/* * Copyright (c) 2018-2022, Andreas Kling * Copyright (c) 2021, Idan Horowitz * Copyright (c) 2021, Mustafa Quraish * Copyright (c) 2021, Sam Atkins * Copyright (c) 2022, Tobias Christiansen * Copyright (c) 2022, Linus Groh * Copyright (c) 2022, Jelle Raaijmakers * * SPDX-License-Identifier: BSD-2-Clause */ #include "Painter.h" #include "Bitmap.h" #include "Font/Emoji.h" #include "Font/Font.h" #include "Font/FontDatabase.h" #include "Gamma.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(AK_COMPILER_GCC) # pragma GCC optimize("O3") #endif namespace Gfx { static bool should_paint_as_space(u32 code_point) { return is_ascii_space(code_point) || code_point == 0xa0; } template ALWAYS_INLINE Color get_pixel(Gfx::Bitmap const& bitmap, int x, int y) { if constexpr (format == BitmapFormat::Indexed8) return bitmap.palette_color(bitmap.scanline_u8(y)[x]); if constexpr (format == BitmapFormat::Indexed4) return bitmap.palette_color(bitmap.scanline_u8(y)[x]); if constexpr (format == BitmapFormat::Indexed2) return bitmap.palette_color(bitmap.scanline_u8(y)[x]); if constexpr (format == BitmapFormat::Indexed1) return bitmap.palette_color(bitmap.scanline_u8(y)[x]); if constexpr (format == BitmapFormat::BGRx8888) return Color::from_rgb(bitmap.scanline(y)[x]); if constexpr (format == BitmapFormat::BGRA8888) return Color::from_argb(bitmap.scanline(y)[x]); return bitmap.get_pixel(x, y); } Painter::Painter(Gfx::Bitmap& bitmap) : m_target(bitmap) { int scale = bitmap.scale(); VERIFY(bitmap.format() == Gfx::BitmapFormat::BGRx8888 || bitmap.format() == Gfx::BitmapFormat::BGRA8888); VERIFY(bitmap.physical_width() % scale == 0); VERIFY(bitmap.physical_height() % scale == 0); m_state_stack.append(State()); state().font = nullptr; state().clip_rect = { { 0, 0 }, bitmap.size() }; state().scale = scale; m_clip_origin = state().clip_rect; } void Painter::fill_rect_with_draw_op(IntRect const& a_rect, Color color) { VERIFY(scale() == 1); // FIXME: Add scaling support. auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; ARGB32* dst = m_target->scanline(rect.top()) + rect.left(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); for (int i = rect.height() - 1; i >= 0; --i) { for (int j = 0; j < rect.width(); ++j) set_physical_pixel_with_draw_op(dst[j], color); dst += dst_skip; } } void Painter::clear_rect(IntRect const& a_rect, Color color) { auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; VERIFY(m_target->rect().contains(rect)); rect *= scale(); ARGB32* dst = m_target->scanline(rect.top()) + rect.left(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); for (int i = rect.height() - 1; i >= 0; --i) { fast_u32_fill(dst, color.value(), rect.width()); dst += dst_skip; } } void Painter::fill_physical_rect(IntRect const& physical_rect, Color color) { // Callers must do clipping. ARGB32* dst = m_target->scanline(physical_rect.top()) + physical_rect.left(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); for (int i = physical_rect.height() - 1; i >= 0; --i) { for (int j = 0; j < physical_rect.width(); ++j) dst[j] = Color::from_argb(dst[j]).blend(color).value(); dst += dst_skip; } } void Painter::fill_rect(IntRect const& a_rect, Color color) { if (color.alpha() == 0) return; if (draw_op() != DrawOp::Copy) { fill_rect_with_draw_op(a_rect, color); return; } if (color.alpha() == 0xff) { clear_rect(a_rect, color); return; } auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; VERIFY(m_target->rect().contains(rect)); fill_physical_rect(rect * scale(), color); } void Painter::fill_rect_with_dither_pattern(IntRect const& a_rect, Color color_a, Color color_b) { VERIFY(scale() == 1); // FIXME: Add scaling support. auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; ARGB32* dst = m_target->scanline(rect.top()) + rect.left(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); for (int i = 0; i < rect.height(); ++i) { for (int j = 0; j < rect.width(); ++j) { bool checkboard_use_a = ((rect.left() + i) & 1) ^ ((rect.top() + j) & 1); if (checkboard_use_a && !color_a.alpha()) continue; if (!checkboard_use_a && !color_b.alpha()) continue; dst[j] = checkboard_use_a ? color_a.value() : color_b.value(); } dst += dst_skip; } } void Painter::fill_rect_with_checkerboard(IntRect const& a_rect, IntSize cell_size, Color color_dark, Color color_light) { VERIFY(scale() == 1); // FIXME: Add scaling support. auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; ARGB32* dst = m_target->scanline(rect.top()) + rect.left(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); int first_cell_column = rect.x() / cell_size.width(); int prologue_length = min(rect.width(), cell_size.width() - (rect.x() % cell_size.width())); int number_of_aligned_strips = (rect.width() - prologue_length) / cell_size.width(); for (int i = 0; i < rect.height(); ++i) { int y = rect.y() + i; int cell_row = y / cell_size.height(); bool odd_row = cell_row & 1; // Prologue: Paint the unaligned part up to the first intersection. int j = 0; int cell_column = first_cell_column; { bool odd_cell = cell_column & 1; auto color = (odd_row ^ odd_cell) ? color_light.value() : color_dark.value(); fast_u32_fill(&dst[j], color, prologue_length); j += prologue_length; } // Aligned run: Paint the maximum number of aligned cell strips. for (int strip = 0; strip < number_of_aligned_strips; ++strip) { ++cell_column; bool odd_cell = cell_column & 1; auto color = (odd_row ^ odd_cell) ? color_light.value() : color_dark.value(); fast_u32_fill(&dst[j], color, cell_size.width()); j += cell_size.width(); } // Epilogue: Paint the unaligned part until the end of the rect. if (j != rect.width()) { ++cell_column; bool odd_cell = cell_column & 1; auto color = (odd_row ^ odd_cell) ? color_light.value() : color_dark.value(); int epilogue_length = rect.width() - j; fast_u32_fill(&dst[j], color, epilogue_length); j += epilogue_length; } dst += dst_skip; } } void Painter::fill_rect_with_gradient(Orientation orientation, IntRect const& a_rect, Color gradient_start, Color gradient_end) { if (gradient_start == gradient_end) { fill_rect(a_rect, gradient_start); return; } auto rect = to_physical(a_rect); auto clipped_rect = IntRect::intersection(rect, clip_rect() * scale()); if (clipped_rect.is_empty()) return; int offset = clipped_rect.primary_offset_for_orientation(orientation) - rect.primary_offset_for_orientation(orientation); ARGB32* dst = m_target->scanline(clipped_rect.top()) + clipped_rect.left(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); float increment = (1.0 / ((rect.primary_size_for_orientation(orientation)))); float alpha_increment = increment * ((float)gradient_end.alpha() - (float)gradient_start.alpha()); if (orientation == Orientation::Horizontal) { for (int i = clipped_rect.height() - 1; i >= 0; --i) { float c = offset * increment; float c_alpha = gradient_start.alpha() + offset * alpha_increment; for (int j = 0; j < clipped_rect.width(); ++j) { auto color = gamma_accurate_blend(gradient_start, gradient_end, c); color.set_alpha(c_alpha); dst[j] = Color::from_argb(dst[j]).blend(color).value(); c_alpha += alpha_increment; c += increment; } dst += dst_skip; } } else { float c = offset * increment; float c_alpha = gradient_start.alpha() + offset * alpha_increment; for (int i = clipped_rect.height() - 1; i >= 0; --i) { auto color = gamma_accurate_blend(gradient_start, gradient_end, c); color.set_alpha(c_alpha); for (int j = 0; j < clipped_rect.width(); ++j) { dst[j] = Color::from_argb(dst[j]).blend(color).value(); } c_alpha += alpha_increment; c += increment; dst += dst_skip; } } } void Painter::fill_rect_with_gradient(IntRect const& a_rect, Color gradient_start, Color gradient_end) { return fill_rect_with_gradient(Orientation::Horizontal, a_rect, gradient_start, gradient_end); } void Painter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int radius) { return fill_rect_with_rounded_corners(a_rect, color, radius, radius, radius, radius); } void Painter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int top_left_radius, int top_right_radius, int bottom_right_radius, int bottom_left_radius) { // Fasttrack for rects without any border radii if (!top_left_radius && !top_right_radius && !bottom_right_radius && !bottom_left_radius) return fill_rect(a_rect, color); // Fully transparent, dont care. if (color.alpha() == 0) return; // FIXME: Allow for elliptically rounded corners IntRect top_left_corner = { a_rect.x(), a_rect.y(), top_left_radius, top_left_radius }; IntRect top_right_corner = { a_rect.x() + a_rect.width() - top_right_radius, a_rect.y(), top_right_radius, top_right_radius }; IntRect bottom_right_corner = { a_rect.x() + a_rect.width() - bottom_right_radius, a_rect.y() + a_rect.height() - bottom_right_radius, bottom_right_radius, bottom_right_radius }; IntRect bottom_left_corner = { a_rect.x(), a_rect.y() + a_rect.height() - bottom_left_radius, bottom_left_radius, bottom_left_radius }; IntRect top_rect = { a_rect.x() + top_left_radius, a_rect.y(), a_rect.width() - top_left_radius - top_right_radius, top_left_radius }; IntRect right_rect = { a_rect.x() + a_rect.width() - top_right_radius, a_rect.y() + top_right_radius, top_right_radius, a_rect.height() - top_right_radius - bottom_right_radius }; IntRect bottom_rect = { a_rect.x() + bottom_left_radius, a_rect.y() + a_rect.height() - bottom_right_radius, a_rect.width() - bottom_left_radius - bottom_right_radius, bottom_right_radius }; IntRect left_rect = { a_rect.x(), a_rect.y() + top_left_radius, bottom_left_radius, a_rect.height() - top_left_radius - bottom_left_radius }; IntRect inner = { left_rect.x() + left_rect.width(), left_rect.y(), a_rect.width() - left_rect.width() - right_rect.width(), a_rect.height() - top_rect.height() - bottom_rect.height() }; fill_rect(top_rect, color); fill_rect(right_rect, color); fill_rect(bottom_rect, color); fill_rect(left_rect, color); fill_rect(inner, color); if (top_left_radius) fill_rounded_corner(top_left_corner, top_left_radius, color, CornerOrientation::TopLeft); if (top_right_radius) fill_rounded_corner(top_right_corner, top_right_radius, color, CornerOrientation::TopRight); if (bottom_left_radius) fill_rounded_corner(bottom_left_corner, bottom_left_radius, color, CornerOrientation::BottomLeft); if (bottom_right_radius) fill_rounded_corner(bottom_right_corner, bottom_right_radius, color, CornerOrientation::BottomRight); } void Painter::fill_rounded_corner(IntRect const& a_rect, int radius, Color color, CornerOrientation orientation) { // Care about clipping auto translated_a_rect = a_rect.translated(translation()); auto rect = translated_a_rect.intersected(clip_rect()); if (rect.is_empty()) return; VERIFY(m_target->rect().contains(rect)); // We got cut on the top! // FIXME: Also account for clipping on the x-axis int clip_offset = 0; if (translated_a_rect.y() < rect.y()) clip_offset = rect.y() - translated_a_rect.y(); radius *= scale(); rect *= scale(); clip_offset *= scale(); ARGB32* dst = m_target->scanline(rect.top()) + rect.left(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); IntPoint circle_center; switch (orientation) { case CornerOrientation::TopLeft: circle_center = { radius, radius + 1 }; break; case CornerOrientation::TopRight: circle_center = { -1, radius + 1 }; break; case CornerOrientation::BottomRight: circle_center = { -1, 0 }; break; case CornerOrientation::BottomLeft: circle_center = { radius, 0 }; break; default: VERIFY_NOT_REACHED(); } int radius2 = radius * radius; auto is_in_circle = [&](int x, int y) { int distance2 = (circle_center.x() - x) * (circle_center.x() - x) + (circle_center.y() - y) * (circle_center.y() - y); // To reflect the grid and be compatible with the draw_circle_arc_intersecting algorithm // add 1/2 to the radius return distance2 <= (radius2 + radius + 0.25); }; for (int i = rect.height() - 1; i >= 0; --i) { for (int j = 0; j < rect.width(); ++j) if (is_in_circle(j, rect.height() - i + clip_offset)) dst[j] = Color::from_argb(dst[j]).blend(color).value(); dst += dst_skip; } } void Painter::draw_circle_arc_intersecting(IntRect const& a_rect, IntPoint center, int radius, Color color, int thickness) { if (thickness <= 0 || radius <= 0) return; // Care about clipping auto translated_a_rect = a_rect.translated(translation()); auto rect = translated_a_rect.intersected(clip_rect()); if (rect.is_empty()) return; VERIFY(m_target->rect().contains(rect)); // We got cut on the top! // FIXME: Also account for clipping on the x-axis int clip_offset = 0; if (translated_a_rect.y() < rect.y()) clip_offset = rect.y() - translated_a_rect.y(); if (thickness > radius) thickness = radius; int radius2 = radius * radius; auto is_on_arc = [&](int x, int y) { int distance2 = (center.x() - x) * (center.x() - x) + (center.y() - y) * (center.y() - y); // Is within a circle of radius 1/2 around (x,y), so basically within the current pixel. // Technically this is angle-dependent and should be between 1/2 and sqrt(2)/2, but this works. return distance2 <= (radius2 + radius + 0.25) && distance2 >= (radius2 - radius + 0.25); }; ARGB32* dst = m_target->scanline(rect.top()) + rect.left(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); for (int i = rect.height() - 1; i >= 0; --i) { for (int j = 0; j < rect.width(); ++j) if (is_on_arc(j, rect.height() - i + clip_offset)) dst[j] = Color::from_argb(dst[j]).blend(color).value(); dst += dst_skip; } return draw_circle_arc_intersecting(a_rect, center, radius - 1, color, thickness - 1); } void Painter::fill_ellipse(IntRect const& a_rect, Color color) { VERIFY(scale() == 1); // FIXME: Add scaling support. auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; VERIFY(m_target->rect().contains(rect)); for (int i = 1; i < a_rect.height(); i++) { float y = a_rect.height() * 0.5 - i; float x = a_rect.width() * AK::sqrt(0.25f - y * y / a_rect.height() / a_rect.height()); draw_line({ a_rect.x() + a_rect.width() / 2 - (int)x, a_rect.y() + i }, { a_rect.x() + a_rect.width() / 2 + (int)x - 1, a_rect.y() + i }, color); } } void Painter::draw_ellipse_intersecting(IntRect const& rect, Color color, int thickness) { VERIFY(scale() == 1); // FIXME: Add scaling support. if (thickness <= 0) return; auto const center = rect.center(); auto const draw_real_world_x4 = [this, &color, thickness, center](int x, int y) { IntPoint const directions[4] = { { x, y }, { x, -y }, { -x, y }, { -x, -y } }; for (auto const& delta : directions) { auto const point = center + delta; draw_line(point, point, color, thickness); } }; // Note: This is an implementation of the Midpoint Ellipse Algorithm: double const a = rect.width() / 2; double const a_square = a * a; double const b = rect.height() / 2; double const b_square = b * b; int x = 0; auto y = static_cast(b); double dx = 2 * b_square * x; double dy = 2 * a_square * y; // For region 1: auto decision_parameter = b_square - a_square * b + .25 * a_square; while (dx < dy) { draw_real_world_x4(x, y); if (decision_parameter >= 0) { y--; dy -= 2 * a_square; decision_parameter -= dy; } x++; dx += 2 * b_square; decision_parameter += dx + b_square; } // For region 2: decision_parameter = b_square * ((x + 0.5) * (x + 0.5)) + a_square * ((y - 1) * (y - 1)) - a_square * b_square; while (y >= 0) { draw_real_world_x4(x, y); if (decision_parameter <= 0) { x++; dx += 2 * b_square; decision_parameter += dx; } y--; dy -= 2 * a_square; decision_parameter += a_square - dy; } } template static void for_each_pixel_around_rect_clockwise(RectType const& rect, Callback callback) { if (rect.is_empty()) return; for (auto x = rect.left(); x <= rect.right(); ++x) { callback(x, rect.top()); } for (auto y = rect.top() + 1; y <= rect.bottom(); ++y) { callback(rect.right(), y); } for (auto x = rect.right() - 1; x >= rect.left(); --x) { callback(x, rect.bottom()); } for (auto y = rect.bottom() - 1; y > rect.top(); --y) { callback(rect.left(), y); } } void Painter::draw_focus_rect(IntRect const& rect, Color color) { VERIFY(scale() == 1); // FIXME: Add scaling support. if (rect.is_empty()) return; bool state = false; for_each_pixel_around_rect_clockwise(rect, [&](auto x, auto y) { if (state) set_pixel(x, y, color); state = !state; }); } void Painter::draw_rect(IntRect const& a_rect, Color color, bool rough) { IntRect rect = a_rect.translated(translation()); auto clipped_rect = rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int min_y = clipped_rect.top(); int max_y = clipped_rect.bottom(); int scale = this->scale(); if (rect.top() >= clipped_rect.top() && rect.top() <= clipped_rect.bottom()) { int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x(); int width = rough ? min(rect.width() - 2, clipped_rect.width()) : clipped_rect.width(); for (int i = 0; i < scale; ++i) fill_physical_scanline_with_draw_op(rect.top() * scale + i, start_x * scale, width * scale, color); ++min_y; } if (rect.bottom() >= clipped_rect.top() && rect.bottom() <= clipped_rect.bottom()) { int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x(); int width = rough ? min(rect.width() - 2, clipped_rect.width()) : clipped_rect.width(); for (int i = 0; i < scale; ++i) fill_physical_scanline_with_draw_op(max_y * scale + i, start_x * scale, width * scale, color); --max_y; } bool draw_left_side = rect.left() >= clipped_rect.left(); bool draw_right_side = rect.right() == clipped_rect.right(); if (draw_left_side && draw_right_side) { // Specialized loop when drawing both sides. for (int y = min_y * scale; y <= max_y * scale; ++y) { auto* bits = m_target->scanline(y); for (int i = 0; i < scale; ++i) set_physical_pixel_with_draw_op(bits[rect.left() * scale + i], color); for (int i = 0; i < scale; ++i) set_physical_pixel_with_draw_op(bits[rect.right() * scale + i], color); } } else { for (int y = min_y * scale; y <= max_y * scale; ++y) { auto* bits = m_target->scanline(y); if (draw_left_side) for (int i = 0; i < scale; ++i) set_physical_pixel_with_draw_op(bits[rect.left() * scale + i], color); if (draw_right_side) for (int i = 0; i < scale; ++i) set_physical_pixel_with_draw_op(bits[rect.right() * scale + i], color); } } } void Painter::draw_rect_with_thickness(IntRect const& rect, Color color, int thickness) { if (thickness <= 0) return; IntPoint p1 = rect.location(); IntPoint p2 = { rect.location().x() + rect.width(), rect.location().y() }; IntPoint p3 = { rect.location().x() + rect.width(), rect.location().y() + rect.height() }; IntPoint p4 = { rect.location().x(), rect.location().y() + rect.height() }; draw_line(p1, p2, color, thickness); draw_line(p2, p3, color, thickness); draw_line(p3, p4, color, thickness); draw_line(p4, p1, color, thickness); } void Painter::draw_bitmap(IntPoint p, CharacterBitmap const& bitmap, Color color) { VERIFY(scale() == 1); // FIXME: Add scaling support. auto rect = IntRect(p, bitmap.size()).translated(translation()); auto clipped_rect = rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int const first_row = clipped_rect.top() - rect.top(); int const last_row = clipped_rect.bottom() - rect.top(); int const first_column = clipped_rect.left() - rect.left(); int const last_column = clipped_rect.right() - rect.left(); ARGB32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); char const* bitmap_row = &bitmap.bits()[first_row * bitmap.width() + first_column]; size_t const bitmap_skip = bitmap.width(); for (int row = first_row; row <= last_row; ++row) { for (int j = 0; j <= (last_column - first_column); ++j) { char fc = bitmap_row[j]; if (fc == '#') dst[j] = color.value(); } bitmap_row += bitmap_skip; dst += dst_skip; } } void Painter::draw_bitmap(IntPoint p, GlyphBitmap const& bitmap, Color color) { auto dst_rect = IntRect(p, bitmap.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int const first_row = clipped_rect.top() - dst_rect.top(); int const last_row = clipped_rect.bottom() - dst_rect.top(); int const first_column = clipped_rect.left() - dst_rect.left(); int const last_column = clipped_rect.right() - dst_rect.left(); int scale = this->scale(); ARGB32* dst = m_target->scanline(clipped_rect.y() * scale) + clipped_rect.x() * scale; size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); if (scale == 1) { for (int row = first_row; row <= last_row; ++row) { for (int j = 0; j <= (last_column - first_column); ++j) { if (bitmap.bit_at(j + first_column, row)) dst[j] = Color::from_argb(dst[j]).blend(color).value(); } dst += dst_skip; } } else { for (int row = first_row; row <= last_row; ++row) { for (int j = 0; j <= (last_column - first_column); ++j) { if (bitmap.bit_at((j + first_column), row)) { for (int iy = 0; iy < scale; ++iy) for (int ix = 0; ix < scale; ++ix) { auto pixel_index = j * scale + ix + iy * dst_skip; dst[pixel_index] = Color::from_argb(dst[pixel_index]).blend(color).value(); } } } dst += dst_skip * scale; } } } void Painter::draw_triangle(IntPoint offset, Span control_points, Color color) { VERIFY(control_points.size() == 3); draw_triangle(control_points[0] + offset, control_points[1] + offset, control_points[2] + offset, color); } void Painter::draw_triangle(IntPoint a, IntPoint b, IntPoint c, Color color) { IntPoint p0(to_physical(a)); IntPoint p1(to_physical(b)); IntPoint p2(to_physical(c)); // sort points from top to bottom if (p0.y() > p1.y()) swap(p0, p1); if (p0.y() > p2.y()) swap(p0, p2); if (p1.y() > p2.y()) swap(p1, p2); // return if top and bottom points are on same line if (p0.y() == p2.y()) return; // return if all points are on the same line vertically if (p0.x() == p1.x() && p1.x() == p2.x()) return; // return if top is below clip rect or bottom is above clip rect auto clip = clip_rect(); if (p0.y() >= clip.bottom()) return; if (p2.y() < clip.top()) return; class BoundaryLine { private: IntPoint m_base {}; IntPoint m_path {}; public: BoundaryLine(IntPoint a, IntPoint b) { VERIFY(a.y() <= b.y()); m_base = a; m_path = b - a; } int top_y() const { return m_base.y(); } int bottom_y() const { return m_base.y() + m_path.y(); } bool is_vertical() const { return m_path.x() == 0; } bool is_horizontal() const { return m_path.y() == 0; } bool in_y_range(int y) const { return y >= top_y() && y <= bottom_y(); } Optional intersection_on_x(int y) const { if (!in_y_range(y)) return {}; if (is_horizontal()) return {}; if (is_vertical()) return m_base.x(); int y_diff = y - top_y(); int x_d = m_path.x() * y_diff, y_d = m_path.y(); return (x_d / y_d) + m_base.x(); } }; BoundaryLine l0(p0, p1), l1(p0, p2), l2(p1, p2); int rgba = color.value(); for (int y = max(p0.y(), clip.top()); y <= min(p2.y(), clip.bottom()); y++) { Optional x0 = l0.intersection_on_x(y), x1 = l1.intersection_on_x(y), x2 = l2.intersection_on_x(y); int result_a = 0, result_b = 0; if (x0.has_value()) { result_a = x0.value(); if (x1.has_value() && ((!x2.has_value()) || (result_a != x1.value()))) { result_b = x1.value(); } else { result_b = x2.value(); } } else if (x1.has_value()) { result_a = x1.value(); result_b = x2.value(); } if (result_a > result_b) swap(result_a, result_b); int left_bound = result_a, right_bound = result_b; ARGB32* scanline = m_target->scanline(y); for (int x = max(left_bound, clip.left()); x <= min(right_bound, clip.right()); x++) { scanline[x] = rgba; } } } struct BlitState { enum AlphaState { NoAlpha = 0, SrcAlpha = 1, DstAlpha = 2, BothAlpha = SrcAlpha | DstAlpha }; ARGB32 const* src; ARGB32* dst; size_t src_pitch; size_t dst_pitch; int row_count; int column_count; float opacity; BitmapFormat src_format; }; // FIXME: This is a hack to support blit_with_opacity() with RGBA8888 source. // Ideally we'd have a more generic solution that allows any source format. static void swap_red_and_blue_channels(Color& color) { u32 rgba = color.value(); u32 bgra = (rgba & 0xff00ff00) | ((rgba & 0x000000ff) << 16) | ((rgba & 0x00ff0000) >> 16); color = Color::from_argb(bgra); } // FIXME: This function is very unoptimized. template static void do_blit_with_opacity(BlitState& state) { for (int row = 0; row < state.row_count; ++row) { for (int x = 0; x < state.column_count; ++x) { Color dest_color = (has_alpha & BlitState::DstAlpha) ? Color::from_argb(state.dst[x]) : Color::from_rgb(state.dst[x]); if constexpr (has_alpha & BlitState::SrcAlpha) { Color src_color_with_alpha = Color::from_argb(state.src[x]); if (state.src_format == BitmapFormat::RGBA8888) swap_red_and_blue_channels(src_color_with_alpha); float pixel_opacity = src_color_with_alpha.alpha() / 255.0; src_color_with_alpha.set_alpha(255 * (state.opacity * pixel_opacity)); state.dst[x] = dest_color.blend(src_color_with_alpha).value(); } else { Color src_color_with_alpha = Color::from_rgb(state.src[x]); if (state.src_format == BitmapFormat::RGBA8888) swap_red_and_blue_channels(src_color_with_alpha); src_color_with_alpha.set_alpha(state.opacity * 255); state.dst[x] = dest_color.blend(src_color_with_alpha).value(); } } state.dst += state.dst_pitch; state.src += state.src_pitch; } } void Painter::blit_with_opacity(IntPoint position, Gfx::Bitmap const& source, IntRect const& a_src_rect, float opacity, bool apply_alpha) { VERIFY(scale() >= source.scale() && "painter doesn't support downsampling scale factors"); if (opacity >= 1.0f && !(source.has_alpha_channel() && apply_alpha)) return blit(position, source, a_src_rect); IntRect safe_src_rect = IntRect::intersection(a_src_rect, source.rect()); if (scale() != source.scale()) return draw_scaled_bitmap({ position, safe_src_rect.size() }, source, safe_src_rect, opacity); auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int scale = this->scale(); auto src_rect = a_src_rect * scale; clipped_rect *= scale; dst_rect *= scale; int const first_row = clipped_rect.top() - dst_rect.top(); int const last_row = clipped_rect.bottom() - dst_rect.top(); int const first_column = clipped_rect.left() - dst_rect.left(); int const last_column = clipped_rect.right() - dst_rect.left(); BlitState blit_state { .src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column, .dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(), .src_pitch = source.pitch() / sizeof(ARGB32), .dst_pitch = m_target->pitch() / sizeof(ARGB32), .row_count = last_row - first_row + 1, .column_count = last_column - first_column + 1, .opacity = opacity, .src_format = source.format(), }; if (source.has_alpha_channel() && apply_alpha) { if (m_target->has_alpha_channel()) do_blit_with_opacity(blit_state); else do_blit_with_opacity(blit_state); } else { if (m_target->has_alpha_channel()) do_blit_with_opacity(blit_state); else do_blit_with_opacity(blit_state); } } void Painter::blit_filtered(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect, Function filter) { VERIFY((source.scale() == 1 || source.scale() == scale()) && "blit_filtered only supports integer upsampling"); IntRect safe_src_rect = src_rect.intersected(source.rect()); auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int scale = this->scale(); clipped_rect *= scale; dst_rect *= scale; safe_src_rect *= source.scale(); int const first_row = clipped_rect.top() - dst_rect.top(); int const last_row = clipped_rect.bottom() - dst_rect.top(); int const first_column = clipped_rect.left() - dst_rect.left(); int const last_column = clipped_rect.right() - dst_rect.left(); ARGB32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); int s = scale / source.scale(); if (s == 1) { ARGB32 const* src = source.scanline(safe_src_rect.top() + first_row) + safe_src_rect.left() + first_column; size_t const src_skip = source.pitch() / sizeof(ARGB32); for (int row = first_row; row <= last_row; ++row) { for (int x = 0; x <= (last_column - first_column); ++x) { u8 alpha = Color::from_argb(src[x]).alpha(); if (alpha == 0xff) { auto color = filter(Color::from_argb(src[x])); if (color.alpha() == 0xff) dst[x] = color.value(); else dst[x] = Color::from_argb(dst[x]).blend(color).value(); } else if (!alpha) continue; else dst[x] = Color::from_argb(dst[x]).blend(filter(Color::from_argb(src[x]))).value(); } dst += dst_skip; src += src_skip; } } else { for (int row = first_row; row <= last_row; ++row) { ARGB32 const* src = source.scanline(safe_src_rect.top() + row / s) + safe_src_rect.left() + first_column / s; for (int x = 0; x <= (last_column - first_column); ++x) { u8 alpha = Color::from_argb(src[x / s]).alpha(); if (alpha == 0xff) { auto color = filter(Color::from_argb(src[x / s])); if (color.alpha() == 0xff) dst[x] = color.value(); else dst[x] = Color::from_argb(dst[x]).blend(color).value(); } else if (!alpha) continue; else dst[x] = Color::from_argb(dst[x]).blend(filter(Color::from_argb(src[x / s]))).value(); } dst += dst_skip; } } } void Painter::blit_brightened(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect) { return blit_filtered(position, source, src_rect, [](Color src) { return src.lightened(); }); } void Painter::blit_dimmed(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect) { return blit_filtered(position, source, src_rect, [](Color src) { return src.to_grayscale().lightened(); }); } void Painter::draw_tiled_bitmap(IntRect const& a_dst_rect, Gfx::Bitmap const& source) { VERIFY((source.scale() == 1 || source.scale() == scale()) && "draw_tiled_bitmap only supports integer upsampling"); auto dst_rect = a_dst_rect.translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int scale = this->scale(); clipped_rect *= scale; dst_rect *= scale; int const first_row = (clipped_rect.top() - dst_rect.top()); int const last_row = (clipped_rect.bottom() - dst_rect.top()); int const first_column = (clipped_rect.left() - dst_rect.left()); ARGB32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); if (source.format() == BitmapFormat::BGRx8888 || source.format() == BitmapFormat::BGRA8888) { int s = scale / source.scale(); if (s == 1) { int x_start = first_column + a_dst_rect.left() * scale; for (int row = first_row; row <= last_row; ++row) { ARGB32 const* sl = source.scanline((row + a_dst_rect.top() * scale) % source.physical_height()); for (int x = x_start; x < clipped_rect.width() + x_start; ++x) { dst[x - x_start] = sl[x % source.physical_width()]; } dst += dst_skip; } } else { int x_start = first_column + a_dst_rect.left() * scale; for (int row = first_row; row <= last_row; ++row) { ARGB32 const* sl = source.scanline(((row + a_dst_rect.top() * scale) / s) % source.physical_height()); for (int x = x_start; x < clipped_rect.width() + x_start; ++x) { dst[x - x_start] = sl[(x / s) % source.physical_width()]; } dst += dst_skip; } } return; } VERIFY_NOT_REACHED(); } void Painter::blit_offset(IntPoint a_position, Gfx::Bitmap const& source, IntRect const& a_src_rect, IntPoint offset) { auto src_rect = IntRect { a_src_rect.location() - offset, a_src_rect.size() }; auto position = a_position; if (src_rect.x() < 0) { position.set_x(position.x() - src_rect.x()); src_rect.set_x(0); } if (src_rect.y() < 0) { position.set_y(position.y() - src_rect.y()); src_rect.set_y(0); } blit(position, source, src_rect); } void Painter::blit(IntPoint position, Gfx::Bitmap const& source, IntRect const& a_src_rect, float opacity, bool apply_alpha) { VERIFY(scale() >= source.scale() && "painter doesn't support downsampling scale factors"); if (opacity < 1.0f || (source.has_alpha_channel() && apply_alpha)) return blit_with_opacity(position, source, a_src_rect, opacity, apply_alpha); auto safe_src_rect = a_src_rect.intersected(source.rect()); if (scale() != source.scale()) return draw_scaled_bitmap({ position, safe_src_rect.size() }, source, safe_src_rect, opacity); // If we get here, the Painter might have a scale factor, but the source bitmap has the same scale factor. // We need to transform from logical to physical coordinates, but we can just copy pixels without resampling. auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; // All computations below are in physical coordinates. int scale = this->scale(); auto src_rect = a_src_rect * scale; clipped_rect *= scale; dst_rect *= scale; int const first_row = clipped_rect.top() - dst_rect.top(); int const last_row = clipped_rect.bottom() - dst_rect.top(); int const first_column = clipped_rect.left() - dst_rect.left(); ARGB32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); size_t const dst_skip = m_target->pitch() / sizeof(ARGB32); if (source.format() == BitmapFormat::BGRx8888 || source.format() == BitmapFormat::BGRA8888) { ARGB32 const* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column; size_t const src_skip = source.pitch() / sizeof(ARGB32); for (int row = first_row; row <= last_row; ++row) { memcpy(dst, src, sizeof(ARGB32) * clipped_rect.width()); dst += dst_skip; src += src_skip; } return; } if (source.format() == BitmapFormat::RGBA8888) { u32 const* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column; size_t const src_skip = source.pitch() / sizeof(u32); for (int row = first_row; row <= last_row; ++row) { for (int i = 0; i < clipped_rect.width(); ++i) { u32 rgba = src[i]; u32 bgra = (rgba & 0xff00ff00) | ((rgba & 0x000000ff) << 16) | ((rgba & 0x00ff0000) >> 16); dst[i] = bgra; } dst += dst_skip; src += src_skip; } return; } if (Bitmap::is_indexed(source.format())) { u8 const* src = source.scanline_u8(src_rect.top() + first_row) + src_rect.left() + first_column; size_t const src_skip = source.pitch(); for (int row = first_row; row <= last_row; ++row) { for (int i = 0; i < clipped_rect.width(); ++i) dst[i] = source.palette_color(src[i]).value(); dst += dst_skip; src += src_skip; } return; } VERIFY_NOT_REACHED(); } template ALWAYS_INLINE static void do_draw_integer_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& src_rect, Gfx::Bitmap const& source, int hfactor, int vfactor, GetPixel get_pixel, float opacity) { bool has_opacity = opacity != 1.0f; for (int y = 0; y < src_rect.height(); ++y) { int dst_y = dst_rect.y() + y * vfactor; for (int x = 0; x < src_rect.width(); ++x) { auto src_pixel = get_pixel(source, x + src_rect.left(), y + src_rect.top()); if (has_opacity) src_pixel.set_alpha(src_pixel.alpha() * opacity); for (int yo = 0; yo < vfactor; ++yo) { auto* scanline = (Color*)target.scanline(dst_y + yo); int dst_x = dst_rect.x() + x * hfactor; for (int xo = 0; xo < hfactor; ++xo) { if constexpr (has_alpha_channel) scanline[dst_x + xo] = scanline[dst_x + xo].blend(src_pixel); else scanline[dst_x + xo] = src_pixel; } } } } } template ALWAYS_INLINE static void do_draw_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity) { auto int_src_rect = enclosing_int_rect(src_rect); auto clipped_src_rect = int_src_rect.intersected(source.rect()); if (clipped_src_rect.is_empty()) return; if constexpr (scaling_mode == Painter::ScalingMode::NearestNeighbor || scaling_mode == Painter::ScalingMode::SmoothPixels) { if (dst_rect == clipped_rect && int_src_rect == src_rect && !(dst_rect.width() % int_src_rect.width()) && !(dst_rect.height() % int_src_rect.height())) { int hfactor = dst_rect.width() / int_src_rect.width(); int vfactor = dst_rect.height() / int_src_rect.height(); if (hfactor == 2 && vfactor == 2) return do_draw_integer_scaled_bitmap(target, dst_rect, int_src_rect, source, 2, 2, get_pixel, opacity); if (hfactor == 3 && vfactor == 3) return do_draw_integer_scaled_bitmap(target, dst_rect, int_src_rect, source, 3, 3, get_pixel, opacity); if (hfactor == 4 && vfactor == 4) return do_draw_integer_scaled_bitmap(target, dst_rect, int_src_rect, source, 4, 4, get_pixel, opacity); return do_draw_integer_scaled_bitmap(target, dst_rect, int_src_rect, source, hfactor, vfactor, get_pixel, opacity); } } bool has_opacity = opacity != 1.0f; i64 shift = (i64)1 << 32; i64 fractional_mask = (shift - (u64)1); i64 bilinear_offset_x = (1ll << 31) * (src_rect.width() / dst_rect.width() - 1); i64 bilinear_offset_y = (1ll << 31) * (src_rect.height() / dst_rect.height() - 1); i64 hscale = (src_rect.width() * shift) / dst_rect.width(); i64 vscale = (src_rect.height() * shift) / dst_rect.height(); i64 src_left = src_rect.left() * shift; i64 src_top = src_rect.top() * shift; i64 clipped_src_bottom_shifted = (clipped_src_rect.y() + clipped_src_rect.height()) * shift; i64 clipped_src_right_shifted = (clipped_src_rect.x() + clipped_src_rect.width()) * shift; for (int y = clipped_rect.top(); y <= clipped_rect.bottom(); ++y) { auto* scanline = (Color*)target.scanline(y); auto desired_y = ((y - dst_rect.y()) * vscale + src_top); if (desired_y < clipped_src_rect.top() || desired_y > clipped_src_bottom_shifted) continue; for (int x = clipped_rect.left(); x <= clipped_rect.right(); ++x) { auto desired_x = ((x - dst_rect.x()) * hscale + src_left); if (desired_x < clipped_src_rect.left() || desired_x > clipped_src_right_shifted) continue; Color src_pixel; if constexpr (scaling_mode == Painter::ScalingMode::BilinearBlend) { auto shifted_x = desired_x + bilinear_offset_x; auto shifted_y = desired_y + bilinear_offset_y; auto scaled_x0 = clamp(shifted_x >> 32, clipped_src_rect.left(), clipped_src_rect.right()); auto scaled_x1 = clamp((shifted_x >> 32) + 1, clipped_src_rect.left(), clipped_src_rect.right()); auto scaled_y0 = clamp(shifted_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom()); auto scaled_y1 = clamp((shifted_y >> 32) + 1, clipped_src_rect.top(), clipped_src_rect.bottom()); float x_ratio = (shifted_x & fractional_mask) / static_cast(shift); float y_ratio = (shifted_y & fractional_mask) / static_cast(shift); auto top_left = get_pixel(source, scaled_x0, scaled_y0); auto top_right = get_pixel(source, scaled_x1, scaled_y0); auto bottom_left = get_pixel(source, scaled_x0, scaled_y1); auto bottom_right = get_pixel(source, scaled_x1, scaled_y1); auto top = top_left.interpolate(top_right, x_ratio); auto bottom = bottom_left.interpolate(bottom_right, x_ratio); src_pixel = top.interpolate(bottom, y_ratio); } else if constexpr (scaling_mode == Painter::ScalingMode::SmoothPixels) { auto scaled_x1 = clamp(desired_x >> 32, clipped_src_rect.left(), clipped_src_rect.right()); auto scaled_x0 = clamp(scaled_x1 - 1, clipped_src_rect.left(), clipped_src_rect.right()); auto scaled_y1 = clamp(desired_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom()); auto scaled_y0 = clamp(scaled_y1 - 1, clipped_src_rect.top(), clipped_src_rect.bottom()); float x_ratio = (desired_x & fractional_mask) / (float)shift; float y_ratio = (desired_y & fractional_mask) / (float)shift; float scaled_x_ratio = clamp(x_ratio * dst_rect.width() / (float)src_rect.width(), 0.0f, 1.0f); float scaled_y_ratio = clamp(y_ratio * dst_rect.height() / (float)src_rect.height(), 0.0f, 1.0f); auto top_left = get_pixel(source, scaled_x0, scaled_y0); auto top_right = get_pixel(source, scaled_x1, scaled_y0); auto bottom_left = get_pixel(source, scaled_x0, scaled_y1); auto bottom_right = get_pixel(source, scaled_x1, scaled_y1); auto top = top_left.interpolate(top_right, scaled_x_ratio); auto bottom = bottom_left.interpolate(bottom_right, scaled_x_ratio); src_pixel = top.interpolate(bottom, scaled_y_ratio); } else { auto scaled_x = clamp(desired_x >> 32, clipped_src_rect.left(), clipped_src_rect.right()); auto scaled_y = clamp(desired_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom()); src_pixel = get_pixel(source, scaled_x, scaled_y); } if (has_opacity) src_pixel.set_alpha(src_pixel.alpha() * opacity); if constexpr (has_alpha_channel) { scanline[x] = scanline[x].blend(src_pixel); } else { scanline[x] = src_pixel; } } } } template ALWAYS_INLINE static void do_draw_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity, Painter::ScalingMode scaling_mode) { switch (scaling_mode) { case Painter::ScalingMode::NearestNeighbor: do_draw_scaled_bitmap(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity); break; case Painter::ScalingMode::SmoothPixels: do_draw_scaled_bitmap(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity); break; case Painter::ScalingMode::BilinearBlend: do_draw_scaled_bitmap(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity); break; case Painter::ScalingMode::None: do_draw_scaled_bitmap(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity); break; } } void Painter::draw_scaled_bitmap(IntRect const& a_dst_rect, Gfx::Bitmap const& source, IntRect const& a_src_rect, float opacity, ScalingMode scaling_mode) { draw_scaled_bitmap(a_dst_rect, source, FloatRect { a_src_rect }, opacity, scaling_mode); } void Painter::draw_scaled_bitmap(IntRect const& a_dst_rect, Gfx::Bitmap const& source, FloatRect const& a_src_rect, float opacity, ScalingMode scaling_mode) { IntRect int_src_rect = enclosing_int_rect(a_src_rect); if (scale() == source.scale() && a_src_rect == int_src_rect && a_dst_rect.size() == int_src_rect.size()) return blit(a_dst_rect.location(), source, int_src_rect, opacity); if (scaling_mode == ScalingMode::None) { IntRect clipped_draw_rect { (int)a_src_rect.location().x(), (int)a_src_rect.location().y(), a_dst_rect.size().width(), a_dst_rect.size().height() }; return blit(a_dst_rect.location(), source, clipped_draw_rect, opacity); } auto dst_rect = to_physical(a_dst_rect); auto src_rect = a_src_rect * source.scale(); auto clipped_rect = dst_rect.intersected(clip_rect() * scale()); if (clipped_rect.is_empty()) return; if (source.has_alpha_channel() || opacity != 1.0f) { switch (source.format()) { case BitmapFormat::BGRx8888: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel, opacity, scaling_mode); break; case BitmapFormat::BGRA8888: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel, opacity, scaling_mode); break; case BitmapFormat::Indexed8: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel, opacity, scaling_mode); break; case BitmapFormat::Indexed4: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel, opacity, scaling_mode); break; case BitmapFormat::Indexed2: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel, opacity, scaling_mode); break; case BitmapFormat::Indexed1: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel, opacity, scaling_mode); break; default: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel, opacity, scaling_mode); break; } } else { switch (source.format()) { case BitmapFormat::BGRx8888: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel, opacity, scaling_mode); break; case BitmapFormat::Indexed8: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel, opacity, scaling_mode); break; default: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel, opacity, scaling_mode); break; } } } FLATTEN void Painter::draw_glyph(IntPoint point, u32 code_point, Color color) { draw_glyph(point, code_point, font(), color); } FLATTEN void Painter::draw_glyph(IntPoint point, u32 code_point, Font const& font, Color color) { auto glyph = font.glyph(code_point); auto top_left = point + IntPoint(glyph.left_bearing(), 0); if (glyph.is_glyph_bitmap()) { draw_bitmap(top_left, glyph.glyph_bitmap(), color); } else { blit_filtered(top_left, *glyph.bitmap(), glyph.bitmap()->rect(), [color](Color pixel) -> Color { return pixel.multiply(color); }); } } void Painter::draw_emoji(IntPoint point, Gfx::Bitmap const& emoji, Font const& font) { IntRect dst_rect { point.x(), point.y(), font.pixel_size() * emoji.width() / emoji.height(), font.pixel_size() }; draw_scaled_bitmap(dst_rect, emoji, emoji.rect()); } void Painter::draw_glyph_or_emoji(IntPoint point, u32 code_point, Font const& font, Color color) { StringBuilder builder; builder.append_code_point(code_point); auto it = Utf8View { builder.string_view() }.begin(); return draw_glyph_or_emoji(point, it, font, color); } void Painter::draw_glyph_or_emoji(IntPoint point, Utf8CodePointIterator& it, Font const& font, Color color) { // FIXME: These should live somewhere else. constexpr u32 text_variation_selector = 0xFE0E; constexpr u32 emoji_variation_selector = 0xFE0F; constexpr u32 regional_indicator_symbol_a = 0x1F1E6; constexpr u32 regional_indicator_symbol_z = 0x1F1FF; auto initial_it = it; u32 code_point = *it; auto next_code_point = it.peek(1); ScopeGuard consume_variation_selector = [&] { // If we advanced the iterator to consume an emoji sequence, don't look for another variation selector. if (initial_it != it) return; // Otherwise, discard one code point if it's a variation selector. auto next_code_point = it.peek(1); if (next_code_point == text_variation_selector || next_code_point == emoji_variation_selector) ++it; }; auto code_point_is_regional_indicator = code_point >= regional_indicator_symbol_a && code_point <= regional_indicator_symbol_z; auto font_contains_glyph = font.contains_glyph(code_point); auto check_for_emoji = false // Flag emojis consist of two regional indicators. || code_point_is_regional_indicator // U+00A9 (copyright) or U+00AE (registered) are text glyphs by default, // keycap emojis ({#,*,0-9} U+FE0F U+20E3) start with a regular ASCII character. // Both cases are handled by peeking for the variation selector. || next_code_point == emoji_variation_selector; // If the font contains the glyph, and we know it's not the start of an emoji, draw a text glyph. if (font_contains_glyph && !check_for_emoji) { draw_glyph(point, code_point, font, color); return; } // If we didn't find a text glyph, or have an emoji variation selector or regional indicator, try to draw an emoji glyph. if (auto const* emoji = Emoji::emoji_for_code_point_iterator(it)) { draw_emoji(point, *emoji, font); return; } // If that failed, but we have a text glyph fallback, draw that. if (font_contains_glyph) { draw_glyph(point, code_point, font, color); return; } // No suitable glyph found, draw a replacement character. dbgln_if(EMOJI_DEBUG, "Failed to find a glyph or emoji for code_point {}", code_point); draw_glyph(point, 0xFFFD, font, color); } template void draw_text_line(IntRect const& a_rect, Utf8View const& text, Font const& font, TextAlignment alignment, TextDirection direction, DrawGlyphFunction draw_glyph) { auto rect = a_rect; switch (alignment) { case TextAlignment::TopLeft: case TextAlignment::CenterLeft: case TextAlignment::BottomLeft: break; case TextAlignment::TopRight: case TextAlignment::CenterRight: case TextAlignment::BottomRight: rect.set_x(rect.right() - font.width(text)); break; case TextAlignment::TopCenter: case TextAlignment::BottomCenter: case TextAlignment::Center: { auto shrunken_rect = rect; shrunken_rect.set_width(font.width(text)); shrunken_rect.center_within(rect); rect = shrunken_rect; break; } default: VERIFY_NOT_REACHED(); } if (is_vertically_centered_text_alignment(alignment)) { int distance_from_baseline_to_bottom = (font.pixel_size() - 1) - font.baseline(); rect.translate_by(0, distance_from_baseline_to_bottom / 2); } auto point = rect.location(); int space_width = font.glyph_width(' ') + font.glyph_spacing(); if (direction == TextDirection::RTL) { point.translate_by(rect.width(), 0); // Start drawing from the end space_width = -space_width; // Draw spaces backwards } u32 last_code_point { 0 }; for (auto it = text.begin(); it != text.end(); ++it) { auto code_point = *it; if (should_paint_as_space(code_point)) { point.translate_by(space_width, 0); last_code_point = code_point; continue; } int kerning = round_to(font.glyphs_horizontal_kerning(last_code_point, code_point)); if (kerning != 0.f) point.translate_by(direction == TextDirection::LTR ? kerning : -kerning, 0); IntSize glyph_size(font.glyph_or_emoji_width(code_point) + font.glyph_spacing(), font.pixel_size()); if (direction == TextDirection::RTL) point.translate_by(-glyph_size.width(), 0); // If we are drawing right to left, we have to move backwards before drawing the glyph draw_glyph({ point, glyph_size }, it); if (direction == TextDirection::LTR) point.translate_by(glyph_size.width(), 0); // The callback function might have exhausted the iterator. if (it == text.end()) break; last_code_point = code_point; } } static inline size_t draw_text_get_length(Utf8View const& text) { return text.byte_length(); } Vector Painter::split_text_into_directional_runs(Utf8View const& text, TextDirection initial_direction) { // FIXME: This is a *very* simplified version of the UNICODE BIDIRECTIONAL ALGORITHM (https://www.unicode.org/reports/tr9/), that can render most bidirectional text // but also produces awkward results in a large amount of edge cases. This should probably be replaced with a fully spec compliant implementation at some point. // FIXME: Support HTML "dir" attribute (how?) u8 paragraph_embedding_level = initial_direction == TextDirection::LTR ? 0 : 1; Vector embedding_levels; embedding_levels.ensure_capacity(text.length()); for (size_t i = 0; i < text.length(); i++) embedding_levels.unchecked_append(paragraph_embedding_level); // FIXME: Support Explicit Directional Formatting Characters Vector character_classes; character_classes.ensure_capacity(text.length()); for (u32 code_point : text) character_classes.unchecked_append(get_char_bidi_class(code_point)); // resolving weak types BidirectionalClass paragraph_class = initial_direction == TextDirection::LTR ? BidirectionalClass::STRONG_LTR : BidirectionalClass::STRONG_RTL; for (size_t i = 0; i < character_classes.size(); i++) { if (character_classes[i] != BidirectionalClass::WEAK_SEPARATORS) continue; for (ssize_t j = i - 1; j >= 0; j--) { auto character_class = character_classes[j]; if (character_class != BidirectionalClass::STRONG_RTL && character_class != BidirectionalClass::STRONG_LTR) continue; character_classes[i] = character_class; break; } if (character_classes[i] == BidirectionalClass::WEAK_SEPARATORS) character_classes[i] = paragraph_class; } // resolving neutral types auto left_side = BidirectionalClass::NEUTRAL; auto sequence_length = 0; for (size_t i = 0; i < character_classes.size(); i++) { auto character_class = character_classes[i]; if (left_side == BidirectionalClass::NEUTRAL) { if (character_class != BidirectionalClass::NEUTRAL) left_side = character_class; else character_classes[i] = paragraph_class; continue; } if (character_class != BidirectionalClass::NEUTRAL) { BidirectionalClass sequence_class; if (bidi_class_to_direction(left_side) == bidi_class_to_direction(character_class)) { sequence_class = left_side == BidirectionalClass::STRONG_RTL ? BidirectionalClass::STRONG_RTL : BidirectionalClass::STRONG_LTR; } else { sequence_class = paragraph_class; } for (auto j = 0; j < sequence_length; j++) { character_classes[i - j - 1] = sequence_class; } sequence_length = 0; left_side = character_class; } else { sequence_length++; } } for (auto i = 0; i < sequence_length; i++) character_classes[character_classes.size() - i - 1] = paragraph_class; // resolving implicit levels for (size_t i = 0; i < character_classes.size(); i++) { auto character_class = character_classes[i]; if ((embedding_levels[i] % 2) == 0) { if (character_class == BidirectionalClass::STRONG_RTL) embedding_levels[i] += 1; else if (character_class == BidirectionalClass::WEAK_NUMBERS || character_class == BidirectionalClass::WEAK_SEPARATORS) embedding_levels[i] += 2; } else { if (character_class == BidirectionalClass::STRONG_LTR || character_class == BidirectionalClass::WEAK_NUMBERS || character_class == BidirectionalClass::WEAK_SEPARATORS) embedding_levels[i] += 1; } } // splitting into runs auto run_code_points_start = text.begin(); auto next_code_points_slice = [&](auto length) { Vector run_code_points; run_code_points.ensure_capacity(length); for (size_t j = 0; j < length; ++j, ++run_code_points_start) run_code_points.unchecked_append(*run_code_points_start); return run_code_points; }; Vector runs; size_t start = 0; u8 level = embedding_levels[0]; for (size_t i = 1; i < embedding_levels.size(); ++i) { if (embedding_levels[i] == level) continue; auto code_points_slice = next_code_points_slice(i - start); runs.append({ move(code_points_slice), level }); start = i; level = embedding_levels[i]; } auto code_points_slice = next_code_points_slice(embedding_levels.size() - start); runs.append({ move(code_points_slice), level }); // reordering resolved levels // FIXME: missing special cases for trailing whitespace characters u8 minimum_level = 128; u8 maximum_level = 0; for (auto& run : runs) { minimum_level = min(minimum_level, run.embedding_level()); maximum_level = max(minimum_level, run.embedding_level()); } if ((minimum_level % 2) == 0) minimum_level++; auto runs_count = runs.size() - 1; while (maximum_level <= minimum_level) { size_t run_index = 0; while (run_index < runs_count) { while (run_index < runs_count && runs[run_index].embedding_level() < maximum_level) run_index++; auto reverse_start = run_index; while (run_index <= runs_count && runs[run_index].embedding_level() >= maximum_level) run_index++; auto reverse_end = run_index - 1; while (reverse_start < reverse_end) { swap(runs[reverse_start], runs[reverse_end]); reverse_start++; reverse_end--; } } maximum_level--; } // mirroring RTL mirror characters for (auto& run : runs) { if (run.direction() == TextDirection::LTR) continue; for (auto& code_point : run.code_points()) { code_point = get_mirror_char(code_point); } } return runs; } bool Painter::text_contains_bidirectional_text(Utf8View const& text, TextDirection initial_direction) { for (u32 code_point : text) { auto char_class = get_char_bidi_class(code_point); if (char_class == BidirectionalClass::NEUTRAL) continue; if (bidi_class_to_direction(char_class) != initial_direction) return true; } return false; } template void Painter::do_draw_text(IntRect const& rect, Utf8View const& text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping, DrawGlyphFunction draw_glyph) { if (draw_text_get_length(text) == 0) return; TextLayout layout(&font, text, rect); int line_height = font.pixel_size() + LINE_SPACING; auto lines = layout.lines(elision, wrapping, LINE_SPACING); auto bounding_rect = layout.bounding_rect(wrapping, LINE_SPACING); switch (alignment) { case TextAlignment::TopCenter: bounding_rect.set_y(rect.y()); bounding_rect.center_horizontally_within(rect); break; case TextAlignment::TopLeft: bounding_rect.set_location(rect.location()); break; case TextAlignment::TopRight: bounding_rect.set_location({ (rect.right() + 1) - bounding_rect.width(), rect.y() }); break; case TextAlignment::CenterLeft: bounding_rect.set_location({ rect.x(), rect.center().y() - (bounding_rect.height() / 2) }); break; case TextAlignment::CenterRight: bounding_rect.set_location({ (rect.right() + 1) - bounding_rect.width(), rect.center().y() - (bounding_rect.height() / 2) }); break; case TextAlignment::Center: bounding_rect.center_within(rect); break; case TextAlignment::BottomCenter: bounding_rect.set_y((rect.bottom() + 1) - bounding_rect.height()); bounding_rect.center_horizontally_within(rect); break; case TextAlignment::BottomLeft: bounding_rect.set_location({ rect.x(), (rect.bottom() + 1) - bounding_rect.height() }); break; case TextAlignment::BottomRight: bounding_rect.set_location({ (rect.right() + 1) - bounding_rect.width(), (rect.bottom() + 1) - bounding_rect.height() }); break; default: VERIFY_NOT_REACHED(); } bounding_rect.intersect(rect); for (size_t i = 0; i < lines.size(); ++i) { auto line = Utf8View { lines[i] }; IntRect line_rect { bounding_rect.x(), bounding_rect.y() + static_cast(i) * line_height, bounding_rect.width(), line_height }; line_rect.intersect(rect); TextDirection line_direction = get_text_direction(line); if (text_contains_bidirectional_text(line, line_direction)) { // Slow Path: The line contains mixed BiDi classes auto directional_runs = split_text_into_directional_runs(line, line_direction); auto current_dx = line_direction == TextDirection::LTR ? 0 : line_rect.width(); for (auto& directional_run : directional_runs) { auto run_width = font.width(directional_run.text()); if (line_direction == TextDirection::RTL) current_dx -= run_width; auto run_rect = line_rect.translated(current_dx, 0); run_rect.set_width(run_width); // NOTE: DirectionalRun returns Utf32View which isn't // compatible with draw_text_line. StringBuilder builder; builder.append(directional_run.text()); auto line_text = Utf8View { builder.string_view() }; draw_text_line(run_rect, line_text, font, alignment, directional_run.direction(), draw_glyph); if (line_direction == TextDirection::LTR) current_dx += run_width; } } else { draw_text_line(line_rect, line, font, alignment, line_direction, draw_glyph); } } } void Painter::draw_text(IntRect const& rect, StringView text, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping) { draw_text(rect, text, font(), alignment, color, elision, wrapping); } void Painter::draw_text(IntRect const& rect, Utf32View const& text, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping) { draw_text(rect, text, font(), alignment, color, elision, wrapping); } void Painter::draw_text(IntRect const& rect, StringView raw_text, Font const& font, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping) { Utf8View text { raw_text }; do_draw_text(rect, text, font, alignment, elision, wrapping, [&](IntRect const& r, Utf8CodePointIterator& it) { draw_glyph_or_emoji(r.location(), it, font, color); }); } void Painter::draw_text(IntRect const& rect, Utf32View const& raw_text, Font const& font, TextAlignment alignment, Color color, TextElision elision, TextWrapping wrapping) { // FIXME: UTF-32 should eventually be completely removed, but for the time // being some places might depend on it, so we do some internal conversion. StringBuilder builder; builder.append(raw_text); auto text = Utf8View { builder.string_view() }; do_draw_text(rect, text, font, alignment, elision, wrapping, [&](IntRect const& r, Utf8CodePointIterator& it) { draw_glyph_or_emoji(r.location(), it, font, color); }); } void Painter::draw_text(Function draw_one_glyph, IntRect const& rect, Utf8View const& text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping) { VERIFY(scale() == 1); // FIXME: Add scaling support. do_draw_text(rect, text, font, alignment, elision, wrapping, [&](IntRect const& r, Utf8CodePointIterator& it) { draw_one_glyph(r, it); }); } void Painter::draw_text(Function draw_one_glyph, IntRect const& rect, StringView raw_text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping) { VERIFY(scale() == 1); // FIXME: Add scaling support. Utf8View text { raw_text }; do_draw_text(rect, text, font, alignment, elision, wrapping, [&](IntRect const& r, Utf8CodePointIterator& it) { draw_one_glyph(r, it); }); } void Painter::draw_text(Function draw_one_glyph, IntRect const& rect, Utf32View const& raw_text, Font const& font, TextAlignment alignment, TextElision elision, TextWrapping wrapping) { VERIFY(scale() == 1); // FIXME: Add scaling support. // FIXME: UTF-32 should eventually be completely removed, but for the time // being some places might depend on it, so we do some internal conversion. StringBuilder builder; builder.append(raw_text); auto text = Utf8View { builder.string_view() }; do_draw_text(rect, text, font, alignment, elision, wrapping, [&](IntRect const& r, Utf8CodePointIterator& it) { draw_one_glyph(r, it); }); } void Painter::set_pixel(IntPoint p, Color color, bool blend) { auto point = p; point.translate_by(state().translation); // Use the scale only to avoid clipping pixels set in drawing functions that handle // scaling and call set_pixel() -- do not scale the pixel. if (!clip_rect().contains(point / scale())) return; auto& dst = m_target->scanline(point.y())[point.x()]; if (!blend) dst = color.value(); else if (color.alpha()) dst = Color::from_argb(dst).blend(color).value(); } Optional Painter::get_pixel(IntPoint p) { auto point = p; point.translate_by(state().translation); if (!clip_rect().contains(point / scale())) return {}; return Color::from_argb(m_target->scanline(point.y())[point.x()]); } ErrorOr> Painter::get_region_bitmap(IntRect const& region, BitmapFormat format, Optional actual_region) { VERIFY(scale() == 1); auto bitmap_region = region.translated(state().translation).intersected(m_target->rect()); if (actual_region.has_value()) actual_region.value() = bitmap_region.translated(-state().translation); return m_target->cropped(bitmap_region, format); } ALWAYS_INLINE void Painter::set_physical_pixel_with_draw_op(u32& pixel, Color color) { // This always sets a single physical pixel, independent of scale(). // This should only be called by routines that already handle scale. switch (draw_op()) { case DrawOp::Copy: pixel = color.value(); break; case DrawOp::Xor: pixel = color.xored(Color::from_argb(pixel)).value(); break; case DrawOp::Invert: pixel = Color::from_argb(pixel).inverted().value(); break; } } ALWAYS_INLINE void Painter::fill_physical_scanline_with_draw_op(int y, int x, int width, Color color) { // This always draws a single physical scanline, independent of scale(). // This should only be called by routines that already handle scale. switch (draw_op()) { case DrawOp::Copy: fast_u32_fill(m_target->scanline(y) + x, color.value(), width); break; case DrawOp::Xor: { auto* pixel = m_target->scanline(y) + x; auto* end = pixel + width; while (pixel < end) { *pixel = Color::from_argb(*pixel).xored(color).value(); pixel++; } break; } case DrawOp::Invert: { auto* pixel = m_target->scanline(y) + x; auto* end = pixel + width; while (pixel < end) { *pixel = Color::from_argb(*pixel).inverted().value(); pixel++; } break; } } } void Painter::draw_physical_pixel(IntPoint physical_position, Color color, int thickness) { // This always draws a single physical pixel, independent of scale(). // This should only be called by routines that already handle scale // (including scaling thickness). VERIFY(draw_op() == DrawOp::Copy); if (thickness <= 0) return; if (thickness == 1) { // Implies scale() == 1. auto& pixel = m_target->scanline(physical_position.y())[physical_position.x()]; return set_physical_pixel_with_draw_op(pixel, Color::from_argb(pixel).blend(color)); } IntRect rect { physical_position, { thickness, thickness } }; rect.intersect(clip_rect() * scale()); fill_physical_rect(rect, color); } void Painter::draw_line(IntPoint a_p1, IntPoint a_p2, Color color, int thickness, LineStyle style, Color alternate_color) { if (thickness <= 0) return; if (color.alpha() == 0) return; auto clip_rect = this->clip_rect() * scale(); auto const p1 = thickness > 1 ? a_p1.translated(-(thickness / 2), -(thickness / 2)) : a_p1; auto const p2 = thickness > 1 ? a_p2.translated(-(thickness / 2), -(thickness / 2)) : a_p2; auto point1 = to_physical(p1); auto point2 = to_physical(p2); thickness *= scale(); auto alternate_color_is_transparent = alternate_color == Color::Transparent; // Special case: vertical line. if (point1.x() == point2.x()) { int const x = point1.x(); if (x < clip_rect.left() || x > clip_rect.right()) return; if (point1.y() > point2.y()) swap(point1, point2); if (point1.y() > clip_rect.bottom()) return; if (point2.y() < clip_rect.top()) return; int min_y = max(point1.y(), clip_rect.top()); int max_y = min(point2.y(), clip_rect.bottom()); if (style == LineStyle::Dotted) { for (int y = min_y; y <= max_y; y += thickness * 2) draw_physical_pixel({ x, y }, color, thickness); } else if (style == LineStyle::Dashed) { for (int y = min_y; y <= max_y; y += thickness * 6) { draw_physical_pixel({ x, y }, color, thickness); draw_physical_pixel({ x, min(y + thickness, max_y) }, color, thickness); draw_physical_pixel({ x, min(y + thickness * 2, max_y) }, color, thickness); if (!alternate_color_is_transparent) { draw_physical_pixel({ x, min(y + thickness * 3, max_y) }, alternate_color, thickness); draw_physical_pixel({ x, min(y + thickness * 4, max_y) }, alternate_color, thickness); draw_physical_pixel({ x, min(y + thickness * 5, max_y) }, alternate_color, thickness); } } } else { for (int y = min_y; y <= max_y; y += thickness) draw_physical_pixel({ x, y }, color, thickness); draw_physical_pixel({ x, max_y }, color, thickness); } return; } // Special case: horizontal line. if (point1.y() == point2.y()) { int const y = point1.y(); if (y < clip_rect.top() || y > clip_rect.bottom()) return; if (point1.x() > point2.x()) swap(point1, point2); if (point1.x() > clip_rect.right()) return; if (point2.x() < clip_rect.left()) return; int min_x = max(point1.x(), clip_rect.left()); int max_x = min(point2.x(), clip_rect.right()); if (style == LineStyle::Dotted) { for (int x = min_x; x <= max_x; x += thickness * 2) draw_physical_pixel({ x, y }, color, thickness); } else if (style == LineStyle::Dashed) { for (int x = min_x; x <= max_x; x += thickness * 6) { draw_physical_pixel({ x, y }, color, thickness); draw_physical_pixel({ min(x + thickness, max_x), y }, color, thickness); draw_physical_pixel({ min(x + thickness * 2, max_x), y }, color, thickness); if (!alternate_color_is_transparent) { draw_physical_pixel({ min(x + thickness * 3, max_x), y }, alternate_color, thickness); draw_physical_pixel({ min(x + thickness * 4, max_x), y }, alternate_color, thickness); draw_physical_pixel({ min(x + thickness * 5, max_x), y }, alternate_color, thickness); } } } else { for (int x = min_x; x <= max_x; x += thickness) draw_physical_pixel({ x, y }, color, thickness); draw_physical_pixel({ max_x, y }, color, thickness); } return; } // FIXME: Implement dotted/dashed diagonal lines. VERIFY(style == LineStyle::Solid); int const adx = abs(point2.x() - point1.x()); int const ady = abs(point2.y() - point1.y()); if (adx > ady) { if (point1.x() > point2.x()) swap(point1, point2); } else { if (point1.y() > point2.y()) swap(point1, point2); } // FIXME: Implement clipping below. int const dx = point2.x() - point1.x(); int const dy = point2.y() - point1.y(); int error = 0; if (dx > dy) { int const y_step = dy == 0 ? 0 : (dy > 0 ? 1 : -1); int const delta_error = 2 * abs(dy); int y = point1.y(); for (int x = point1.x(); x <= point2.x(); ++x) { if (clip_rect.contains(x, y)) draw_physical_pixel({ x, y }, color, thickness); error += delta_error; if (error >= dx) { y += y_step; error -= 2 * dx; } } } else { int const x_step = dx == 0 ? 0 : (dx > 0 ? 1 : -1); int const delta_error = 2 * abs(dx); int x = point1.x(); for (int y = point1.y(); y <= point2.y(); ++y) { if (clip_rect.contains(x, y)) draw_physical_pixel({ x, y }, color, thickness); error += delta_error; if (error >= dy) { x += x_step; error -= 2 * dy; } } } } void Painter::draw_triangle_wave(IntPoint a_p1, IntPoint a_p2, Color color, int amplitude, int thickness) { // FIXME: Support more than horizontal waves VERIFY(a_p1.y() == a_p2.y()); auto const p1 = thickness > 1 ? a_p1.translated(-(thickness / 2), -(thickness / 2)) : a_p1; auto const p2 = thickness > 1 ? a_p2.translated(-(thickness / 2), -(thickness / 2)) : a_p2; auto point1 = to_physical(p1); auto point2 = to_physical(p2); auto y = point1.y(); for (int x = 0; x <= point2.x() - point1.x(); ++x) { auto y_offset = abs(x % (2 * amplitude) - amplitude) - amplitude; draw_physical_pixel({ point1.x() + x, y + y_offset }, color, thickness); } } static bool can_approximate_bezier_curve(FloatPoint p1, FloatPoint p2, FloatPoint control) { constexpr float tolerance = 0.0015f; auto p1x = 3 * control.x() - 2 * p1.x() - p2.x(); auto p1y = 3 * control.y() - 2 * p1.y() - p2.y(); auto p2x = 3 * control.x() - 2 * p2.x() - p1.x(); auto p2y = 3 * control.y() - 2 * p2.y() - p1.y(); p1x = p1x * p1x; p1y = p1y * p1y; p2x = p2x * p2x; p2y = p2y * p2y; return max(p1x, p2x) + max(p1y, p2y) <= tolerance; } // static void Painter::for_each_line_segment_on_bezier_curve(FloatPoint control_point, FloatPoint p1, FloatPoint p2, Function& callback) { struct SegmentDescriptor { FloatPoint control_point; FloatPoint p1; FloatPoint p2; }; static constexpr auto split_quadratic_bezier_curve = [](FloatPoint original_control, FloatPoint p1, FloatPoint p2, auto& segments) { auto po1_midpoint = original_control + p1; po1_midpoint /= 2; auto po2_midpoint = original_control + p2; po2_midpoint /= 2; auto new_segment = po1_midpoint + po2_midpoint; new_segment /= 2; segments.enqueue({ po1_midpoint, p1, new_segment }); segments.enqueue({ po2_midpoint, new_segment, p2 }); }; Queue segments; segments.enqueue({ control_point, p1, p2 }); while (!segments.is_empty()) { auto segment = segments.dequeue(); if (can_approximate_bezier_curve(segment.p1, segment.p2, segment.control_point)) callback(segment.p1, segment.p2); else split_quadratic_bezier_curve(segment.control_point, segment.p1, segment.p2, segments); } } void Painter::for_each_line_segment_on_bezier_curve(FloatPoint control_point, FloatPoint p1, FloatPoint p2, Function&& callback) { for_each_line_segment_on_bezier_curve(control_point, p1, p2, callback); } void Painter::draw_quadratic_bezier_curve(IntPoint control_point, IntPoint p1, IntPoint p2, Color color, int thickness, LineStyle style) { VERIFY(scale() == 1); // FIXME: Add scaling support. if (thickness <= 0) return; for_each_line_segment_on_bezier_curve(FloatPoint(control_point), FloatPoint(p1), FloatPoint(p2), [&](FloatPoint fp1, FloatPoint fp2) { draw_line(IntPoint(fp1.x(), fp1.y()), IntPoint(fp2.x(), fp2.y()), color, thickness, style); }); } void Painter::for_each_line_segment_on_cubic_bezier_curve(FloatPoint control_point_0, FloatPoint control_point_1, FloatPoint p1, FloatPoint p2, Function&& callback) { for_each_line_segment_on_cubic_bezier_curve(control_point_0, control_point_1, p1, p2, callback); } static bool can_approximate_cubic_bezier_curve(FloatPoint p1, FloatPoint p2, FloatPoint control_0, FloatPoint control_1) { constexpr float tolerance = 0.0015f; auto ax = 3 * control_0.x() - 2 * p1.x() - p2.x(); auto ay = 3 * control_0.y() - 2 * p1.y() - p2.y(); auto bx = 3 * control_1.x() - p1.x() - 2 * p2.x(); auto by = 3 * control_1.y() - p1.y() - 2 * p2.y(); ax *= ax; ay *= ay; bx *= bx; by *= by; return max(ax, bx) + max(ay, by) <= tolerance; } // static void Painter::for_each_line_segment_on_cubic_bezier_curve(FloatPoint control_point_0, FloatPoint control_point_1, FloatPoint p1, FloatPoint p2, Function& callback) { struct ControlPair { FloatPoint control_point_0; FloatPoint control_point_1; }; struct SegmentDescriptor { ControlPair control_points; FloatPoint p1; FloatPoint p2; }; static constexpr auto split_cubic_bezier_curve = [](ControlPair const& original_controls, FloatPoint p1, FloatPoint p2, auto& segments) { Array level_1_midpoints { (p1 + original_controls.control_point_0) / 2, (original_controls.control_point_0 + original_controls.control_point_1) / 2, (original_controls.control_point_1 + p2) / 2, }; Array level_2_midpoints { (level_1_midpoints[0] + level_1_midpoints[1]) / 2, (level_1_midpoints[1] + level_1_midpoints[2]) / 2, }; auto level_3_midpoint = (level_2_midpoints[0] + level_2_midpoints[1]) / 2; segments.enqueue({ { level_1_midpoints[0], level_2_midpoints[0] }, p1, level_3_midpoint }); segments.enqueue({ { level_2_midpoints[1], level_1_midpoints[2] }, level_3_midpoint, p2 }); }; Queue segments; segments.enqueue({ { control_point_0, control_point_1 }, p1, p2 }); while (!segments.is_empty()) { auto segment = segments.dequeue(); if (can_approximate_cubic_bezier_curve(segment.p1, segment.p2, segment.control_points.control_point_0, segment.control_points.control_point_1)) callback(segment.p1, segment.p2); else split_cubic_bezier_curve(segment.control_points, segment.p1, segment.p2, segments); } } void Painter::draw_cubic_bezier_curve(IntPoint control_point_0, IntPoint control_point_1, IntPoint p1, IntPoint p2, Color color, int thickness, Painter::LineStyle style) { for_each_line_segment_on_cubic_bezier_curve(FloatPoint(control_point_0), FloatPoint(control_point_1), FloatPoint(p1), FloatPoint(p2), [&](FloatPoint fp1, FloatPoint fp2) { draw_line(IntPoint(fp1.x(), fp1.y()), IntPoint(fp2.x(), fp2.y()), color, thickness, style); }); } // static void Painter::for_each_line_segment_on_elliptical_arc(FloatPoint p1, FloatPoint p2, FloatPoint center, FloatPoint const radii, float x_axis_rotation, float theta_1, float theta_delta, Function& callback) { if (radii.x() <= 0 || radii.y() <= 0) return; auto start = p1; auto end = p2; if (theta_delta < 0) { swap(start, end); theta_1 = theta_1 + theta_delta; theta_delta = fabsf(theta_delta); } auto relative_start = start - center; auto a = radii.x(); auto b = radii.y(); // The segments are at most 1 long auto largest_radius = max(a, b); float theta_step = AK::atan2(1.f, (float)largest_radius); FloatPoint current_point = relative_start; FloatPoint next_point = { 0, 0 }; float sin_x_axis, cos_x_axis; AK::sincos(x_axis_rotation, sin_x_axis, cos_x_axis); auto rotate_point = [sin_x_axis, cos_x_axis](FloatPoint& p) { auto original_x = p.x(); auto original_y = p.y(); p.set_x(original_x * cos_x_axis - original_y * sin_x_axis); p.set_y(original_x * sin_x_axis + original_y * cos_x_axis); }; for (float theta = theta_1; theta <= theta_1 + theta_delta; theta += theta_step) { float s, c; AK::sincos(theta, s, c); next_point.set_x(a * c); next_point.set_y(b * s); rotate_point(next_point); callback(current_point + center, next_point + center); current_point = next_point; } callback(current_point + center, end); } // static void Painter::for_each_line_segment_on_elliptical_arc(FloatPoint p1, FloatPoint p2, FloatPoint center, FloatPoint const radii, float x_axis_rotation, float theta_1, float theta_delta, Function&& callback) { for_each_line_segment_on_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta, callback); } void Painter::draw_elliptical_arc(IntPoint p1, IntPoint p2, IntPoint center, FloatPoint radii, float x_axis_rotation, float theta_1, float theta_delta, Color color, int thickness, LineStyle style) { VERIFY(scale() == 1); // FIXME: Add scaling support. if (thickness <= 0) return; for_each_line_segment_on_elliptical_arc(FloatPoint(p1), FloatPoint(p2), FloatPoint(center), radii, x_axis_rotation, theta_1, theta_delta, [&](FloatPoint fp1, FloatPoint fp2) { draw_line(IntPoint(fp1.x(), fp1.y()), IntPoint(fp2.x(), fp2.y()), color, thickness, style); }); } void Painter::add_clip_rect(IntRect const& rect) { state().clip_rect.intersect(rect.translated(translation())); state().clip_rect.intersect(m_target->rect()); // FIXME: This shouldn't be necessary? } void Painter::clear_clip_rect() { state().clip_rect = m_clip_origin; } PainterStateSaver::PainterStateSaver(Painter& painter) : m_painter(painter) { m_painter.save(); } PainterStateSaver::~PainterStateSaver() { m_painter.restore(); } void Painter::stroke_path(Path const& path, Color color, int thickness) { VERIFY(scale() == 1); // FIXME: Add scaling support. if (thickness <= 0) return; FloatPoint cursor; for (auto& segment : path.segments()) { switch (segment.type()) { case Segment::Type::Invalid: VERIFY_NOT_REACHED(); break; case Segment::Type::MoveTo: cursor = segment.point(); break; case Segment::Type::LineTo: draw_line(cursor.to_type(), segment.point().to_type(), color, thickness); cursor = segment.point(); break; case Segment::Type::QuadraticBezierCurveTo: { auto through = static_cast(segment).through(); draw_quadratic_bezier_curve(through.to_type(), cursor.to_type(), segment.point().to_type(), color, thickness); cursor = segment.point(); break; } case Segment::Type::CubicBezierCurveTo: { auto& curve = static_cast(segment); auto through_0 = curve.through_0(); auto through_1 = curve.through_1(); draw_cubic_bezier_curve(through_0.to_type(), through_1.to_type(), cursor.to_type(), segment.point().to_type(), color, thickness); cursor = segment.point(); break; } case Segment::Type::EllipticalArcTo: auto& arc = static_cast(segment); draw_elliptical_arc(cursor.to_type(), segment.point().to_type(), arc.center().to_type(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), color, thickness); cursor = segment.point(); break; } } } void Painter::fill_path(Path const& path, Color color, WindingRule winding_rule) { VERIFY(scale() == 1); // FIXME: Add scaling support. Detail::fill_path(*this, path, color, winding_rule); } void Painter::blit_disabled(IntPoint location, Gfx::Bitmap const& bitmap, IntRect const& rect, Palette const& palette) { auto bright_color = palette.threed_highlight(); auto dark_color = palette.threed_shadow1(); blit_filtered(location.translated(1, 1), bitmap, rect, [&](auto) { return bright_color; }); blit_filtered(location, bitmap, rect, [&](Color src) { int gray = src.to_grayscale().red(); if (gray > 160) return bright_color; return dark_color; }); } void Painter::blit_tiled(IntRect const& dst_rect, Gfx::Bitmap const& bitmap, IntRect const& rect) { auto tile_width = rect.width(); auto tile_height = rect.height(); auto dst_right = dst_rect.right(); auto dst_bottom = dst_rect.bottom(); for (int tile_y = dst_rect.top(); tile_y < dst_bottom; tile_y += tile_height) { for (int tile_x = dst_rect.left(); tile_x < dst_right; tile_x += tile_width) { IntRect tile_src_rect = rect; auto tile_x_overflow = tile_x + tile_width - dst_right; if (tile_x_overflow > 0) { tile_src_rect.set_width(tile_width - tile_x_overflow); } auto tile_y_overflow = tile_y + tile_height - dst_bottom; if (tile_y_overflow > 0) { tile_src_rect.set_height(tile_height - tile_y_overflow); } blit(IntPoint(tile_x, tile_y), bitmap, tile_src_rect); } } } DeprecatedString parse_ampersand_string(StringView raw_text, Optional* underline_offset) { if (raw_text.is_empty()) return DeprecatedString::empty(); StringBuilder builder; for (size_t i = 0; i < raw_text.length(); ++i) { if (raw_text[i] == '&') { if (i != (raw_text.length() - 1) && raw_text[i + 1] == '&') { builder.append(raw_text[i]); ++i; } else if (underline_offset && !(*underline_offset).has_value()) { *underline_offset = i; } continue; } builder.append(raw_text[i]); } return builder.to_deprecated_string(); } void Gfx::Painter::draw_ui_text(Gfx::IntRect const& rect, StringView text, Gfx::Font const& font, Gfx::TextAlignment text_alignment, Gfx::Color color) { Optional underline_offset; auto name_to_draw = parse_ampersand_string(text, &underline_offset); Gfx::IntRect text_rect { 0, 0, font.width(name_to_draw), font.pixel_size() }; text_rect.align_within(rect, text_alignment); draw_text(text_rect, name_to_draw, font, text_alignment, color); if (underline_offset.has_value()) { Utf8View utf8_view { name_to_draw }; int width = 0; for (auto it = utf8_view.begin(); it != utf8_view.end(); ++it) { if (utf8_view.byte_offset_of(it) >= underline_offset.value()) { int y = text_rect.bottom() + 1; int x1 = text_rect.left() + width; int x2 = x1 + font.glyph_or_emoji_width(*it); draw_line({ x1, y }, { x2, y }, color); break; } width += font.glyph_or_emoji_width(*it) + font.glyph_spacing(); } } } void Painter::draw_text_run(IntPoint baseline_start, Utf8View const& string, Font const& font, Color color) { draw_text_run(baseline_start.to_type(), string, font, color); } void Painter::draw_text_run(FloatPoint baseline_start, Utf8View const& string, Font const& font, Color color) { auto pixel_metrics = font.pixel_metrics(); float x = baseline_start.x(); int y = baseline_start.y() - pixel_metrics.ascent; float space_width = font.glyph_or_emoji_width(' '); u32 last_code_point = 0; for (auto code_point_iterator = string.begin(); code_point_iterator != string.end(); ++code_point_iterator) { auto code_point = *code_point_iterator; if (should_paint_as_space(code_point)) { x += space_width + font.glyph_spacing(); last_code_point = code_point; continue; } // FIXME: this is probably not the real space taken for complex emojis x += font.glyphs_horizontal_kerning(last_code_point, code_point); draw_glyph_or_emoji({ static_cast(x), y }, code_point_iterator, font, color); x += font.glyph_or_emoji_width(code_point) + font.glyph_spacing(); last_code_point = code_point; } } void Painter::draw_scaled_bitmap_with_transform(IntRect const& dst_rect, Bitmap const& bitmap, FloatRect const& src_rect, AffineTransform const& transform, float opacity, Painter::ScalingMode scaling_mode) { if (transform.is_identity_or_translation()) { translate(transform.e(), transform.f()); draw_scaled_bitmap(dst_rect, bitmap, src_rect, opacity, scaling_mode); translate(-transform.e(), -transform.f()); } else { // The painter has an affine transform, we have to draw through it! // FIXME: This is *super* inefficient. // What we currently do, roughly: // - Map the destination rect through the context's transform. // - Compute the bounding rect of the destination quad. // - For each point in the computed bounding rect, reverse-map it to a point in the source image. // - Sample the source image at the computed point. // - Set or blend (depending on alpha values) one pixel in the canvas. // - Loop. // FIXME: Painter should have an affine transform as part of its state and handle all of this instead. auto inverse_transform = transform.inverse(); if (!inverse_transform.has_value()) return; auto destination_quad = transform.map_to_quad(dst_rect.to_type()); auto destination_bounding_rect = destination_quad.bounding_rect().to_rounded(); Gfx::AffineTransform source_transform; source_transform.translate(src_rect.x(), src_rect.y()); source_transform.scale(src_rect.width() / dst_rect.width(), src_rect.height() / dst_rect.height()); source_transform.translate(-dst_rect.x(), -dst_rect.y()); for (int y = destination_bounding_rect.y(); y <= destination_bounding_rect.bottom(); ++y) { for (int x = destination_bounding_rect.x(); x <= destination_bounding_rect.right(); ++x) { auto destination_point = Gfx::IntPoint { x, y }; if (!clip_rect().contains(destination_point)) continue; if (!destination_quad.contains(destination_point.to_type())) continue; auto source_point = source_transform.map(inverse_transform->map(destination_point)).to_rounded(); if (!bitmap.rect().contains(source_point)) continue; auto source_color = bitmap.get_pixel(source_point); if (source_color.alpha() == 0) continue; if (source_color.alpha() == 255) { set_pixel(destination_point, source_color); continue; } auto dst_color = target()->get_pixel(destination_point); set_pixel(destination_point, dst_color.blend(source_color)); } } } } }