error_for_callee(Interpreter& interpreter, GlobalObject& global_object, Value callee_value, StringView call_type) const { auto& vm = interpreter.vm(); if (is(*m_callee) || is(*m_callee)) { String expression_string; if (is(*m_callee)) { expression_string = static_cast(*m_callee).string(); } else { expression_string = static_cast(*m_callee).to_string_approximation(); } vm.throw_exception(global_object, ErrorType::IsNotAEvaluatedFrom, callee_value.to_string_without_side_effects(), call_type, expression_string); } else { vm.throw_exception(global_object, ErrorType::IsNotA, callee_value.to_string_without_side_effects(), call_type); } } Value CallExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto& vm = interpreter.vm(); auto callee_reference = m_callee->to_reference(interpreter, global_object); if (vm.exception()) return {}; auto [this_value, callee] = compute_this_and_callee(interpreter, global_object, callee_reference); if (vm.exception()) return {}; VERIFY(!callee.is_empty()); MarkedValueList arg_list(vm.heap()); argument_list_evaluation(interpreter, global_object, m_arguments, arg_list); if (interpreter.exception()) return {}; if (!callee.is_function()) { throw_type_error_for_callee(interpreter, global_object, callee, "function"sv); return {}; } auto& function = callee.as_function(); if (&function == global_object.eval_function() && callee_reference.is_environment_reference() && callee_reference.name().is_string() && callee_reference.name().as_string() == vm.names.eval.as_string()) { auto script_value = arg_list.size() == 0 ? js_undefined() : arg_list[0]; return TRY_OR_DISCARD(perform_eval(script_value, global_object, vm.in_strict_mode() ? CallerMode::Strict : CallerMode::NonStrict, EvalMode::Direct)); } return TRY_OR_DISCARD(vm.call(function, this_value, move(arg_list))); } // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation // SuperCall : super Arguments Value SuperCall::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto& vm = interpreter.vm(); // 1. Let newTarget be GetNewTarget(). auto new_target = vm.get_new_target(); // 2. Assert: Type(newTarget) is Object. VERIFY(new_target.is_function()); // 3. Let func be ! GetSuperConstructor(). auto* func = get_super_constructor(interpreter.vm()); VERIFY(!vm.exception()); // 4. Let argList be ? ArgumentListEvaluation of Arguments. MarkedValueList arg_list(vm.heap()); argument_list_evaluation(interpreter, global_object, m_arguments, arg_list); if (interpreter.exception()) return {}; // 5. If IsConstructor(func) is false, throw a TypeError exception. if (!func || !Value(func).is_constructor()) { vm.throw_exception(global_object, ErrorType::NotAConstructor, "Super constructor"); return {}; } // 6. Let result be ? Construct(func, argList, newTarget). auto* result = TRY_OR_DISCARD(construct(global_object, static_cast(*func), move(arg_list), &new_target.as_function())); // 7. Let thisER be GetThisEnvironment(). auto& this_er = verify_cast(get_this_environment(interpreter.vm())); // 8. Perform ? thisER.BindThisValue(result). TRY_OR_DISCARD(this_er.bind_this_value(global_object, result)); // 9. Let F be thisER.[[FunctionObject]]. // 10. Assert: F is an ECMAScript function object. (NOTE: This is implied by the strong C++ type.) [[maybe_unused]] auto& f = this_er.function_object(); // 11. Perform ? InitializeInstanceElements(result, F). TRY_OR_DISCARD(vm.initialize_instance_elements(*result, f)); // 12. Return result. return result; } Value YieldExpression::execute(Interpreter&, GlobalObject&) const { // This should be transformed to a return. VERIFY_NOT_REACHED(); } // 15.8.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-async-function-definitions-runtime-semantics-evaluation Value AwaitExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; // 1. Let exprRef be the result of evaluating UnaryExpression. // 2. Let value be ? GetValue(exprRef). auto value = m_argument->execute(interpreter, global_object); if (interpreter.exception()) return {}; // 3. Return ? Await(value). return TRY_OR_DISCARD(await(global_object, value)); } Value ReturnStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto value = argument() ? argument()->execute(interpreter, global_object) : js_undefined(); if (interpreter.exception()) return {}; interpreter.vm().unwind(ScopeType::Function); return value; } Value IfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto predicate_result = m_predicate->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (predicate_result.to_boolean()) return m_consequent->execute(interpreter, global_object); if (m_alternate) return m_alternate->execute(interpreter, global_object); return js_undefined(); } // 14.11.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-with-statement-runtime-semantics-evaluation // WithStatement : with ( Expression ) Statement Value WithStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; // 1. Let value be the result of evaluating Expression. auto value = m_object->execute(interpreter, global_object); if (interpreter.exception()) return {}; // 2. Let obj be ? ToObject(? GetValue(value)). auto* object = TRY_OR_DISCARD(value.to_object(global_object)); // 3. Let oldEnv be the running execution context's LexicalEnvironment. auto* old_environment = interpreter.vm().running_execution_context().lexical_environment; // 4. Let newEnv be NewObjectEnvironment(obj, true, oldEnv). auto* new_environment = new_object_environment(*object, true, old_environment); if (interpreter.exception()) return {}; // 5. Set the running execution context's LexicalEnvironment to newEnv. interpreter.vm().running_execution_context().lexical_environment = new_environment; // 6. Let C be the result of evaluating Statement. auto result = m_body->execute(interpreter, global_object).value_or(js_undefined()); // 7. Set the running execution context's LexicalEnvironment to oldEnv. interpreter.vm().running_execution_context().lexical_environment = old_environment; if (interpreter.exception()) return {}; // 8. Return Completion(UpdateEmpty(C, undefined)). return result; } Value WhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto last_value = js_undefined(); for (;;) { auto test_result = m_test->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (!test_result.to_boolean()) break; last_value = m_body->execute(interpreter, global_object).value_or(last_value); if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) { interpreter.vm().stop_unwind(); break; } else { return last_value; } } } return last_value; } Value DoWhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto last_value = js_undefined(); for (;;) { if (interpreter.exception()) return {}; last_value = m_body->execute(interpreter, global_object).value_or(last_value); if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) { interpreter.vm().stop_unwind(); break; } else { return last_value; } } auto test_result = m_test->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (!test_result.to_boolean()) break; } return last_value; } Value ForStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; // Note we don't always set a new environment but to use RAII we must do this here. auto* old_environment = interpreter.lexical_environment(); ScopeGuard restore_old_environment = [&] { interpreter.vm().running_execution_context().lexical_environment = old_environment; }; Vector let_declarations; if (m_init) { if (is(*m_init) && static_cast(*m_init).declaration_kind() != DeclarationKind::Var) { auto* loop_environment = new_declarative_environment(*old_environment); auto& declaration = static_cast(*m_init); declaration.for_each_bound_name([&](auto const& name) { if (declaration.declaration_kind() == DeclarationKind::Const) { MUST(loop_environment->create_immutable_binding(global_object, name, true)); } else { MUST(loop_environment->create_mutable_binding(global_object, name, false)); let_declarations.append(name); } return IterationDecision::Continue; }); interpreter.vm().running_execution_context().lexical_environment = loop_environment; } m_init->execute(interpreter, global_object); if (interpreter.exception()) return {}; } auto last_value = js_undefined(); // 14.7.4.4 CreatePerIterationEnvironment ( perIterationBindings ), https://tc39.es/ecma262/#sec-createperiterationenvironment auto create_per_iteration_environment = [&]() -> ThrowCompletionOr { if (let_declarations.is_empty()) return {}; auto* last_iteration_env = interpreter.lexical_environment(); auto* outer = last_iteration_env->outer_environment(); VERIFY(outer); auto* this_iteration_env = new_declarative_environment(*outer); for (auto& name : let_declarations) { MUST(this_iteration_env->create_mutable_binding(global_object, name, false)); auto last_value = TRY(last_iteration_env->get_binding_value(global_object, name, true)); VERIFY(!last_value.is_empty()); MUST(this_iteration_env->initialize_binding(global_object, name, last_value)); } interpreter.vm().running_execution_context().lexical_environment = this_iteration_env; return {}; }; TRY_OR_DISCARD(create_per_iteration_environment()); auto test_empty_or_true = [&] { if (!m_test) return true; auto test_result = m_test->execute(interpreter, global_object); if (interpreter.exception()) return false; return test_result.to_boolean(); }; while (true) { if (!test_empty_or_true()) break; last_value = m_body->execute(interpreter, global_object).value_or(last_value); if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) { interpreter.vm().stop_unwind(); break; } else { return last_value; } } TRY_OR_DISCARD(create_per_iteration_environment()); if (m_update) { m_update->execute(interpreter, global_object); if (interpreter.exception()) return {}; } } if (interpreter.exception()) return {}; return last_value; } struct ForInOfHeadState { explicit ForInOfHeadState(Variant, NonnullRefPtr> lhs) { lhs.visit( [&](NonnullRefPtr& ast_node) { expression_lhs = ast_node.ptr(); }, [&](NonnullRefPtr& pattern) { pattern_lhs = pattern.ptr(); destructuring = true; lhs_kind = Assignment; }); } ASTNode* expression_lhs = nullptr; BindingPattern* pattern_lhs = nullptr; enum LhsKind { Assignment, VarBinding, LexicalBinding }; LhsKind lhs_kind = Assignment; bool destructuring = false; Value rhs_value; // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset // Note: This is only steps 6.g through 6.j of the method because we currently implement for-in without an iterator so to prevent duplicated code we do this part here. ThrowCompletionOr execute_head(Interpreter& interpreter, GlobalObject& global_object, Value next_value) const { VERIFY(!next_value.is_empty()); Optional lhs_reference; Environment* iteration_environment = nullptr; // g. If lhsKind is either assignment or varBinding, then if (lhs_kind == Assignment || lhs_kind == VarBinding) { if (!destructuring) { VERIFY(expression_lhs); if (is(*expression_lhs)) { auto& declaration = static_cast(*expression_lhs); VERIFY(declaration.declarations().first().target().has>()); lhs_reference = declaration.declarations().first().target().get>()->to_reference(interpreter, global_object); } else { VERIFY(is(*expression_lhs) || is(*expression_lhs)); auto& expression = static_cast(*expression_lhs); lhs_reference = expression.to_reference(interpreter, global_object); } } } // h. Else, else { VERIFY(expression_lhs && is(*expression_lhs)); iteration_environment = new_declarative_environment(*interpreter.lexical_environment()); auto& for_declaration = static_cast(*expression_lhs); for_declaration.for_each_bound_name([&](auto const& name) { if (for_declaration.declaration_kind() == DeclarationKind::Const) MUST(iteration_environment->create_immutable_binding(global_object, name, false)); else MUST(iteration_environment->create_mutable_binding(global_object, name, true)); }); interpreter.vm().running_execution_context().lexical_environment = iteration_environment; if (!destructuring) { VERIFY(for_declaration.declarations().first().target().has>()); lhs_reference = MUST(interpreter.vm().resolve_binding(for_declaration.declarations().first().target().get>()->string())); } } if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); // i. If destructuring is false, then if (!destructuring) { VERIFY(lhs_reference.has_value()); if (lhs_kind == LexicalBinding) return lhs_reference->initialize_referenced_binding(global_object, next_value); else return lhs_reference->put_value(global_object, next_value); } // j. Else, if (lhs_kind == Assignment) { VERIFY(pattern_lhs); return interpreter.vm().destructuring_assignment_evaluation(*pattern_lhs, next_value, global_object); } VERIFY(expression_lhs && is(*expression_lhs)); auto& for_declaration = static_cast(*expression_lhs); auto& binding_pattern = for_declaration.declarations().first().target().get>(); VERIFY(lhs_kind == VarBinding || iteration_environment); // At this point iteration_environment is undefined if lhs_kind == VarBinding which means this does both // branch j.ii and j.iii because ForBindingInitialization is just a forwarding call to BindingInitialization. return interpreter.vm().binding_initialization(binding_pattern, next_value, iteration_environment, global_object); } }; // 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation // This method combines ForInOfLoopEvaluation and ForIn/OfHeadEvaluation for similar reason as ForIn/OfBodyEvaluation, to prevent code duplication. // For the same reason we also skip step 6 and 7 of ForIn/OfHeadEvaluation as this is done by the appropriate for loop type. static ThrowCompletionOr for_in_of_head_execute(Interpreter& interpreter, GlobalObject& global_object, Variant, NonnullRefPtr> lhs, Expression const& rhs) { ForInOfHeadState state(lhs); if (auto* ast_ptr = lhs.get_pointer>(); ast_ptr && is(*(*ast_ptr))) { // Runtime Semantics: ForInOfLoopEvaluation, for any of: // ForInOfStatement : for ( var ForBinding in Expression ) Statement // ForInOfStatement : for ( ForDeclaration in Expression ) Statement // ForInOfStatement : for ( var ForBinding of AssignmentExpression ) Statement // ForInOfStatement : for ( ForDeclaration of AssignmentExpression ) Statement // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation Environment* new_environment = nullptr; auto& variable_declaration = static_cast(*(*ast_ptr)); VERIFY(variable_declaration.declarations().size() == 1); state.destructuring = variable_declaration.declarations().first().target().has>(); if (variable_declaration.declaration_kind() == DeclarationKind::Var) { state.lhs_kind = ForInOfHeadState::VarBinding; auto& variable = variable_declaration.declarations().first(); // B.3.5 Initializers in ForIn Statement Heads, https://tc39.es/ecma262/#sec-initializers-in-forin-statement-heads if (variable.init()) { VERIFY(variable.target().has>()); auto& binding_id = variable.target().get>()->string(); auto reference = TRY(interpreter.vm().resolve_binding(binding_id)); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); auto result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(global_object, *variable.init(), binding_id)); TRY(reference.put_value(global_object, result)); } } else { state.lhs_kind = ForInOfHeadState::LexicalBinding; new_environment = new_declarative_environment(*interpreter.lexical_environment()); variable_declaration.for_each_bound_name([&](auto const& name) { MUST(new_environment->create_mutable_binding(global_object, name, false)); }); } if (new_environment) { // 2.d Set the running execution context's LexicalEnvironment to newEnv. TemporaryChange scope_change(interpreter.vm().running_execution_context().lexical_environment, new_environment); // 3. Let exprRef be the result of evaluating expr. // 5. Let exprValue be ? GetValue(exprRef). state.rhs_value = rhs.execute(interpreter, global_object); // Note that since a reference stores it's environment it doesn't matter we only reset // this after step 5. (Also we have no way of separating these steps at this point) // 4. Set the running execution context's LexicalEnvironment to oldEnv. } else { // 3. Let exprRef be the result of evaluating expr. // 5. Let exprValue be ? GetValue(exprRef). state.rhs_value = rhs.execute(interpreter, global_object); } if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); return state; } // Runtime Semantics: ForInOfLoopEvaluation, for any of: // ForInOfStatement : for ( LeftHandSideExpression in Expression ) Statement // ForInOfStatement : for ( LeftHandSideExpression of AssignmentExpression ) Statement // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation // We can skip step 1, 2 and 4 here (on top of already skipping step 6 and 7). // 3. Let exprRef be the result of evaluating expr. // 5. Let exprValue be ? GetValue(exprRef). state.rhs_value = rhs.execute(interpreter, global_object); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); return state; } Value ForInStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto for_in_head_state = TRY_OR_DISCARD(for_in_of_head_execute(interpreter, global_object, m_lhs, *m_rhs)); auto rhs_result = for_in_head_state.rhs_value; // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation if (rhs_result.is_nullish()) return js_undefined(); auto* object = MUST(rhs_result.to_object(global_object)); // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset Environment* old_environment = interpreter.lexical_environment(); auto restore_scope = ScopeGuard([&] { interpreter.vm().running_execution_context().lexical_environment = old_environment; }); auto last_value = js_undefined(); while (object) { auto property_names = TRY_OR_DISCARD(object->enumerable_own_property_names(Object::PropertyKind::Key)); for (auto& value : property_names) { TRY_OR_DISCARD(for_in_head_state.execute_head(interpreter, global_object, value)); last_value = m_body->execute(interpreter, global_object).value_or(last_value); interpreter.vm().running_execution_context().lexical_environment = old_environment; if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) { interpreter.vm().stop_unwind(); break; } else { return last_value; } } } object = TRY_OR_DISCARD(object->internal_get_prototype_of()); } return last_value; } Value ForOfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto for_of_head_state = TRY_OR_DISCARD(for_in_of_head_execute(interpreter, global_object, m_lhs, m_rhs)); auto rhs_result = for_of_head_state.rhs_value; auto last_value = js_undefined(); // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset // We use get_iterator_values which behaves like ForIn/OfBodyEvaluation with iteratorKind iterate. Environment* old_environment = interpreter.lexical_environment(); auto restore_scope = ScopeGuard([&] { interpreter.vm().running_execution_context().lexical_environment = old_environment; }); TRY_OR_DISCARD(get_iterator_values(global_object, rhs_result, [&](Value value) -> Optional { TRY(for_of_head_state.execute_head(interpreter, global_object, value)); last_value = m_body->execute(interpreter, global_object).value_or(last_value); interpreter.vm().running_execution_context().lexical_environment = old_environment; if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) { interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) { interpreter.vm().stop_unwind(); return normal_completion(last_value); } else { return normal_completion(last_value); } } return {}; })); return last_value; } Value ForAwaitOfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation // Note: Performs only steps 1 through 5. auto for_of_head_state = TRY_OR_DISCARD(for_in_of_head_execute(interpreter, global_object, m_lhs, m_rhs)); auto rhs_result = for_of_head_state.rhs_value; // NOTE: Perform step 7 from ForIn/OfHeadEvaluation. And since this is always async we only have to do step 7.d. // d. Return ? GetIterator(exprValue, iteratorHint). auto* iterator = TRY_OR_DISCARD(get_iterator(global_object, rhs_result, IteratorHint::Async)); VERIFY(iterator); auto& vm = interpreter.vm(); // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset // NOTE: Here iteratorKind is always async. // 2. Let oldEnv be the running execution context's LexicalEnvironment. Environment* old_environment = interpreter.lexical_environment(); auto restore_scope = ScopeGuard([&] { interpreter.vm().running_execution_context().lexical_environment = old_environment; }); // 3. Let V be undefined. auto last_value = js_undefined(); // NOTE: Step 4 and 5 are just extracting properties from the head which is done already in for_in_of_head_execute. // And these are only used in step 6.g through 6.k which is done with for_of_head_state.execute_head. // 6. Repeat, while (true) { // NOTE: Since we don't have iterator records yet we have to extract the function first. auto next_method = TRY_OR_DISCARD(iterator->get(vm.names.next)); if (!next_method.is_function()) { vm.throw_exception(global_object, ErrorType::IterableNextNotAFunction); return {}; } // a. Let nextResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]]). auto next_result = TRY_OR_DISCARD(call(global_object, next_method, iterator)); // b. If iteratorKind is async, set nextResult to ? Await(nextResult). next_result = TRY_OR_DISCARD(await(global_object, next_result)); // c. If Type(nextResult) is not Object, throw a TypeError exception. if (!next_result.is_object()) { vm.throw_exception(global_object, ErrorType::IterableNextBadReturn); return {}; } // d. Let done be ? IteratorComplete(nextResult). auto done = TRY_OR_DISCARD(iterator_complete(global_object, next_result.as_object())); // e. If done is true, return NormalCompletion(V). if (done) return last_value; // f. Let nextValue be ? IteratorValue(nextResult). auto next_value = TRY_OR_DISCARD(iterator_value(global_object, next_result.as_object())); // NOTE: This performs steps g. through to k. TRY_OR_DISCARD(for_of_head_state.execute_head(interpreter, global_object, next_value)); // l. Let result be the result of evaluating stmt. auto result = m_body->execute(interpreter, global_object); // m. Set the running execution context's LexicalEnvironment to oldEnv. interpreter.vm().running_execution_context().lexical_environment = old_environment; // NOTE: Since execute does not return a completion we have to have a number of checks here. // n. If LoopContinues(result, labelSet) is false, then if (auto* exception = vm.exception()) { // FIXME: We should return the result of AsyncIteratorClose but cannot return completions yet. // 3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status). TRY_OR_DISCARD(async_iterator_close(*iterator, throw_completion(exception->value()))); return {}; } if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) { // NOTE: In this case LoopContinues is not actually false so we don't perform step 6.n.ii.3. interpreter.vm().stop_unwind(); } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) { interpreter.vm().stop_unwind(); // 2. Set status to UpdateEmpty(result, V). if (!result.is_empty()) last_value = result; // 3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status). TRY_OR_DISCARD(async_iterator_close(*iterator, normal_completion(last_value))); return last_value; } else { // 2. Set status to UpdateEmpty(result, V). if (!result.is_empty()) last_value = result; // 3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status). TRY_OR_DISCARD(async_iterator_close(*iterator, normal_completion(last_value))); return last_value; } } // o. If result.[[Value]] is not empty, set V to result.[[Value]]. if (!result.is_empty()) last_value = result; } VERIFY_NOT_REACHED(); } Value BinaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; // Special case in which we cannot execute the lhs. RelationalExpression : PrivateIdentifier in ShiftExpression // RelationalExpression : PrivateIdentifier in ShiftExpression, https://tc39.es/ecma262/#sec-relational-operators-runtime-semantics-evaluation if (m_op == BinaryOp::In && is(*m_lhs)) { auto& private_identifier = static_cast(*m_lhs).string(); auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (!rhs_result.is_object()) { interpreter.vm().throw_exception(global_object, ErrorType::InOperatorWithObject); return {}; } auto* private_environment = interpreter.vm().running_execution_context().private_environment; VERIFY(private_environment); auto private_name = private_environment->resolve_private_identifier(private_identifier); return Value(rhs_result.as_object().private_element_find(private_name) != nullptr); } auto lhs_result = m_lhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; switch (m_op) { case BinaryOp::Addition: return TRY_OR_DISCARD(add(global_object, lhs_result, rhs_result)); case BinaryOp::Subtraction: return TRY_OR_DISCARD(sub(global_object, lhs_result, rhs_result)); case BinaryOp::Multiplication: return TRY_OR_DISCARD(mul(global_object, lhs_result, rhs_result)); case BinaryOp::Division: return TRY_OR_DISCARD(div(global_object, lhs_result, rhs_result)); case BinaryOp::Modulo: return TRY_OR_DISCARD(mod(global_object, lhs_result, rhs_result)); case BinaryOp::Exponentiation: return TRY_OR_DISCARD(exp(global_object, lhs_result, rhs_result)); case BinaryOp::StrictlyEquals: return Value(is_strictly_equal(lhs_result, rhs_result)); case BinaryOp::StrictlyInequals: return Value(!is_strictly_equal(lhs_result, rhs_result)); case BinaryOp::LooselyEquals: return Value(TRY_OR_DISCARD(is_loosely_equal(global_object, lhs_result, rhs_result))); case BinaryOp::LooselyInequals: return Value(!TRY_OR_DISCARD(is_loosely_equal(global_object, lhs_result, rhs_result))); case BinaryOp::GreaterThan: return TRY_OR_DISCARD(greater_than(global_object, lhs_result, rhs_result)); case BinaryOp::GreaterThanEquals: return TRY_OR_DISCARD(greater_than_equals(global_object, lhs_result, rhs_result)); case BinaryOp::LessThan: return TRY_OR_DISCARD(less_than(global_object, lhs_result, rhs_result)); case BinaryOp::LessThanEquals: return TRY_OR_DISCARD(less_than_equals(global_object, lhs_result, rhs_result)); case BinaryOp::BitwiseAnd: return TRY_OR_DISCARD(bitwise_and(global_object, lhs_result, rhs_result)); case BinaryOp::BitwiseOr: return TRY_OR_DISCARD(bitwise_or(global_object, lhs_result, rhs_result)); case BinaryOp::BitwiseXor: return TRY_OR_DISCARD(bitwise_xor(global_object, lhs_result, rhs_result)); case BinaryOp::LeftShift: return TRY_OR_DISCARD(left_shift(global_object, lhs_result, rhs_result)); case BinaryOp::RightShift: return TRY_OR_DISCARD(right_shift(global_object, lhs_result, rhs_result)); case BinaryOp::UnsignedRightShift: return TRY_OR_DISCARD(unsigned_right_shift(global_object, lhs_result, rhs_result)); case BinaryOp::In: return TRY_OR_DISCARD(in(global_object, lhs_result, rhs_result)); case BinaryOp::InstanceOf: return TRY_OR_DISCARD(instance_of(global_object, lhs_result, rhs_result)); } VERIFY_NOT_REACHED(); } Value LogicalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto lhs_result = m_lhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; switch (m_op) { case LogicalOp::And: if (lhs_result.to_boolean()) { auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; return rhs_result; } return lhs_result; case LogicalOp::Or: { if (lhs_result.to_boolean()) return lhs_result; auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; return rhs_result; } case LogicalOp::NullishCoalescing: if (lhs_result.is_nullish()) { auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; return rhs_result; } return lhs_result; } VERIFY_NOT_REACHED(); } Reference Expression::to_reference(Interpreter&, GlobalObject&) const { return {}; } Reference Identifier::to_reference(Interpreter& interpreter, GlobalObject&) const { if (m_cached_environment_coordinate.has_value()) { auto* environment = interpreter.vm().running_execution_context().lexical_environment; for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i) environment = environment->outer_environment(); VERIFY(environment); VERIFY(environment->is_declarative_environment()); if (!environment->is_permanently_screwed_by_eval()) { return Reference { *environment, string(), interpreter.vm().in_strict_mode(), m_cached_environment_coordinate }; } m_cached_environment_coordinate = {}; } auto reference = TRY_OR_DISCARD(interpreter.vm().resolve_binding(string())); if (reference.environment_coordinate().has_value()) m_cached_environment_coordinate = reference.environment_coordinate(); return reference; } Reference MemberExpression::to_reference(Interpreter& interpreter, GlobalObject& global_object) const { // 13.3.7.1 Runtime Semantics: Evaluation // SuperProperty : super [ Expression ] // SuperProperty : super . IdentifierName // https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation if (is(object())) { // 1. Let env be GetThisEnvironment(). auto& environment = get_this_environment(interpreter.vm()); // 2. Let actualThis be ? env.GetThisBinding(). auto actual_this = TRY_OR_DISCARD(environment.get_this_binding(global_object)); PropertyKey property_key; if (is_computed()) { // SuperProperty : super [ Expression ] // 3. Let propertyNameReference be the result of evaluating Expression. // 4. Let propertyNameValue be ? GetValue(propertyNameReference). auto property_name_value = m_property->execute(interpreter, global_object); if (interpreter.exception()) return {}; // 5. Let propertyKey be ? ToPropertyKey(propertyNameValue). property_key = TRY_OR_DISCARD(property_name_value.to_property_key(global_object)); } else { // SuperProperty : super . IdentifierName // 3. Let propertyKey be StringValue of IdentifierName. VERIFY(is(property())); property_key = static_cast(property()).string(); } // 6. If the code matched by this SuperProperty is strict mode code, let strict be true; else let strict be false. bool strict = interpreter.vm().in_strict_mode(); // 7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict). return TRY_OR_DISCARD(make_super_property_reference(global_object, actual_this, property_key, strict)); } auto base_reference = m_object->to_reference(interpreter, global_object); if (interpreter.exception()) return {}; Value base_value; if (base_reference.is_valid_reference()) base_value = TRY_OR_DISCARD(base_reference.get_value(global_object)); else base_value = m_object->execute(interpreter, global_object); if (interpreter.exception()) return {}; VERIFY(!base_value.is_empty()); // From here on equivalent to // 13.3.4 EvaluatePropertyAccessWithIdentifierKey ( baseValue, identifierName, strict ), https://tc39.es/ecma262/#sec-evaluate-property-access-with-identifier-key PropertyKey property_name; if (is_computed()) { // Weird order which I can't quite find from the specs. auto value = m_property->execute(interpreter, global_object); if (interpreter.exception()) return Reference {}; TRY_OR_DISCARD(require_object_coercible(global_object, base_value)); VERIFY(!value.is_empty()); property_name = PropertyKey::from_value(global_object, value); if (interpreter.exception()) return Reference {}; } else if (is(*m_property)) { auto& private_identifier = static_cast(*m_property); return make_private_reference(interpreter.vm(), base_value, private_identifier.string()); } else { property_name = verify_cast(*m_property).string(); TRY_OR_DISCARD(require_object_coercible(global_object, base_value)); } if (!property_name.is_valid()) return Reference {}; auto strict = interpreter.vm().in_strict_mode(); return Reference { base_value, move(property_name), {}, strict }; } Value UnaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto& vm = interpreter.vm(); if (m_op == UnaryOp::Delete) { auto reference = m_lhs->to_reference(interpreter, global_object); if (interpreter.exception()) return {}; return Value(TRY_OR_DISCARD(reference.delete_(global_object))); } Value lhs_result; if (m_op == UnaryOp::Typeof && is(*m_lhs)) { auto reference = m_lhs->to_reference(interpreter, global_object); if (interpreter.exception()) return {}; if (reference.is_unresolvable()) lhs_result = js_undefined(); else lhs_result = TRY_OR_DISCARD(reference.get_value(global_object)); VERIFY(!lhs_result.is_empty()); } else { lhs_result = m_lhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; } switch (m_op) { case UnaryOp::BitwiseNot: return TRY_OR_DISCARD(bitwise_not(global_object, lhs_result)); case UnaryOp::Not: return Value(!lhs_result.to_boolean()); case UnaryOp::Plus: return TRY_OR_DISCARD(unary_plus(global_object, lhs_result)); case UnaryOp::Minus: return TRY_OR_DISCARD(unary_minus(global_object, lhs_result)); case UnaryOp::Typeof: return js_string(vm, lhs_result.typeof()); case UnaryOp::Void: return js_undefined(); case UnaryOp::Delete: VERIFY_NOT_REACHED(); } VERIFY_NOT_REACHED(); } Value SuperExpression::execute(Interpreter&, GlobalObject&) const { // The semantics for SuperExpression are handled in CallExpression and SuperCall. VERIFY_NOT_REACHED(); } Value ClassElement::execute(Interpreter&, GlobalObject&) const { // Note: The semantics of class element are handled in class_element_evaluation VERIFY_NOT_REACHED(); } static ThrowCompletionOr class_key_to_property_name(Interpreter& interpreter, GlobalObject& global_object, Expression const& key) { if (is(key)) { auto& private_identifier = static_cast(key); auto* private_environment = interpreter.vm().running_execution_context().private_environment; VERIFY(private_environment); return ClassElement::ClassElementName { private_environment->resolve_private_identifier(private_identifier.string()) }; } auto prop_key = key.execute(interpreter, global_object); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); if (prop_key.is_object()) prop_key = TRY(prop_key.to_primitive(global_object, Value::PreferredType::String)); auto property_key = PropertyKey::from_value(global_object, prop_key); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); return ClassElement::ClassElementName { property_key }; } // 15.4.5 Runtime Semantics: MethodDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-methoddefinitionevaluation ThrowCompletionOr ClassMethod::class_element_evaluation(Interpreter& interpreter, GlobalObject& global_object, Object& target) const { auto property_key = TRY(class_key_to_property_name(interpreter, global_object, *m_key)); auto method_value = m_function->execute(interpreter, global_object); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); auto& method_function = static_cast(method_value.as_function()); method_function.make_method(target); auto set_function_name = [&](String prefix = "") { auto property_name = property_key.visit( [&](PropertyKey const& property_name) -> String { if (property_name.is_symbol()) { auto description = property_name.as_symbol()->description(); if (description.is_empty()) return ""; return String::formatted("[{}]", description); } else { return property_name.to_string(); } }, [&](PrivateName const& private_name) -> String { return private_name.description; }); update_function_name(method_value, String::formatted("{}{}{}", prefix, prefix.is_empty() ? "" : " ", property_name)); }; if (property_key.has()) { auto& property_name = property_key.get(); switch (kind()) { case ClassMethod::Kind::Method: set_function_name(); TRY(target.define_property_or_throw(property_name, { .value = method_value, .writable = true, .enumerable = false, .configurable = true })); break; case ClassMethod::Kind::Getter: set_function_name("get"); TRY(target.define_property_or_throw(property_name, { .get = &method_function, .enumerable = true, .configurable = true })); break; case ClassMethod::Kind::Setter: set_function_name("set"); TRY(target.define_property_or_throw(property_name, { .set = &method_function, .enumerable = true, .configurable = true })); break; default: VERIFY_NOT_REACHED(); } return ClassValue { normal_completion({}) }; } else { auto& private_name = property_key.get(); switch (kind()) { case Kind::Method: set_function_name(); return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Method, method_value } }; case Kind::Getter: set_function_name("get"); return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Accessor::create(interpreter.vm(), &method_function, nullptr) } }; case Kind::Setter: set_function_name("set"); return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Accessor::create(interpreter.vm(), nullptr, &method_function) } }; default: VERIFY_NOT_REACHED(); } } } // We use this class to mimic Initializer : = AssignmentExpression of // 10.2.1.3 Runtime Semantics: EvaluateBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatebody class ClassFieldInitializerStatement : public Statement { public: ClassFieldInitializerStatement(SourceRange source_range, NonnullRefPtr expression, FlyString field_name) : Statement(source_range) , m_expression(move(expression)) , m_class_field_identifier_name(move(field_name)) { } Value execute(Interpreter& interpreter, GlobalObject& global_object) const override { VERIFY(interpreter.vm().argument_count() == 0); VERIFY(!m_class_field_identifier_name.is_empty()); return TRY_OR_DISCARD(interpreter.vm().named_evaluation_if_anonymous_function(global_object, m_expression, m_class_field_identifier_name)); } void dump(int) const override { // This should not be dumped as it is never part of an actual AST. VERIFY_NOT_REACHED(); } private: NonnullRefPtr m_expression; FlyString m_class_field_identifier_name; // [[ClassFieldIdentifierName]] }; // 15.7.10 Runtime Semantics: ClassFieldDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classfielddefinitionevaluation ThrowCompletionOr ClassField::class_element_evaluation(Interpreter& interpreter, GlobalObject& global_object, Object& target) const { auto property_key = TRY(class_key_to_property_name(interpreter, global_object, *m_key)); ECMAScriptFunctionObject* initializer = nullptr; if (m_initializer) { auto copy_initializer = m_initializer; auto name = property_key.visit( [&](PropertyKey const& property_name) -> String { return property_name.is_number() ? property_name.to_string() : property_name.to_string_or_symbol().to_display_string(); }, [&](PrivateName const& private_name) -> String { return private_name.description; }); // FIXME: A potential optimization is not creating the functions here since these are never directly accessible. auto function_code = create_ast_node(m_initializer->source_range(), copy_initializer.release_nonnull(), name); initializer = ECMAScriptFunctionObject::create(interpreter.global_object(), String::empty(), *function_code, {}, 0, interpreter.lexical_environment(), interpreter.vm().running_execution_context().private_environment, FunctionKind::Regular, true, false, m_contains_direct_call_to_eval, false); initializer->make_method(target); } return ClassValue { ClassFieldDefinition { property_key, initializer, } }; } static Optional nullopt_or_private_identifier_description(Expression const& expression) { if (is(expression)) return static_cast(expression).string(); return {}; } Optional ClassField::private_bound_identifier() const { return nullopt_or_private_identifier_description(*m_key); } Optional ClassMethod::private_bound_identifier() const { return nullopt_or_private_identifier_description(*m_key); } // 15.7.11 Runtime Semantics: ClassStaticBlockDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classstaticblockdefinitionevaluation ThrowCompletionOr StaticInitializer::class_element_evaluation(Interpreter& interpreter, GlobalObject& global_object, Object& home_object) const { auto* lexical_environment = interpreter.vm().running_execution_context().lexical_environment; auto* private_scope = interpreter.vm().running_execution_context().private_environment; // Note: The function bodyFunction is never directly accessible to ECMAScript code. auto* body_function = ECMAScriptFunctionObject::create(global_object, "", *m_function_body, {}, 0, lexical_environment, private_scope, FunctionKind::Regular, true, false, m_contains_direct_call_to_eval, false); body_function->make_method(home_object); return ClassValue { normal_completion(body_function) }; } Value ClassExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; // FIXME: Set value.[[SourceText]] to the source text matched by ClassExpression. return TRY_OR_DISCARD(class_definition_evaluation(interpreter, global_object, m_name, m_name.is_null() ? "" : m_name)); } Value ClassDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto name = m_class_expression->name(); VERIFY(!name.is_empty()); auto class_constructor = TRY_OR_DISCARD(m_class_expression->class_definition_evaluation(interpreter, global_object, name, name)); TRY_OR_DISCARD(initialize_bound_name(global_object, name, class_constructor, interpreter.lexical_environment())); return {}; } // 15.7.14 Runtime Semantics: ClassDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classdefinitionevaluation ThrowCompletionOr ClassExpression::class_definition_evaluation(Interpreter& interpreter, GlobalObject& global_object, FlyString const& binding_name, FlyString const& class_name) const { auto& vm = interpreter.vm(); auto* environment = vm.lexical_environment(); VERIFY(environment); auto* class_scope = new_declarative_environment(*environment); // We might not set the lexical environment but we always want to restore it eventually. ArmedScopeGuard restore_environment = [&] { vm.running_execution_context().lexical_environment = environment; }; if (!binding_name.is_null()) MUST(class_scope->create_immutable_binding(global_object, binding_name, true)); auto* outer_private_environment = vm.running_execution_context().private_environment; auto* class_private_environment = new_private_environment(vm, outer_private_environment); for (auto const& element : m_elements) { auto opt_private_name = element.private_bound_identifier(); if (opt_private_name.has_value()) class_private_environment->add_private_name({}, opt_private_name.release_value()); } auto* proto_parent = vm.current_realm()->global_object().object_prototype(); auto* constructor_parent = vm.current_realm()->global_object().function_prototype(); if (!m_super_class.is_null()) { vm.running_execution_context().lexical_environment = class_scope; // Note: Since our execute does evaluation and GetValue in once we must check for a valid reference first Value super_class; auto reference = m_super_class->to_reference(interpreter, global_object); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); if (reference.is_valid_reference()) { super_class = TRY(reference.get_value(global_object)); } else { super_class = m_super_class->execute(interpreter, global_object); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); } vm.running_execution_context().lexical_environment = environment; if (super_class.is_null()) { proto_parent = nullptr; } else if (!super_class.is_constructor()) { return vm.throw_completion(global_object, ErrorType::ClassExtendsValueNotAConstructorOrNull, super_class.to_string_without_side_effects()); } else { auto super_class_prototype = TRY(super_class.get(global_object, vm.names.prototype)); if (!super_class_prototype.is_null() && !super_class_prototype.is_object()) return vm.throw_completion(global_object, ErrorType::ClassExtendsValueInvalidPrototype, super_class_prototype.to_string_without_side_effects()); if (super_class_prototype.is_null()) proto_parent = nullptr; else proto_parent = &super_class_prototype.as_object(); constructor_parent = &super_class.as_object(); } } auto* prototype = Object::create(global_object, proto_parent); VERIFY(prototype); vm.running_execution_context().lexical_environment = class_scope; vm.running_execution_context().private_environment = class_private_environment; ScopeGuard restore_private_environment = [&] { vm.running_execution_context().private_environment = outer_private_environment; }; // FIXME: Step 14.a is done in the parser. But maybe it shouldn't? Value class_constructor_value = m_constructor->execute(interpreter, global_object); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); update_function_name(class_constructor_value, class_name); VERIFY(class_constructor_value.is_function() && is(class_constructor_value.as_function())); auto* class_constructor = static_cast(&class_constructor_value.as_function()); class_constructor->set_home_object(prototype); class_constructor->set_is_class_constructor(); class_constructor->define_direct_property(vm.names.prototype, prototype, Attribute::Writable); TRY(class_constructor->internal_set_prototype_of(constructor_parent)); if (!m_super_class.is_null()) class_constructor->set_constructor_kind(ECMAScriptFunctionObject::ConstructorKind::Derived); prototype->define_direct_property(vm.names.constructor, class_constructor, Attribute::Writable | Attribute::Configurable); using StaticElement = Variant; Vector static_private_methods; Vector instance_private_methods; Vector instance_fields; Vector static_elements; for (auto const& element : m_elements) { // Note: All ClassElementEvaluation start with evaluating the name (or we fake it). auto element_value = TRY(element.class_element_evaluation(interpreter, global_object, element.is_static() ? *class_constructor : *prototype)); if (element_value.has()) { auto& container = element.is_static() ? static_private_methods : instance_private_methods; auto& private_element = element_value.get(); auto added_to_existing = false; // FIXME: We can skip this loop in most cases. for (auto& existing : container) { if (existing.key == private_element.key) { VERIFY(existing.kind == PrivateElement::Kind::Accessor); VERIFY(private_element.kind == PrivateElement::Kind::Accessor); auto& accessor = private_element.value.as_accessor(); if (!accessor.getter()) existing.value.as_accessor().set_setter(accessor.setter()); else existing.value.as_accessor().set_getter(accessor.getter()); added_to_existing = true; } } if (!added_to_existing) container.append(move(element_value.get())); } else if (auto* class_field_definition_ptr = element_value.get_pointer()) { if (element.is_static()) static_elements.append(move(*class_field_definition_ptr)); else instance_fields.append(move(*class_field_definition_ptr)); } else if (element.class_element_kind() == ClassElement::ElementKind::StaticInitializer) { // We use Completion to hold the ClassStaticBlockDefinition Record. VERIFY(element_value.has() && element_value.get().has_value()); auto element_object = element_value.get().value(); VERIFY(is(element_object.as_object())); static_elements.append(static_cast(&element_object.as_object())); } } vm.running_execution_context().lexical_environment = environment; restore_environment.disarm(); if (!binding_name.is_null()) MUST(class_scope->initialize_binding(global_object, binding_name, class_constructor)); for (auto& field : instance_fields) class_constructor->add_field(field.name, field.initializer); for (auto& private_method : instance_private_methods) class_constructor->add_private_method(private_method); for (auto& method : static_private_methods) class_constructor->private_method_or_accessor_add(move(method)); for (auto& element : static_elements) { TRY(element.visit( [&](ClassElement::ClassFieldDefinition const& field) -> ThrowCompletionOr { return TRY(class_constructor->define_field(field.name, field.initializer)); }, [&](ECMAScriptFunctionObject* static_block_function) -> ThrowCompletionOr { // We discard any value returned here. TRY(call(global_object, static_block_function, class_constructor_value)); return {}; })); } return Value(class_constructor); } static void print_indent(int indent) { out("{}", String::repeated(' ', indent * 2)); } void ASTNode::dump(int indent) const { print_indent(indent); outln("{}", class_name()); } void ScopeNode::dump(int indent) const { ASTNode::dump(indent); if (!m_lexical_declarations.is_empty()) { print_indent(indent + 1); outln("(Lexical declarations)"); for (auto& declaration : m_lexical_declarations) declaration.dump(indent + 2); } if (!m_var_declarations.is_empty()) { print_indent(indent + 1); outln("(Variable declarations)"); for (auto& declaration : m_var_declarations) declaration.dump(indent + 2); } if (!m_functions_hoistable_with_annexB_extension.is_empty()) { print_indent(indent + 1); outln("(Hoisted functions via annexB extension)"); for (auto& declaration : m_functions_hoistable_with_annexB_extension) declaration.dump(indent + 2); } if (!m_children.is_empty()) { print_indent(indent + 1); outln("(Children)"); for (auto& child : children()) child.dump(indent + 2); } } void BinaryExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case BinaryOp::Addition: op_string = "+"; break; case BinaryOp::Subtraction: op_string = "-"; break; case BinaryOp::Multiplication: op_string = "*"; break; case BinaryOp::Division: op_string = "/"; break; case BinaryOp::Modulo: op_string = "%"; break; case BinaryOp::Exponentiation: op_string = "**"; break; case BinaryOp::StrictlyEquals: op_string = "==="; break; case BinaryOp::StrictlyInequals: op_string = "!=="; break; case BinaryOp::LooselyEquals: op_string = "=="; break; case BinaryOp::LooselyInequals: op_string = "!="; break; case BinaryOp::GreaterThan: op_string = ">"; break; case BinaryOp::GreaterThanEquals: op_string = ">="; break; case BinaryOp::LessThan: op_string = "<"; break; case BinaryOp::LessThanEquals: op_string = "<="; break; case BinaryOp::BitwiseAnd: op_string = "&"; break; case BinaryOp::BitwiseOr: op_string = "|"; break; case BinaryOp::BitwiseXor: op_string = "^"; break; case BinaryOp::LeftShift: op_string = "<<"; break; case BinaryOp::RightShift: op_string = ">>"; break; case BinaryOp::UnsignedRightShift: op_string = ">>>"; break; case BinaryOp::In: op_string = "in"; break; case BinaryOp::InstanceOf: op_string = "instanceof"; break; } print_indent(indent); outln("{}", class_name()); m_lhs->dump(indent + 1); print_indent(indent + 1); outln("{}", op_string); m_rhs->dump(indent + 1); } void LogicalExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case LogicalOp::And: op_string = "&&"; break; case LogicalOp::Or: op_string = "||"; break; case LogicalOp::NullishCoalescing: op_string = "??"; break; } print_indent(indent); outln("{}", class_name()); m_lhs->dump(indent + 1); print_indent(indent + 1); outln("{}", op_string); m_rhs->dump(indent + 1); } void UnaryExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case UnaryOp::BitwiseNot: op_string = "~"; break; case UnaryOp::Not: op_string = "!"; break; case UnaryOp::Plus: op_string = "+"; break; case UnaryOp::Minus: op_string = "-"; break; case UnaryOp::Typeof: op_string = "typeof "; break; case UnaryOp::Void: op_string = "void "; break; case UnaryOp::Delete: op_string = "delete "; break; } print_indent(indent); outln("{}", class_name()); print_indent(indent + 1); outln("{}", op_string); m_lhs->dump(indent + 1); } void CallExpression::dump(int indent) const { print_indent(indent); if (is(*this)) outln("CallExpression [new]"); else outln("CallExpression"); m_callee->dump(indent + 1); for (auto& argument : m_arguments) argument.value->dump(indent + 1); } void SuperCall::dump(int indent) const { print_indent(indent); outln("SuperCall"); for (auto& argument : m_arguments) argument.value->dump(indent + 1); } void ClassDeclaration::dump(int indent) const { ASTNode::dump(indent); m_class_expression->dump(indent + 1); } void ClassDeclaration::for_each_bound_name(IteratorOrVoidFunction callback) const { if (!m_class_expression->name().is_empty()) callback(m_class_expression->name()); } void ClassExpression::dump(int indent) const { print_indent(indent); outln("ClassExpression: \"{}\"", m_name); print_indent(indent); outln("(Constructor)"); m_constructor->dump(indent + 1); if (!m_super_class.is_null()) { print_indent(indent); outln("(Super Class)"); m_super_class->dump(indent + 1); } print_indent(indent); outln("(Elements)"); for (auto& method : m_elements) method.dump(indent + 1); } void ClassMethod::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("(Key)"); m_key->dump(indent + 1); const char* kind_string = nullptr; switch (m_kind) { case Kind::Method: kind_string = "Method"; break; case Kind::Getter: kind_string = "Getter"; break; case Kind::Setter: kind_string = "Setter"; break; } print_indent(indent); outln("Kind: {}", kind_string); print_indent(indent); outln("Static: {}", is_static()); print_indent(indent); outln("(Function)"); m_function->dump(indent + 1); } void ClassField::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("(Key)"); m_key->dump(indent + 1); print_indent(indent); outln("Static: {}", is_static()); if (m_initializer) { print_indent(indent); outln("(Initializer)"); m_initializer->dump(indent + 1); } } void StaticInitializer::dump(int indent) const { ASTNode::dump(indent); m_function_body->dump(indent + 1); } void StringLiteral::dump(int indent) const { print_indent(indent); outln("StringLiteral \"{}\"", m_value); } void SuperExpression::dump(int indent) const { print_indent(indent); outln("super"); } void NumericLiteral::dump(int indent) const { print_indent(indent); outln("NumericLiteral {}", m_value); } void BigIntLiteral::dump(int indent) const { print_indent(indent); outln("BigIntLiteral {}", m_value); } void BooleanLiteral::dump(int indent) const { print_indent(indent); outln("BooleanLiteral {}", m_value); } void NullLiteral::dump(int indent) const { print_indent(indent); outln("null"); } bool BindingPattern::contains_expression() const { for (auto& entry : entries) { if (entry.initializer) return true; if (auto binding_ptr = entry.alias.get_pointer>(); binding_ptr && (*binding_ptr)->contains_expression()) return true; } return false; } void BindingPattern::dump(int indent) const { print_indent(indent); outln("BindingPattern {}", kind == Kind::Array ? "Array" : "Object"); for (auto& entry : entries) { print_indent(indent + 1); outln("(Property)"); if (kind == Kind::Object) { print_indent(indent + 2); outln("(Identifier)"); if (entry.name.has>()) { entry.name.get>()->dump(indent + 3); } else { entry.name.get>()->dump(indent + 3); } } else if (entry.is_elision()) { print_indent(indent + 2); outln("(Elision)"); continue; } print_indent(indent + 2); outln("(Pattern{})", entry.is_rest ? " rest=true" : ""); if (entry.alias.has>()) { entry.alias.get>()->dump(indent + 3); } else if (entry.alias.has>()) { entry.alias.get>()->dump(indent + 3); } else if (entry.alias.has>()) { entry.alias.get>()->dump(indent + 3); } else { print_indent(indent + 3); outln(""); } if (entry.initializer) { print_indent(indent + 2); outln("(Initializer)"); entry.initializer->dump(indent + 3); } } } void FunctionNode::dump(int indent, String const& class_name) const { print_indent(indent); auto is_async = m_kind == FunctionKind::Async || m_kind == FunctionKind::AsyncGenerator; auto is_generator = m_kind == FunctionKind::Generator || m_kind == FunctionKind::AsyncGenerator; outln("{}{}{} '{}'", class_name, is_async ? " async" : "", is_generator ? "*" : "", name()); if (m_contains_direct_call_to_eval) { print_indent(indent + 1); outln("\033[31;1m(direct eval)\033[0m"); } if (!m_parameters.is_empty()) { print_indent(indent + 1); outln("(Parameters)"); for (auto& parameter : m_parameters) { print_indent(indent + 2); if (parameter.is_rest) out("..."); parameter.binding.visit( [&](FlyString const& name) { outln("{}", name); }, [&](BindingPattern const& pattern) { pattern.dump(indent + 2); }); if (parameter.default_value) parameter.default_value->dump(indent + 3); } } print_indent(indent + 1); outln("(Body)"); body().dump(indent + 2); } void FunctionDeclaration::dump(int indent) const { FunctionNode::dump(indent, class_name()); } void FunctionDeclaration::for_each_bound_name(IteratorOrVoidFunction callback) const { if (!name().is_empty()) callback(name()); } void FunctionExpression::dump(int indent) const { FunctionNode::dump(indent, class_name()); } void YieldExpression::dump(int indent) const { ASTNode::dump(indent); if (argument()) argument()->dump(indent + 1); } void AwaitExpression::dump(int indent) const { ASTNode::dump(indent); m_argument->dump(indent + 1); } void ReturnStatement::dump(int indent) const { ASTNode::dump(indent); if (argument()) argument()->dump(indent + 1); } void IfStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("If"); predicate().dump(indent + 1); consequent().dump(indent + 1); if (alternate()) { print_indent(indent); outln("Else"); alternate()->dump(indent + 1); } } void WhileStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("While"); test().dump(indent + 1); body().dump(indent + 1); } void WithStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); outln("Object"); object().dump(indent + 2); print_indent(indent + 1); outln("Body"); body().dump(indent + 2); } void DoWhileStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("DoWhile"); test().dump(indent + 1); body().dump(indent + 1); } void ForStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("For"); if (init()) init()->dump(indent + 1); if (test()) test()->dump(indent + 1); if (update()) update()->dump(indent + 1); body().dump(indent + 1); } void ForInStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("ForIn"); lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); }); rhs().dump(indent + 1); body().dump(indent + 1); } void ForOfStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("ForOf"); lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); }); rhs().dump(indent + 1); body().dump(indent + 1); } void ForAwaitOfStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("ForAwaitOf"); m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); }); m_rhs->dump(indent + 1); m_body->dump(indent + 1); } Value Identifier::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto reference = to_reference(interpreter, global_object); if (interpreter.exception()) return {}; return TRY_OR_DISCARD(reference.get_value(global_object)); } void Identifier::dump(int indent) const { print_indent(indent); outln("Identifier \"{}\"", m_string); } Value PrivateIdentifier::execute(Interpreter&, GlobalObject&) const { // Note: This should be handled by either the member expression this is part of // or the binary expression in the case of `#foo in bar`. VERIFY_NOT_REACHED(); } void PrivateIdentifier::dump(int indent) const { print_indent(indent); outln("PrivateIdentifier \"{}\"", m_string); } void SpreadExpression::dump(int indent) const { ASTNode::dump(indent); m_target->dump(indent + 1); } Value SpreadExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return m_target->execute(interpreter, global_object); } Value ThisExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; return interpreter.vm().resolve_this_binding(global_object); } void ThisExpression::dump(int indent) const { ASTNode::dump(indent); } // 13.15.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-assignment-operators-runtime-semantics-evaluation Value AssignmentExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; if (m_op == AssignmentOp::Assignment) { // AssignmentExpression : LeftHandSideExpression = AssignmentExpression return m_lhs.visit( [&](NonnullRefPtr& lhs) -> JS::Value { auto reference = lhs->to_reference(interpreter, global_object); if (interpreter.exception()) return {}; Value rhs_result; if (lhs->is_identifier()) { auto& identifier_name = static_cast(*lhs).string(); rhs_result = TRY_OR_DISCARD(interpreter.vm().named_evaluation_if_anonymous_function(global_object, m_rhs, identifier_name)); } else { rhs_result = m_rhs->execute(interpreter, global_object); } if (interpreter.exception()) return {}; TRY_OR_DISCARD(reference.put_value(global_object, rhs_result)); return rhs_result; }, [&](NonnullRefPtr& pattern) -> JS::Value { Value rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; TRY_OR_DISCARD(interpreter.vm().destructuring_assignment_evaluation(pattern, rhs_result, global_object)); return rhs_result; }); } VERIFY(m_lhs.has>()); auto& lhs_expression = *m_lhs.get>(); auto reference = lhs_expression.to_reference(interpreter, global_object); if (interpreter.exception()) return {}; auto lhs_result = TRY_OR_DISCARD(reference.get_value(global_object)); // AssignmentExpression : LeftHandSideExpression {&&=, ||=, ??=} AssignmentExpression if (m_op == AssignmentOp::AndAssignment || m_op == AssignmentOp::OrAssignment || m_op == AssignmentOp::NullishAssignment) { switch (m_op) { case AssignmentOp::AndAssignment: if (!lhs_result.to_boolean()) return lhs_result; break; case AssignmentOp::OrAssignment: if (lhs_result.to_boolean()) return lhs_result; break; case AssignmentOp::NullishAssignment: if (!lhs_result.is_nullish()) return lhs_result; break; default: VERIFY_NOT_REACHED(); } Value rhs_result; if (lhs_expression.is_identifier()) { auto& identifier_name = static_cast(lhs_expression).string(); rhs_result = TRY_OR_DISCARD(interpreter.vm().named_evaluation_if_anonymous_function(global_object, m_rhs, identifier_name)); } else { rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; } TRY_OR_DISCARD(reference.put_value(global_object, rhs_result)); return rhs_result; } // AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression auto rhs_result = m_rhs->execute(interpreter, global_object); if (interpreter.exception()) return {}; switch (m_op) { case AssignmentOp::AdditionAssignment: rhs_result = TRY_OR_DISCARD(add(global_object, lhs_result, rhs_result)); break; case AssignmentOp::SubtractionAssignment: rhs_result = TRY_OR_DISCARD(sub(global_object, lhs_result, rhs_result)); break; case AssignmentOp::MultiplicationAssignment: rhs_result = TRY_OR_DISCARD(mul(global_object, lhs_result, rhs_result)); break; case AssignmentOp::DivisionAssignment: rhs_result = TRY_OR_DISCARD(div(global_object, lhs_result, rhs_result)); break; case AssignmentOp::ModuloAssignment: rhs_result = TRY_OR_DISCARD(mod(global_object, lhs_result, rhs_result)); break; case AssignmentOp::ExponentiationAssignment: rhs_result = TRY_OR_DISCARD(exp(global_object, lhs_result, rhs_result)); break; case AssignmentOp::BitwiseAndAssignment: rhs_result = TRY_OR_DISCARD(bitwise_and(global_object, lhs_result, rhs_result)); break; case AssignmentOp::BitwiseOrAssignment: rhs_result = TRY_OR_DISCARD(bitwise_or(global_object, lhs_result, rhs_result)); break; case AssignmentOp::BitwiseXorAssignment: rhs_result = TRY_OR_DISCARD(bitwise_xor(global_object, lhs_result, rhs_result)); break; case AssignmentOp::LeftShiftAssignment: rhs_result = TRY_OR_DISCARD(left_shift(global_object, lhs_result, rhs_result)); break; case AssignmentOp::RightShiftAssignment: rhs_result = TRY_OR_DISCARD(right_shift(global_object, lhs_result, rhs_result)); break; case AssignmentOp::UnsignedRightShiftAssignment: rhs_result = TRY_OR_DISCARD(unsigned_right_shift(global_object, lhs_result, rhs_result)); break; case AssignmentOp::Assignment: case AssignmentOp::AndAssignment: case AssignmentOp::OrAssignment: case AssignmentOp::NullishAssignment: VERIFY_NOT_REACHED(); } TRY_OR_DISCARD(reference.put_value(global_object, rhs_result)); return rhs_result; } Value UpdateExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto reference = m_argument->to_reference(interpreter, global_object); if (interpreter.exception()) return {}; auto old_value = TRY_OR_DISCARD(reference.get_value(global_object)); old_value = TRY_OR_DISCARD(old_value.to_numeric(global_object)); Value new_value; switch (m_op) { case UpdateOp::Increment: if (old_value.is_number()) new_value = Value(old_value.as_double() + 1); else new_value = js_bigint(interpreter.heap(), old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 })); break; case UpdateOp::Decrement: if (old_value.is_number()) new_value = Value(old_value.as_double() - 1); else new_value = js_bigint(interpreter.heap(), old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 })); break; default: VERIFY_NOT_REACHED(); } TRY_OR_DISCARD(reference.put_value(global_object, new_value)); return m_prefixed ? new_value : old_value; } void AssignmentExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case AssignmentOp::Assignment: op_string = "="; break; case AssignmentOp::AdditionAssignment: op_string = "+="; break; case AssignmentOp::SubtractionAssignment: op_string = "-="; break; case AssignmentOp::MultiplicationAssignment: op_string = "*="; break; case AssignmentOp::DivisionAssignment: op_string = "/="; break; case AssignmentOp::ModuloAssignment: op_string = "%="; break; case AssignmentOp::ExponentiationAssignment: op_string = "**="; break; case AssignmentOp::BitwiseAndAssignment: op_string = "&="; break; case AssignmentOp::BitwiseOrAssignment: op_string = "|="; break; case AssignmentOp::BitwiseXorAssignment: op_string = "^="; break; case AssignmentOp::LeftShiftAssignment: op_string = "<<="; break; case AssignmentOp::RightShiftAssignment: op_string = ">>="; break; case AssignmentOp::UnsignedRightShiftAssignment: op_string = ">>>="; break; case AssignmentOp::AndAssignment: op_string = "&&="; break; case AssignmentOp::OrAssignment: op_string = "||="; break; case AssignmentOp::NullishAssignment: op_string = "\?\?="; break; } ASTNode::dump(indent); print_indent(indent + 1); outln("{}", op_string); m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); }); m_rhs->dump(indent + 1); } void UpdateExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case UpdateOp::Increment: op_string = "++"; break; case UpdateOp::Decrement: op_string = "--"; break; } ASTNode::dump(indent); if (m_prefixed) { print_indent(indent + 1); outln("{}", op_string); } m_argument->dump(indent + 1); if (!m_prefixed) { print_indent(indent + 1); outln("{}", op_string); } } Value VariableDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; for (auto& declarator : m_declarations) { if (auto* init = declarator.init()) { TRY_OR_DISCARD(declarator.target().visit( [&](NonnullRefPtr const& id) -> ThrowCompletionOr { auto reference = id->to_reference(interpreter, global_object); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); auto initializer_result = TRY_OR_DISCARD(interpreter.vm().named_evaluation_if_anonymous_function(global_object, *init, id->string())); VERIFY(!initializer_result.is_empty()); if (m_declaration_kind == DeclarationKind::Var) return reference.put_value(global_object, initializer_result); else return reference.initialize_referenced_binding(global_object, initializer_result); }, [&](NonnullRefPtr const& pattern) -> ThrowCompletionOr { auto initializer_result = init->execute(interpreter, global_object); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); Environment* environment = m_declaration_kind == DeclarationKind::Var ? nullptr : interpreter.lexical_environment(); return interpreter.vm().binding_initialization(pattern, initializer_result, environment, global_object); })); } else if (m_declaration_kind != DeclarationKind::Var) { VERIFY(declarator.target().has>()); auto& identifier = declarator.target().get>(); auto reference = identifier->to_reference(interpreter, global_object); TRY_OR_DISCARD(reference.initialize_referenced_binding(global_object, js_undefined())); } } return {}; } Value VariableDeclarator::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // NOTE: VariableDeclarator execution is handled by VariableDeclaration. VERIFY_NOT_REACHED(); } void VariableDeclaration::for_each_bound_name(IteratorOrVoidFunction callback) const { for (auto& entry : declarations()) { entry.target().template visit( [&](const NonnullRefPtr& id) { callback(id->string()); }, [&](const NonnullRefPtr& binding) { binding->for_each_bound_name([&](const auto& name) { callback(name); }); }); } } void VariableDeclaration::dump(int indent) const { const char* declaration_kind_string = nullptr; switch (m_declaration_kind) { case DeclarationKind::Let: declaration_kind_string = "Let"; break; case DeclarationKind::Var: declaration_kind_string = "Var"; break; case DeclarationKind::Const: declaration_kind_string = "Const"; break; } ASTNode::dump(indent); print_indent(indent + 1); outln("{}", declaration_kind_string); for (auto& declarator : m_declarations) declarator.dump(indent + 1); } void VariableDeclarator::dump(int indent) const { ASTNode::dump(indent); m_target.visit([indent](const auto& value) { value->dump(indent + 1); }); if (m_init) m_init->dump(indent + 1); } void ObjectProperty::dump(int indent) const { ASTNode::dump(indent); if (m_property_type == Type::Spread) { print_indent(indent + 1); outln("...Spreading"); m_key->dump(indent + 1); } else { m_key->dump(indent + 1); m_value->dump(indent + 1); } } void ObjectExpression::dump(int indent) const { ASTNode::dump(indent); for (auto& property : m_properties) { property.dump(indent + 1); } } void ExpressionStatement::dump(int indent) const { ASTNode::dump(indent); m_expression->dump(indent + 1); } Value ObjectProperty::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // NOTE: ObjectProperty execution is handled by ObjectExpression. VERIFY_NOT_REACHED(); } Value ObjectExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto* object = Object::create(global_object, global_object.object_prototype()); for (auto& property : m_properties) { auto key = property.key().execute(interpreter, global_object); if (interpreter.exception()) return {}; if (property.type() == ObjectProperty::Type::Spread) { if (key.is_object() && is(key.as_object())) { auto& array_to_spread = static_cast(key.as_object()); for (auto& entry : array_to_spread.indexed_properties()) { auto value = TRY_OR_DISCARD(array_to_spread.get(entry.index())); object->indexed_properties().put(entry.index(), value); if (interpreter.exception()) return {}; } } else if (key.is_object()) { auto& obj_to_spread = key.as_object(); for (auto& it : obj_to_spread.shape().property_table_ordered()) { if (it.value.attributes.is_enumerable()) { object->define_direct_property(it.key, TRY_OR_DISCARD(obj_to_spread.get(it.key)), JS::default_attributes); if (interpreter.exception()) return {}; } } } else if (key.is_string()) { auto& str_to_spread = key.as_string().string(); for (size_t i = 0; i < str_to_spread.length(); i++) { object->define_direct_property(i, js_string(interpreter.heap(), str_to_spread.substring(i, 1)), JS::default_attributes); if (interpreter.exception()) return {}; } } continue; } auto value = property.value().execute(interpreter, global_object); if (interpreter.exception()) return {}; if (value.is_function() && property.is_method()) static_cast(value.as_function()).set_home_object(object); auto name = TRY_OR_DISCARD(get_function_name(global_object, key)); if (property.type() == ObjectProperty::Type::Getter) { name = String::formatted("get {}", name); } else if (property.type() == ObjectProperty::Type::Setter) { name = String::formatted("set {}", name); } update_function_name(value, name); switch (property.type()) { case ObjectProperty::Type::Getter: VERIFY(value.is_function()); object->define_direct_accessor(PropertyKey::from_value(global_object, key), &value.as_function(), nullptr, Attribute::Configurable | Attribute::Enumerable); break; case ObjectProperty::Type::Setter: VERIFY(value.is_function()); object->define_direct_accessor(PropertyKey::from_value(global_object, key), nullptr, &value.as_function(), Attribute::Configurable | Attribute::Enumerable); break; case ObjectProperty::Type::KeyValue: object->define_direct_property(PropertyKey::from_value(global_object, key), value, JS::default_attributes); break; case ObjectProperty::Type::Spread: default: VERIFY_NOT_REACHED(); } if (interpreter.exception()) return {}; } return object; } void MemberExpression::dump(int indent) const { print_indent(indent); outln("{}(computed={})", class_name(), is_computed()); m_object->dump(indent + 1); m_property->dump(indent + 1); } String MemberExpression::to_string_approximation() const { String object_string = ""; if (is(*m_object)) object_string = static_cast(*m_object).string(); if (is_computed()) return String::formatted("{}[]", object_string); return String::formatted("{}.{}", object_string, verify_cast(*m_property).string()); } Value MemberExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto reference = to_reference(interpreter, global_object); if (interpreter.exception()) return {}; return TRY_OR_DISCARD(reference.get_value(global_object)); } bool MemberExpression::ends_in_private_name() const { if (is_computed()) return false; if (is(*m_property)) return true; if (is(*m_property)) return static_cast(*m_property).ends_in_private_name(); return false; } void OptionalChain::dump(int indent) const { print_indent(indent); outln("{}", class_name()); m_base->dump(indent + 1); for (auto& reference : m_references) { reference.visit( [&](Call const& call) { print_indent(indent + 1); outln("Call({})", call.mode == Mode::Optional ? "Optional" : "Not Optional"); for (auto& argument : call.arguments) argument.value->dump(indent + 2); }, [&](ComputedReference const& ref) { print_indent(indent + 1); outln("ComputedReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional"); ref.expression->dump(indent + 2); }, [&](MemberReference const& ref) { print_indent(indent + 1); outln("MemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional"); ref.identifier->dump(indent + 2); }, [&](PrivateMemberReference const& ref) { print_indent(indent + 1); outln("PrivateMemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional"); ref.private_identifier->dump(indent + 2); }); } } Optional OptionalChain::to_reference_and_value(JS::Interpreter& interpreter, JS::GlobalObject& global_object) const { // Note: This is wrapped in an optional to allow base_reference = ... Optional base_reference = m_base->to_reference(interpreter, global_object); auto base = base_reference->is_unresolvable() ? m_base->execute(interpreter, global_object) : TRY_OR_DISCARD(base_reference->get_value(global_object)); if (interpreter.exception()) return {}; for (auto& reference : m_references) { auto is_optional = reference.visit([](auto& ref) { return ref.mode; }) == Mode::Optional; if (is_optional && base.is_nullish()) return ReferenceAndValue { {}, js_undefined() }; auto expression = reference.visit( [&](Call const& call) -> NonnullRefPtr { return create_ast_node(source_range(), create_ast_node(source_range(), *base_reference, base), call.arguments); }, [&](ComputedReference const& ref) -> NonnullRefPtr { return create_ast_node(source_range(), create_ast_node(source_range(), *base_reference, base), ref.expression, true); }, [&](MemberReference const& ref) -> NonnullRefPtr { return create_ast_node(source_range(), create_ast_node(source_range(), *base_reference, base), ref.identifier, false); }, [&](PrivateMemberReference const& ref) -> NonnullRefPtr { return create_ast_node(source_range(), create_ast_node(source_range(), *base_reference, base), ref.private_identifier, false); }); if (is(*expression)) { base_reference = JS::Reference {}; base = expression->execute(interpreter, global_object); } else { base_reference = expression->to_reference(interpreter, global_object); base = TRY_OR_DISCARD(base_reference->get_value(global_object)); } if (interpreter.exception()) return {}; } return ReferenceAndValue { base_reference.release_value(), base }; } Value OptionalChain::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; if (auto result = to_reference_and_value(interpreter, global_object); result.has_value()) return result.release_value().value; return {}; } JS::Reference OptionalChain::to_reference(Interpreter& interpreter, GlobalObject& global_object) const { if (auto result = to_reference_and_value(interpreter, global_object); result.has_value()) return result.release_value().reference; return {}; } void MetaProperty::dump(int indent) const { String name; if (m_type == MetaProperty::Type::NewTarget) name = "new.target"; else if (m_type == MetaProperty::Type::ImportMeta) name = "import.meta"; else VERIFY_NOT_REACHED(); print_indent(indent); outln("{} {}", class_name(), name); } Value MetaProperty::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; if (m_type == MetaProperty::Type::NewTarget) return interpreter.vm().get_new_target(); if (m_type == MetaProperty::Type::ImportMeta) { interpreter.vm().throw_exception(global_object, ErrorType::NotImplemented, "'import.meta' in modules"); return {}; } VERIFY_NOT_REACHED(); } void ImportCall::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("(Specifier)"); m_specifier->dump(indent + 1); if (m_options) { outln("(Options)"); m_options->dump(indent + 1); } } Value ImportCall::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; interpreter.vm().throw_exception(global_object, ErrorType::NotImplemented, "'import(...)' in modules"); return {}; } Value StringLiteral::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; return js_string(interpreter.heap(), m_value); } Value NumericLiteral::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; return Value(m_value); } Value BigIntLiteral::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; Crypto::SignedBigInteger integer; if (m_value[0] == '0' && m_value.length() >= 3) { if (m_value[1] == 'x' || m_value[1] == 'X') { return js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(16, m_value.substring(2, m_value.length() - 3))); } else if (m_value[1] == 'o' || m_value[1] == 'O') { return js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(8, m_value.substring(2, m_value.length() - 3))); } else if (m_value[1] == 'b' || m_value[1] == 'B') { return js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(2, m_value.substring(2, m_value.length() - 3))); } } return js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(10, m_value.substring(0, m_value.length() - 1))); } Value BooleanLiteral::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; return Value(m_value); } Value NullLiteral::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; return js_null(); } void RegExpLiteral::dump(int indent) const { print_indent(indent); outln("{} (/{}/{})", class_name(), pattern(), flags()); } Value RegExpLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; Regex regex(parsed_regex(), parsed_pattern(), parsed_flags()); return RegExpObject::create(global_object, move(regex), pattern(), flags()); } void ArrayExpression::dump(int indent) const { ASTNode::dump(indent); for (auto& element : m_elements) { if (element) { element->dump(indent + 1); } else { print_indent(indent + 1); outln(""); } } } Value ArrayExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto* array = MUST(Array::create(global_object, 0)); array->indexed_properties(); size_t index = 0; for (auto& element : m_elements) { auto value = Value(); if (element) { value = element->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (is(*element)) { TRY_OR_DISCARD(get_iterator_values(global_object, value, [&](Value iterator_value) -> Optional { array->indexed_properties().put(index++, iterator_value, default_attributes); return {}; })); continue; } } array->indexed_properties().put(index++, value, default_attributes); } return array; } void TemplateLiteral::dump(int indent) const { ASTNode::dump(indent); for (auto& expression : m_expressions) expression.dump(indent + 1); } Value TemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; StringBuilder string_builder; for (auto& expression : m_expressions) { auto expr = expression.execute(interpreter, global_object); if (interpreter.exception()) return {}; auto string = TRY_OR_DISCARD(expr.to_string(global_object)); string_builder.append(string); } return js_string(interpreter.heap(), string_builder.build()); } void TaggedTemplateLiteral::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); outln("(Tag)"); m_tag->dump(indent + 2); print_indent(indent + 1); outln("(Template Literal)"); m_template_literal->dump(indent + 2); } Value TaggedTemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto& vm = interpreter.vm(); auto tag = m_tag->execute(interpreter, global_object); if (vm.exception()) return {}; if (!tag.is_function()) { vm.throw_exception(global_object, ErrorType::NotAFunction, tag.to_string_without_side_effects()); return {}; } auto& tag_function = tag.as_function(); auto& expressions = m_template_literal->expressions(); auto* strings = MUST(Array::create(global_object, 0)); MarkedValueList arguments(vm.heap()); arguments.append(strings); for (size_t i = 0; i < expressions.size(); ++i) { auto value = expressions[i].execute(interpreter, global_object); if (vm.exception()) return {}; // tag`${foo}` -> "", foo, "" -> tag(["", ""], foo) // tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux) if (i % 2 == 0) { strings->indexed_properties().append(value); } else { arguments.append(value); } } auto* raw_strings = MUST(Array::create(global_object, 0)); for (auto& raw_string : m_template_literal->raw_strings()) { auto value = raw_string.execute(interpreter, global_object); if (vm.exception()) return {}; raw_strings->indexed_properties().append(value); } strings->define_direct_property(vm.names.raw, raw_strings, 0); return TRY_OR_DISCARD(vm.call(tag_function, js_undefined(), move(arguments))); } void TryStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); outln("(Block)"); block().dump(indent + 1); if (handler()) { print_indent(indent); outln("(Handler)"); handler()->dump(indent + 1); } if (finalizer()) { print_indent(indent); outln("(Finalizer)"); finalizer()->dump(indent + 1); } } void CatchClause::dump(int indent) const { print_indent(indent); m_parameter.visit( [&](FlyString const& parameter) { if (parameter.is_null()) outln("CatchClause"); else outln("CatchClause ({})", parameter); }, [&](NonnullRefPtr const& pattern) { outln("CatchClause"); print_indent(indent); outln("(Parameter)"); pattern->dump(indent + 2); }); body().dump(indent + 1); } void ThrowStatement::dump(int indent) const { ASTNode::dump(indent); argument().dump(indent + 1); } void TryStatement::add_label(FlyString string) { m_block->add_label(move(string)); } Value TryStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; // FIXME: Use Completions here to be closer to the spec. auto result = m_block->execute(interpreter, global_object); if (interpreter.vm().unwind_until() == ScopeType::Try) interpreter.vm().stop_unwind(); if (auto* exception = interpreter.exception()) { // 14.15.2 Runtime Semantics: CatchClauseEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-catchclauseevaluation if (m_handler) { interpreter.vm().clear_exception(); auto* catch_scope = new_declarative_environment(*interpreter.lexical_environment()); m_handler->parameter().visit( [&](FlyString const& parameter) { MUST(catch_scope->create_mutable_binding(global_object, parameter, false)); }, [&](NonnullRefPtr const& pattern) { pattern->for_each_bound_name([&](auto& name) { MUST(catch_scope->create_mutable_binding(global_object, name, false)); }); }); TemporaryChange scope_change(interpreter.vm().running_execution_context().lexical_environment, catch_scope); m_handler->parameter().visit( [&](FlyString const& parameter) { (void)catch_scope->initialize_binding(global_object, parameter, exception->value()); }, [&](NonnullRefPtr const& pattern) { (void)interpreter.vm().binding_initialization(pattern, exception->value(), catch_scope, global_object); }); if (!interpreter.exception()) result = m_handler->body().execute(interpreter, global_object); } } if (m_finalizer) { // Keep, if any, and then clear the current exception so we can // execute() the finalizer without an exception in our way. auto* previous_exception = interpreter.exception(); interpreter.vm().clear_exception(); // Remember what scope type we were unwinding to, and temporarily // clear it as well (e.g. return from handler). auto unwind_until = interpreter.vm().unwind_until(); interpreter.vm().stop_unwind(); auto finalizer_result = m_finalizer->execute(interpreter, global_object); if (interpreter.vm().should_unwind()) { // This was NOT a 'normal' completion (e.g. return from finalizer). result = finalizer_result; } else { // Continue unwinding to whatever we found ourselves unwinding // to when the finalizer was entered (e.g. return from handler, // which is unaffected by normal completion from finalizer). interpreter.vm().unwind(unwind_until); // If we previously had an exception and the finalizer didn't // throw a new one, restore the old one. if (previous_exception && !interpreter.exception()) interpreter.vm().set_exception(*previous_exception); } } return result.value_or(js_undefined()); } Value CatchClause::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // NOTE: CatchClause execution is handled by TryStatement. VERIFY_NOT_REACHED(); return {}; } Value ThrowStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto value = m_argument->execute(interpreter, global_object); if (interpreter.vm().exception()) return {}; interpreter.vm().throw_exception(global_object, value); return {}; } // 14.12.2 Runtime Semantics: CaseBlockEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-caseblockevaluation Value SwitchStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { // FIXME: This needs a massive refactoring, ideally once we start using continue, break, and return completions. // Instead of having an optional test expression, SwitchCase should be split into CaseClause and DefaultClause. // https://tc39.es/ecma262/#sec-switch-statement InterpreterNodeScope node_scope { interpreter, *this }; auto discriminant_result = m_discriminant->execute(interpreter, global_object); if (interpreter.exception()) return {}; // Optimization: Avoid creating a lexical environment if there are no lexical declarations. Optional> lexical_environment_changer; if (has_lexical_declarations()) { auto* old_environment = interpreter.lexical_environment(); auto* block_environment = new_declarative_environment(*old_environment); block_declaration_instantiation(global_object, block_environment); lexical_environment_changer.emplace(interpreter.vm().running_execution_context().lexical_environment, block_environment); } Optional first_passing_case; for (size_t i = 0; i < m_cases.size(); ++i) { auto& switch_case = m_cases[i]; if (switch_case.test()) { auto test_result = switch_case.test()->execute(interpreter, global_object); if (interpreter.exception()) return {}; if (is_strictly_equal(discriminant_result, test_result)) { first_passing_case = i; break; } } } // FIXME: we could optimize and store the location of the default case in a member variable. if (!first_passing_case.has_value()) { for (size_t i = 0; i < m_cases.size(); ++i) { auto& switch_case = m_cases[i]; if (!switch_case.test()) { first_passing_case = i; break; } } } auto last_value = js_undefined(); if (!first_passing_case.has_value()) { return last_value; } VERIFY(first_passing_case.value() < m_cases.size()); for (size_t i = first_passing_case.value(); i < m_cases.size(); ++i) { auto& switch_case = m_cases[i]; for (auto& statement : switch_case.children()) { auto value = statement.execute(interpreter, global_object); if (!value.is_empty()) last_value = value; if (interpreter.exception()) return {}; if (interpreter.vm().should_unwind()) { if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_labels)) { // No stop_unwind(), the outer loop will handle that - we just need to break out of the switch/case. return last_value; } else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_labels)) { interpreter.vm().stop_unwind(); return last_value; } else { return last_value; } } } } return last_value; } Value SwitchCase::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // NOTE: SwitchCase execution is handled by SwitchStatement. VERIFY_NOT_REACHED(); return {}; } Value BreakStatement::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; interpreter.vm().unwind(ScopeType::Breakable, m_target_label); return {}; } Value ContinueStatement::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; interpreter.vm().unwind(ScopeType::Continuable, m_target_label); return {}; } void SwitchStatement::dump(int indent) const { ASTNode::dump(indent); m_discriminant->dump(indent + 1); for (auto& switch_case : m_cases) { switch_case.dump(indent + 1); } } void SwitchCase::dump(int indent) const { print_indent(indent + 1); if (m_test) { outln("(Test)"); m_test->dump(indent + 2); } else { outln("(Default)"); } print_indent(indent + 1); outln("(Consequent)"); ScopeNode::dump(indent + 2); } Value ConditionalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; auto test_result = m_test->execute(interpreter, global_object); if (interpreter.exception()) return {}; Value result; if (test_result.to_boolean()) { result = m_consequent->execute(interpreter, global_object); } else { result = m_alternate->execute(interpreter, global_object); } if (interpreter.exception()) return {}; return result; } void ConditionalExpression::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); outln("(Test)"); m_test->dump(indent + 2); print_indent(indent + 1); outln("(Consequent)"); m_consequent->dump(indent + 2); print_indent(indent + 1); outln("(Alternate)"); m_alternate->dump(indent + 2); } void SequenceExpression::dump(int indent) const { ASTNode::dump(indent); for (auto& expression : m_expressions) expression.dump(indent + 1); } Value SequenceExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; Value last_value; for (auto& expression : m_expressions) { last_value = expression.execute(interpreter, global_object); if (interpreter.exception()) return {}; } return last_value; } Value DebuggerStatement::execute(Interpreter& interpreter, GlobalObject&) const { InterpreterNodeScope node_scope { interpreter, *this }; // Sorry, no JavaScript debugger available (yet)! return {}; } void ScopeNode::for_each_lexically_scoped_declaration(IteratorOrVoidFunction&& callback) const { for (auto& declaration : m_lexical_declarations) { if (callback(declaration) == IterationDecision::Break) break; } } void ScopeNode::for_each_lexically_declared_name(IteratorOrVoidFunction&& callback) const { auto running = true; for (auto& declaration : m_lexical_declarations) { declaration.for_each_bound_name([&](auto const& name) { if (callback(name) == IterationDecision::Break) { running = false; return IterationDecision::Break; } return IterationDecision::Continue; }); if (!running) break; } } void ScopeNode::for_each_var_declared_name(IteratorOrVoidFunction&& callback) const { auto running = true; for (auto& declaration : m_var_declarations) { declaration.for_each_bound_name([&](auto const& name) { if (callback(name) == IterationDecision::Break) { running = false; return IterationDecision::Break; } return IterationDecision::Continue; }); if (!running) break; } } void ScopeNode::for_each_var_function_declaration_in_reverse_order(IteratorOrVoidFunction&& callback) const { for (ssize_t i = m_var_declarations.size() - 1; i >= 0; i--) { auto& declaration = m_var_declarations[i]; if (is(declaration)) { if (callback(static_cast(declaration)) == IterationDecision::Break) break; } } } void ScopeNode::for_each_var_scoped_variable_declaration(IteratorOrVoidFunction&& callback) const { for (auto& declaration : m_var_declarations) { if (!is(declaration)) { VERIFY(is(declaration)); if (callback(static_cast(declaration)) == IterationDecision::Break) break; } } } void ScopeNode::for_each_function_hoistable_with_annexB_extension(IteratorOrVoidFunction&& callback) const { for (auto& function : m_functions_hoistable_with_annexB_extension) { // We need const_cast here since it might have to set a property on function declaration. if (callback(const_cast(function)) == IterationDecision::Break) break; } } void ScopeNode::add_lexical_declaration(NonnullRefPtr declaration) { m_lexical_declarations.append(move(declaration)); } void ScopeNode::add_var_scoped_declaration(NonnullRefPtr declaration) { m_var_declarations.append(move(declaration)); } void ScopeNode::add_hoisted_function(NonnullRefPtr declaration) { m_functions_hoistable_with_annexB_extension.append(move(declaration)); } Value ImportStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; dbgln("Modules are not fully supported yet!"); interpreter.vm().throw_exception(global_object, ErrorType::NotImplemented, "'import' in modules"); return {}; } Value ExportStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const { InterpreterNodeScope node_scope { interpreter, *this }; if (m_statement) return m_statement->execute(interpreter, global_object); return {}; } static void dump_assert_clauses(ModuleRequest const& request) { if (!request.assertions.is_empty()) { out("[ "); for (auto& assertion : request.assertions) out("{}: {}, ", assertion.key, assertion.value); out(" ]"); } } void ExportStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); outln("(ExportEntries)"); auto string_or_null = [](String const& string) -> String { if (string.is_empty()) { return "null"; } return String::formatted("\"{}\"", string); }; for (auto& entry : m_entries) { print_indent(indent + 2); out("ModuleRequest: {}", entry.module_request.module_specifier); dump_assert_clauses(entry.module_request); outln(", ImportName: {}, LocalName: {}, ExportName: {}", entry.kind == ExportEntry::Kind::ModuleRequest ? string_or_null(entry.local_or_import_name) : "null", entry.kind != ExportEntry::Kind::ModuleRequest ? string_or_null(entry.local_or_import_name) : "null", string_or_null(entry.export_name)); } } void ImportStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); if (m_entries.is_empty()) { // direct from "module" import outln("Entire module '{}'", m_module_request.module_specifier); dump_assert_clauses(m_module_request); } else { outln("(ExportEntries) from {}", m_module_request.module_specifier); dump_assert_clauses(m_module_request); for (auto& entry : m_entries) { print_indent(indent + 2); outln("ImportName: {}, LocalName: {}", entry.import_name, entry.local_name); } } } bool ExportStatement::has_export(StringView export_name) const { return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) { return entry.export_name == export_name; }); } bool ImportStatement::has_bound_name(StringView name) const { return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) { return entry.local_name == name; }); } // 14.2.3 BlockDeclarationInstantiation ( code, env ), https://tc39.es/ecma262/#sec-blockdeclarationinstantiation void ScopeNode::block_declaration_instantiation(GlobalObject& global_object, Environment* environment) const { // See also B.3.2.6 Changes to BlockDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-blockdeclarationinstantiation VERIFY(environment); auto* private_environment = global_object.vm().running_execution_context().private_environment; for_each_lexically_scoped_declaration([&](Declaration const& declaration) { auto is_constant_declaration = declaration.is_constant_declaration(); declaration.for_each_bound_name([&](auto const& name) { if (is_constant_declaration) { MUST(environment->create_immutable_binding(global_object, name, true)); } else { if (!MUST(environment->has_binding(name))) MUST(environment->create_mutable_binding(global_object, name, false)); } }); if (is(declaration)) { auto& function_declaration = static_cast(declaration); auto* function = ECMAScriptFunctionObject::create(global_object, function_declaration.name(), function_declaration.body(), function_declaration.parameters(), function_declaration.function_length(), environment, private_environment, function_declaration.kind(), function_declaration.is_strict_mode(), function_declaration.might_need_arguments_object(), function_declaration.contains_direct_call_to_eval()); VERIFY(is(*environment)); static_cast(*environment).initialize_or_set_mutable_binding({}, global_object, function_declaration.name(), function); } }); } // 16.1.7 GlobalDeclarationInstantiation ( script, env ), https://tc39.es/ecma262/#sec-globaldeclarationinstantiation ThrowCompletionOr Program::global_declaration_instantiation(Interpreter& interpreter, GlobalObject& global_object, GlobalEnvironment& global_environment) const { for_each_lexically_declared_name([&](FlyString const& name) { if (global_environment.has_var_declaration(name) || global_environment.has_lexical_declaration(name)) { interpreter.vm().throw_exception(global_object, ErrorType::TopLevelVariableAlreadyDeclared, name); return IterationDecision::Break; } auto restricted_global_or_error = global_environment.has_restricted_global_property(name); if (restricted_global_or_error.is_error()) return IterationDecision::Break; auto restricted_global = restricted_global_or_error.release_value(); if (restricted_global) interpreter.vm().throw_exception(global_object, ErrorType::RestrictedGlobalProperty, name); return IterationDecision::Continue; }); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); for_each_var_declared_name([&](auto const& name) { if (global_environment.has_lexical_declaration(name)) { interpreter.vm().throw_exception(global_object, ErrorType::TopLevelVariableAlreadyDeclared, name); return IterationDecision::Break; } return IterationDecision::Continue; }); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); HashTable declared_function_names; Vector functions_to_initialize; for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) { if (declared_function_names.set(function.name()) != AK::HashSetResult::InsertedNewEntry) return IterationDecision::Continue; auto function_definable_or_error = global_environment.can_declare_global_function(function.name()); if (function_definable_or_error.is_error()) return IterationDecision::Break; auto function_definable = function_definable_or_error.release_value(); if (!function_definable) { interpreter.vm().throw_exception(global_object, ErrorType::CannotDeclareGlobalFunction, function.name()); return IterationDecision::Break; } functions_to_initialize.append(function); return IterationDecision::Continue; }); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); HashTable declared_var_names; for_each_var_scoped_variable_declaration([&](Declaration const& declaration) { declaration.for_each_bound_name([&](auto const& name) { if (declared_function_names.contains(name)) return IterationDecision::Continue; auto var_definable_or_error = global_environment.can_declare_global_var(name); if (var_definable_or_error.is_error()) return IterationDecision::Break; auto var_definable = var_definable_or_error.release_value(); if (!var_definable) { interpreter.vm().throw_exception(global_object, ErrorType::CannotDeclareGlobalVariable, name); return IterationDecision::Break; } declared_var_names.set(name); return IterationDecision::Continue; }); if (interpreter.exception()) return IterationDecision::Break; return IterationDecision::Continue; }); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); if (!m_is_strict_mode) { for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) { auto& function_name = function_declaration.name(); if (global_environment.has_lexical_declaration(function_name)) return IterationDecision::Continue; auto function_definable_or_error = global_environment.can_declare_global_function(function_name); if (function_definable_or_error.is_error()) return IterationDecision::Break; auto function_definable = function_definable_or_error.release_value(); if (!function_definable) { interpreter.vm().throw_exception(global_object, ErrorType::CannotDeclareGlobalFunction, function_name); return IterationDecision::Break; } if (!declared_function_names.contains(function_name) && !declared_var_names.contains(function_name)) { auto result = global_environment.create_global_var_binding(function_name, false); if (result.is_error()) return IterationDecision::Break; declared_function_names.set(function_name); } function_declaration.set_should_do_additional_annexB_steps(); return IterationDecision::Continue; }); if (auto* exception = interpreter.exception()) return throw_completion(exception->value()); // We should not use declared function names below here anymore since these functions are not in there in the spec. declared_function_names.clear(); } PrivateEnvironment* private_environment = nullptr; for_each_lexically_scoped_declaration([&](Declaration const& declaration) { declaration.for_each_bound_name([&](auto const& name) { if (declaration.is_constant_declaration()) (void)global_environment.create_immutable_binding(global_object, name, true); else (void)global_environment.create_mutable_binding(global_object, name, false); if (interpreter.exception()) return IterationDecision::Break; return IterationDecision::Continue; }); if (interpreter.exception()) return IterationDecision::Break; return IterationDecision::Continue; }); for (auto& declaration : functions_to_initialize) { auto* function = ECMAScriptFunctionObject::create(global_object, declaration.name(), declaration.body(), declaration.parameters(), declaration.function_length(), &global_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object(), declaration.contains_direct_call_to_eval()); TRY(global_environment.create_global_function_binding(declaration.name(), function, false)); } for (auto& var_name : declared_var_names) TRY(global_environment.create_global_var_binding(var_name, false)); return {}; } }