/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include namespace Gfx { void Path::elliptical_arc_to(FloatPoint const& point, FloatPoint const& radii, double x_axis_rotation, bool large_arc, bool sweep) { auto next_point = point; double rx = radii.x(); double ry = radii.y(); double x_axis_rotation_c = AK::cos(x_axis_rotation); double x_axis_rotation_s = AK::sin(x_axis_rotation); // Find the last point FloatPoint last_point { 0, 0 }; if (!m_segments.is_empty()) last_point = m_segments.last().point(); // Step 1 of out-of-range radii correction if (rx == 0.0 || ry == 0.0) { append_segment(next_point); return; } // Step 2 of out-of-range radii correction if (rx < 0) rx *= -1.0; if (ry < 0) ry *= -1.0; // POSSIBLY HACK: Handle the case where both points are the same. auto same_endpoints = next_point == last_point; if (same_endpoints) { if (!large_arc) { // Nothing is going to be drawn anyway. return; } // Move the endpoint by a small amount to avoid division by zero. next_point.translate_by(0.01f, 0.01f); } // Find (cx, cy), theta_1, theta_delta // Step 1: Compute (x1', y1') auto x_avg = static_cast(last_point.x() - next_point.x()) / 2.0; auto y_avg = static_cast(last_point.y() - next_point.y()) / 2.0; auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg; auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg; // Step 2: Compute (cx', cy') double x1p_sq = x1p * x1p; double y1p_sq = y1p * y1p; double rx_sq = rx * rx; double ry_sq = ry * ry; // Step 3 of out-of-range radii correction double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq; double multiplier; if (lambda > 1.0) { auto lambda_sqrt = AK::sqrt(lambda); rx *= lambda_sqrt; ry *= lambda_sqrt; multiplier = 0.0; } else { double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq; double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq; multiplier = AK::sqrt(numerator / denominator); } if (large_arc == sweep) multiplier *= -1.0; double cxp = multiplier * rx * y1p / ry; double cyp = multiplier * -ry * x1p / rx; // Step 3: Compute (cx, cy) from (cx', cy') x_avg = (last_point.x() + next_point.x()) / 2.0f; y_avg = (last_point.y() + next_point.y()) / 2.0f; double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg; double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg; double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx); double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx); auto theta_delta = theta_2 - theta_1; if (!sweep && theta_delta > 0.0) { theta_delta -= 2 * M_PI; } else if (sweep && theta_delta < 0) { theta_delta += 2 * M_PI; } elliptical_arc_to( next_point, { cx, cy }, { rx, ry }, x_axis_rotation, theta_1, theta_delta, large_arc, sweep); } void Path::close() { if (m_segments.size() <= 1) return; auto& last_point = m_segments.last().point(); for (ssize_t i = m_segments.size() - 1; i >= 0; --i) { auto& segment = m_segments[i]; if (segment.type() == Segment::Type::MoveTo) { if (last_point == segment.point()) return; append_segment(segment.point()); invalidate_split_lines(); return; } } } void Path::close_all_subpaths() { if (m_segments.size() <= 1) return; invalidate_split_lines(); Optional cursor, start_of_subpath; bool is_first_point_in_subpath { false }; for (auto& segment : m_segments) { switch (segment.type()) { case Segment::Type::MoveTo: { if (cursor.has_value() && !is_first_point_in_subpath) { // This is a move from a subpath to another // connect the two ends of this subpath before // moving on to the next one VERIFY(start_of_subpath.has_value()); append_segment(cursor.value()); append_segment(start_of_subpath.value()); } is_first_point_in_subpath = true; cursor = segment.point(); break; } case Segment::Type::LineTo: case Segment::Type::QuadraticBezierCurveTo: case Segment::Type::CubicBezierCurveTo: case Segment::Type::EllipticalArcTo: if (is_first_point_in_subpath) { start_of_subpath = cursor; is_first_point_in_subpath = false; } cursor = segment.point(); break; case Segment::Type::Invalid: VERIFY_NOT_REACHED(); break; } } } String Path::to_string() const { StringBuilder builder; builder.append("Path { "); for (auto& segment : m_segments) { switch (segment.type()) { case Segment::Type::MoveTo: builder.append("MoveTo"); break; case Segment::Type::LineTo: builder.append("LineTo"); break; case Segment::Type::QuadraticBezierCurveTo: builder.append("QuadraticBezierCurveTo"); break; case Segment::Type::CubicBezierCurveTo: builder.append("CubicBezierCurveTo"); break; case Segment::Type::EllipticalArcTo: builder.append("EllipticalArcTo"); break; case Segment::Type::Invalid: builder.append("Invalid"); break; } builder.appendff("({}", segment.point()); switch (segment.type()) { case Segment::Type::QuadraticBezierCurveTo: builder.append(", "); builder.append(static_cast(segment).through().to_string()); break; case Segment::Type::CubicBezierCurveTo: builder.append(", "); builder.append(static_cast(segment).through_0().to_string()); builder.append(", "); builder.append(static_cast(segment).through_1().to_string()); break; case Segment::Type::EllipticalArcTo: { auto& arc = static_cast(segment); builder.appendff(", {}, {}, {}, {}, {}", arc.radii().to_string().characters(), arc.center().to_string().characters(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta()); break; } default: break; } builder.append(") "); } builder.append("}"); return builder.to_string(); } void Path::segmentize_path() { Vector segments; float min_x = 0; float min_y = 0; float max_x = 0; float max_y = 0; auto add_point_to_bbox = [&](Gfx::FloatPoint const& point) { float x = point.x(); float y = point.y(); min_x = min(min_x, x); min_y = min(min_y, y); max_x = max(max_x, x); max_y = max(max_y, y); }; auto add_line = [&](auto const& p0, auto const& p1) { float ymax = p0.y(), ymin = p1.y(), x_of_ymin = p1.x(), x_of_ymax = p0.x(); auto slope = p0.x() == p1.x() ? 0 : ((float)(p0.y() - p1.y())) / ((float)(p0.x() - p1.x())); if (p0.y() < p1.y()) { swap(ymin, ymax); swap(x_of_ymin, x_of_ymax); } segments.append({ FloatPoint(p0.x(), p0.y()), FloatPoint(p1.x(), p1.y()), slope == 0 ? 0 : 1 / slope, x_of_ymin, ymax, ymin, x_of_ymax }); add_point_to_bbox(p1); }; FloatPoint cursor { 0, 0 }; bool first = true; for (auto& segment : m_segments) { switch (segment.type()) { case Segment::Type::MoveTo: if (first) { min_x = segment.point().x(); min_y = segment.point().y(); max_x = segment.point().x(); max_y = segment.point().y(); } else { add_point_to_bbox(segment.point()); } cursor = segment.point(); break; case Segment::Type::LineTo: { add_line(cursor, segment.point()); cursor = segment.point(); break; } case Segment::Type::QuadraticBezierCurveTo: { auto& control = static_cast(segment).through(); Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment.point(), [&](FloatPoint const& p0, FloatPoint const& p1) { add_line(p0, p1); }); cursor = segment.point(); break; } case Segment::Type::CubicBezierCurveTo: { auto& curve = static_cast(segment); auto& control_0 = curve.through_0(); auto& control_1 = curve.through_1(); Painter::for_each_line_segment_on_cubic_bezier_curve(control_0, control_1, cursor, segment.point(), [&](FloatPoint const& p0, FloatPoint const& p1) { add_line(p0, p1); }); cursor = segment.point(); break; } case Segment::Type::EllipticalArcTo: { auto& arc = static_cast(segment); Painter::for_each_line_segment_on_elliptical_arc(cursor, arc.point(), arc.center(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), [&](FloatPoint const& p0, FloatPoint const& p1) { add_line(p0, p1); }); cursor = segment.point(); break; } case Segment::Type::Invalid: VERIFY_NOT_REACHED(); } first = false; } // sort segments by ymax quick_sort(segments, [](auto const& line0, auto const& line1) { return line1.maximum_y < line0.maximum_y; }); m_split_lines = move(segments); m_bounding_box = Gfx::FloatRect { min_x, min_y, max_x - min_x, max_y - min_y }; } }