/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include namespace Gfx { void Path::close() { if (m_segments.size() <= 1) return; invalidate_split_lines(); auto& last_point = m_segments.last().point(); for (ssize_t i = m_segments.size() - 1; i >= 0; --i) { auto& segment = m_segments[i]; if (segment.type() == Segment::Type::MoveTo) { if (last_point == segment.point()) return; append_segment(segment.point()); return; } } } void Path::close_all_subpaths() { if (m_segments.size() <= 1) return; invalidate_split_lines(); Optional cursor, start_of_subpath; bool is_first_point_in_subpath { false }; for (auto& segment : m_segments) { switch (segment.type()) { case Segment::Type::MoveTo: { if (cursor.has_value() && !is_first_point_in_subpath) { // This is a move from a subpath to another // connect the two ends of this subpath before // moving on to the next one ASSERT(start_of_subpath.has_value()); append_segment(cursor.value()); append_segment(start_of_subpath.value()); } is_first_point_in_subpath = true; cursor = segment.point(); break; } case Segment::Type::LineTo: case Segment::Type::QuadraticBezierCurveTo: case Segment::Type::EllipticalArcTo: if (is_first_point_in_subpath) { start_of_subpath = cursor; is_first_point_in_subpath = false; } cursor = segment.point(); break; case Segment::Type::Invalid: ASSERT_NOT_REACHED(); break; } } } String Path::to_string() const { StringBuilder builder; builder.append("Path { "); for (auto& segment : m_segments) { switch (segment.type()) { case Segment::Type::MoveTo: builder.append("MoveTo"); break; case Segment::Type::LineTo: builder.append("LineTo"); break; case Segment::Type::QuadraticBezierCurveTo: builder.append("QuadraticBezierCurveTo"); break; case Segment::Type::EllipticalArcTo: builder.append("EllipticalArcTo"); break; case Segment::Type::Invalid: builder.append("Invalid"); break; } builder.appendf("(%s", segment.point().to_string().characters()); switch (segment.type()) { case Segment::Type::QuadraticBezierCurveTo: builder.append(", "); builder.append(static_cast(segment).through().to_string()); break; case Segment::Type::EllipticalArcTo: { auto& arc = static_cast(segment); builder.appendf(", %s, %s, %f, %f, %f", arc.radii().to_string().characters(), arc.center().to_string().characters(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta()); break; } default: break; } builder.append(") "); } builder.append("}"); return builder.to_string(); } void Path::segmentize_path() { Vector segments; float min_x = 0; float min_y = 0; float max_x = 0; float max_y = 0; auto add_point_to_bbox = [&](const Gfx::FloatPoint& point) { float x = point.x(); float y = point.y(); min_x = min(min_x, x); min_y = min(min_y, y); max_x = max(max_x, x); max_y = max(max_y, y); }; auto add_line = [&](const auto& p0, const auto& p1) { float ymax = p0.y(), ymin = p1.y(), x_of_ymin = p1.x(), x_of_ymax = p0.x(); auto slope = p0.x() == p1.x() ? 0 : ((float)(p0.y() - p1.y())) / ((float)(p0.x() - p1.x())); if (p0.y() < p1.y()) { swap(ymin, ymax); swap(x_of_ymin, x_of_ymax); } segments.append({ FloatPoint(p0.x(), p0.y()), FloatPoint(p1.x(), p1.y()), slope == 0 ? 0 : 1 / slope, x_of_ymin, ymax, ymin, x_of_ymax }); add_point_to_bbox(p1); }; FloatPoint cursor { 0, 0 }; bool first = true; for (auto& segment : m_segments) { switch (segment.type()) { case Segment::Type::MoveTo: if (first) { min_x = segment.point().x(); min_y = segment.point().y(); max_x = segment.point().x(); max_y = segment.point().y(); } else { add_point_to_bbox(segment.point()); } cursor = segment.point(); break; case Segment::Type::LineTo: { add_line(cursor, segment.point()); cursor = segment.point(); break; } case Segment::Type::QuadraticBezierCurveTo: { auto& control = static_cast(segment).through(); Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment.point(), [&](const FloatPoint& p0, const FloatPoint& p1) { add_line(p0, p1); }); cursor = segment.point(); break; } case Segment::Type::EllipticalArcTo: { auto& arc = static_cast(segment); Painter::for_each_line_segment_on_elliptical_arc(cursor, arc.point(), arc.center(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), [&](const FloatPoint& p0, const FloatPoint& p1) { add_line(p0, p1); }); cursor = segment.point(); break; } case Segment::Type::Invalid: ASSERT_NOT_REACHED(); } first = false; } // sort segments by ymax quick_sort(segments, [](const auto& line0, const auto& line1) { return line1.maximum_y < line0.maximum_y; }); m_split_lines = move(segments); m_bounding_box = Gfx::FloatRect { min_x, min_y, max_x - min_x, max_y - min_y }; } }