/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2022, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include namespace Gfx { struct PNG_IHDR { NetworkOrdered width; NetworkOrdered height; u8 bit_depth { 0 }; PNG::ColorType color_type { 0 }; u8 compression_method { 0 }; u8 filter_method { 0 }; u8 interlace_method { 0 }; }; static_assert(AssertSize()); struct Scanline { PNG::FilterType filter; ReadonlyBytes data {}; }; struct [[gnu::packed]] PaletteEntry { u8 r; u8 g; u8 b; // u8 a; }; template struct [[gnu::packed]] Tuple { T gray; T a; }; template struct [[gnu::packed]] Triplet { T r; T g; T b; bool operator==(Triplet const& other) const = default; }; template struct [[gnu::packed]] Quartet { T r; T g; T b; T a; }; enum PngInterlaceMethod { Null = 0, Adam7 = 1 }; struct PNGLoadingContext { enum State { NotDecoded = 0, Error, HeaderDecoded, SizeDecoded, ChunksDecoded, BitmapDecoded, }; State state { State::NotDecoded }; u8 const* data { nullptr }; size_t data_size { 0 }; int width { -1 }; int height { -1 }; u8 bit_depth { 0 }; PNG::ColorType color_type { 0 }; u8 compression_method { 0 }; u8 filter_method { 0 }; u8 interlace_method { 0 }; u8 channels { 0 }; bool has_seen_zlib_header { false }; bool has_alpha() const { return to_underlying(color_type) & 4 || palette_transparency_data.size() > 0; } Vector scanlines; ByteBuffer unfiltered_data; RefPtr bitmap; ByteBuffer* decompression_buffer { nullptr }; Vector compressed_data; Vector palette_data; Vector palette_transparency_data; Checked compute_row_size_for_width(int width) { Checked row_size = width; row_size *= channels; row_size *= bit_depth; row_size += 7; row_size /= 8; if (row_size.has_overflow()) { dbgln("PNG too large, integer overflow while computing row size"); state = State::Error; } return row_size; } }; class Streamer { public: Streamer(u8 const* data, size_t size) : m_data_ptr(data) , m_size_remaining(size) { } template bool read(T& value) { if (m_size_remaining < sizeof(T)) return false; value = *((NetworkOrdered const*)m_data_ptr); m_data_ptr += sizeof(T); m_size_remaining -= sizeof(T); return true; } bool read_bytes(u8* buffer, size_t count) { if (m_size_remaining < count) return false; memcpy(buffer, m_data_ptr, count); m_data_ptr += count; m_size_remaining -= count; return true; } bool wrap_bytes(ReadonlyBytes& buffer, size_t count) { if (m_size_remaining < count) return false; buffer = ReadonlyBytes { m_data_ptr, count }; m_data_ptr += count; m_size_remaining -= count; return true; } bool at_end() const { return !m_size_remaining; } private: u8 const* m_data_ptr { nullptr }; size_t m_size_remaining { 0 }; }; static bool process_chunk(Streamer&, PNGLoadingContext& context); union [[gnu::packed]] Pixel { ARGB32 rgba { 0 }; u8 v[4]; struct { u8 r; u8 g; u8 b; u8 a; }; }; static_assert(AssertSize()); static void unfilter_scanline(PNG::FilterType filter, Bytes scanline_data, ReadonlyBytes previous_scanlines_data, u8 bytes_per_complete_pixel) { VERIFY(filter != PNG::FilterType::None); switch (filter) { case PNG::FilterType::Sub: // This loop starts at bytes_per_complete_pixel because all bytes before that are // guaranteed to have no valid byte at index (i - bytes_per_complete pixel). // All such invalid byte indexes should be treated as 0, and adding 0 to the current // byte would do nothing, so the first bytes_per_complete_pixel bytes can instead // just be skipped. for (size_t i = bytes_per_complete_pixel; i < scanline_data.size(); ++i) { u8 left = scanline_data[i - bytes_per_complete_pixel]; scanline_data[i] += left; } break; case PNG::FilterType::Up: for (size_t i = 0; i < scanline_data.size(); ++i) { u8 above = previous_scanlines_data[i]; scanline_data[i] += above; } break; case PNG::FilterType::Average: for (size_t i = 0; i < scanline_data.size(); ++i) { u32 left = (i < bytes_per_complete_pixel) ? 0 : scanline_data[i - bytes_per_complete_pixel]; u32 above = previous_scanlines_data[i]; u8 average = (left + above) / 2; scanline_data[i] += average; } break; case PNG::FilterType::Paeth: for (size_t i = 0; i < scanline_data.size(); ++i) { u8 left = (i < bytes_per_complete_pixel) ? 0 : scanline_data[i - bytes_per_complete_pixel]; u8 above = previous_scanlines_data[i]; u8 upper_left = (i < bytes_per_complete_pixel) ? 0 : previous_scanlines_data[i - bytes_per_complete_pixel]; i32 predictor = left + above - upper_left; u32 predictor_left = abs(predictor - left); u32 predictor_above = abs(predictor - above); u32 predictor_upper_left = abs(predictor - upper_left); u8 nearest; if (predictor_left <= predictor_above && predictor_left <= predictor_upper_left) { nearest = left; } else if (predictor_above <= predictor_upper_left) { nearest = above; } else { nearest = upper_left; } scanline_data[i] += nearest; } break; default: VERIFY_NOT_REACHED(); } } template ALWAYS_INLINE static void unpack_grayscale_without_alpha(PNGLoadingContext& context) { for (int y = 0; y < context.height; ++y) { auto* gray_values = reinterpret_cast(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = gray_values[i]; pixel.g = gray_values[i]; pixel.b = gray_values[i]; pixel.a = 0xff; } } } template ALWAYS_INLINE static void unpack_grayscale_with_alpha(PNGLoadingContext& context) { for (int y = 0; y < context.height; ++y) { auto* tuples = reinterpret_cast const*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = tuples[i].gray; pixel.g = tuples[i].gray; pixel.b = tuples[i].gray; pixel.a = tuples[i].a; } } } template ALWAYS_INLINE static void unpack_triplets_without_alpha(PNGLoadingContext& context) { for (int y = 0; y < context.height; ++y) { auto* triplets = reinterpret_cast const*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = triplets[i].r; pixel.g = triplets[i].g; pixel.b = triplets[i].b; pixel.a = 0xff; } } } template ALWAYS_INLINE static void unpack_triplets_with_transparency_value(PNGLoadingContext& context, Triplet transparency_value) { for (int y = 0; y < context.height; ++y) { auto* triplets = reinterpret_cast const*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = triplets[i].r; pixel.g = triplets[i].g; pixel.b = triplets[i].b; if (triplets[i] == transparency_value) pixel.a = 0x00; else pixel.a = 0xff; } } } NEVER_INLINE FLATTEN static ErrorOr unfilter(PNGLoadingContext& context) { // First unfilter the scanlines: // FIXME: Instead of creating a separate buffer for the scanlines that need to be // mutated, the mutation could be done in place (if the data was non-const). size_t bytes_per_scanline = context.scanlines[0].data.size(); size_t bytes_needed_for_all_unfiltered_scanlines = 0; for (int y = 0; y < context.height; ++y) { if (context.scanlines[y].filter != PNG::FilterType::None) { bytes_needed_for_all_unfiltered_scanlines += bytes_per_scanline; } } context.unfiltered_data = TRY(ByteBuffer::create_uninitialized(bytes_needed_for_all_unfiltered_scanlines)); // From section 6.3 of http://www.libpng.org/pub/png/spec/1.2/PNG-Filters.html // "bpp is defined as the number of bytes per complete pixel, rounding up to one. // For example, for color type 2 with a bit depth of 16, bpp is equal to 6 // (three samples, two bytes per sample); for color type 0 with a bit depth of 2, // bpp is equal to 1 (rounding up); for color type 4 with a bit depth of 16, bpp // is equal to 4 (two-byte grayscale sample, plus two-byte alpha sample)." u8 bytes_per_complete_pixel = (context.bit_depth + 7) / 8 * context.channels; u8 dummy_scanline_bytes[bytes_per_scanline]; memset(dummy_scanline_bytes, 0, sizeof(dummy_scanline_bytes)); auto previous_scanlines_data = ReadonlyBytes { dummy_scanline_bytes, sizeof(dummy_scanline_bytes) }; for (int y = 0, data_start = 0; y < context.height; ++y) { if (context.scanlines[y].filter != PNG::FilterType::None) { auto scanline_data_slice = context.unfiltered_data.bytes().slice(data_start, bytes_per_scanline); // Copy the current values over and set the scanline's data to the to-be-mutated slice context.scanlines[y].data.copy_to(scanline_data_slice); context.scanlines[y].data = scanline_data_slice; unfilter_scanline(context.scanlines[y].filter, scanline_data_slice, previous_scanlines_data, bytes_per_complete_pixel); data_start += bytes_per_scanline; } previous_scanlines_data = context.scanlines[y].data; } // Now unpack the scanlines to RGBA: switch (context.color_type) { case PNG::ColorType::Greyscale: if (context.bit_depth == 8) { unpack_grayscale_without_alpha(context); } else if (context.bit_depth == 16) { unpack_grayscale_without_alpha(context); } else if (context.bit_depth == 1 || context.bit_depth == 2 || context.bit_depth == 4) { auto bit_depth_squared = context.bit_depth * context.bit_depth; auto pixels_per_byte = 8 / context.bit_depth; auto mask = (1 << context.bit_depth) - 1; for (int y = 0; y < context.height; ++y) { auto* gray_values = context.scanlines[y].data.data(); for (int x = 0; x < context.width; ++x) { auto bit_offset = (8 - context.bit_depth) - (context.bit_depth * (x % pixels_per_byte)); auto value = (gray_values[x / pixels_per_byte] >> bit_offset) & mask; auto& pixel = (Pixel&)context.bitmap->scanline(y)[x]; pixel.r = value * (0xff / bit_depth_squared); pixel.g = value * (0xff / bit_depth_squared); pixel.b = value * (0xff / bit_depth_squared); pixel.a = 0xff; } } } else { VERIFY_NOT_REACHED(); } break; case PNG::ColorType::GreyscaleWithAlpha: if (context.bit_depth == 8) { unpack_grayscale_with_alpha(context); } else if (context.bit_depth == 16) { unpack_grayscale_with_alpha(context); } else { VERIFY_NOT_REACHED(); } break; case PNG::ColorType::Truecolor: if (context.palette_transparency_data.size() == 6) { if (context.bit_depth == 8) { unpack_triplets_with_transparency_value(context, Triplet { context.palette_transparency_data[0], context.palette_transparency_data[2], context.palette_transparency_data[4] }); } else if (context.bit_depth == 16) { u16 tr = context.palette_transparency_data[0] | context.palette_transparency_data[1] << 8; u16 tg = context.palette_transparency_data[2] | context.palette_transparency_data[3] << 8; u16 tb = context.palette_transparency_data[4] | context.palette_transparency_data[5] << 8; unpack_triplets_with_transparency_value(context, Triplet { tr, tg, tb }); } else { VERIFY_NOT_REACHED(); } } else { if (context.bit_depth == 8) unpack_triplets_without_alpha(context); else if (context.bit_depth == 16) unpack_triplets_without_alpha(context); else VERIFY_NOT_REACHED(); } break; case PNG::ColorType::TruecolorWithAlpha: if (context.bit_depth == 8) { for (int y = 0; y < context.height; ++y) { memcpy(context.bitmap->scanline(y), context.scanlines[y].data.data(), context.scanlines[y].data.size()); } } else if (context.bit_depth == 16) { for (int y = 0; y < context.height; ++y) { auto* quartets = reinterpret_cast const*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = quartets[i].r & 0xFF; pixel.g = quartets[i].g & 0xFF; pixel.b = quartets[i].b & 0xFF; pixel.a = quartets[i].a & 0xFF; } } } else { VERIFY_NOT_REACHED(); } break; case PNG::ColorType::IndexedColor: if (context.bit_depth == 8) { for (int y = 0; y < context.height; ++y) { auto* palette_index = context.scanlines[y].data.data(); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; if (palette_index[i] >= context.palette_data.size()) return Error::from_string_literal("PNGImageDecoderPlugin: Palette index out of range"); auto& color = context.palette_data.at((int)palette_index[i]); auto transparency = context.palette_transparency_data.size() >= palette_index[i] + 1u ? context.palette_transparency_data.data()[palette_index[i]] : 0xff; pixel.r = color.r; pixel.g = color.g; pixel.b = color.b; pixel.a = transparency; } } } else if (context.bit_depth == 1 || context.bit_depth == 2 || context.bit_depth == 4) { auto pixels_per_byte = 8 / context.bit_depth; auto mask = (1 << context.bit_depth) - 1; for (int y = 0; y < context.height; ++y) { auto* palette_indices = context.scanlines[y].data.data(); for (int i = 0; i < context.width; ++i) { auto bit_offset = (8 - context.bit_depth) - (context.bit_depth * (i % pixels_per_byte)); auto palette_index = (palette_indices[i / pixels_per_byte] >> bit_offset) & mask; auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; if ((size_t)palette_index >= context.palette_data.size()) return Error::from_string_literal("PNGImageDecoderPlugin: Palette index out of range"); auto& color = context.palette_data.at(palette_index); auto transparency = context.palette_transparency_data.size() >= palette_index + 1u ? context.palette_transparency_data.data()[palette_index] : 0xff; pixel.r = color.r; pixel.g = color.g; pixel.b = color.b; pixel.a = transparency; } } } else { VERIFY_NOT_REACHED(); } break; default: VERIFY_NOT_REACHED(); break; } // Swap r and b values: for (int y = 0; y < context.height; ++y) { auto* pixels = (Pixel*)context.bitmap->scanline(y); for (int i = 0; i < context.bitmap->width(); ++i) { auto& x = pixels[i]; swap(x.r, x.b); } } return {}; } static bool decode_png_header(PNGLoadingContext& context) { if (context.state >= PNGLoadingContext::HeaderDecoded) return true; if (!context.data || context.data_size < sizeof(PNG::header)) { dbgln_if(PNG_DEBUG, "Missing PNG header"); context.state = PNGLoadingContext::State::Error; return false; } if (memcmp(context.data, PNG::header.span().data(), sizeof(PNG::header)) != 0) { dbgln_if(PNG_DEBUG, "Invalid PNG header"); context.state = PNGLoadingContext::State::Error; return false; } context.state = PNGLoadingContext::HeaderDecoded; return true; } static bool decode_png_size(PNGLoadingContext& context) { if (context.state >= PNGLoadingContext::SizeDecoded) return true; if (context.state < PNGLoadingContext::HeaderDecoded) { if (!decode_png_header(context)) return false; } u8 const* data_ptr = context.data + sizeof(PNG::header); size_t data_remaining = context.data_size - sizeof(PNG::header); Streamer streamer(data_ptr, data_remaining); while (!streamer.at_end()) { if (!process_chunk(streamer, context)) { context.state = PNGLoadingContext::State::Error; return false; } if (context.width && context.height) { context.state = PNGLoadingContext::State::SizeDecoded; return true; } } return false; } static bool decode_png_chunks(PNGLoadingContext& context) { if (context.state >= PNGLoadingContext::State::ChunksDecoded) return true; if (context.state < PNGLoadingContext::HeaderDecoded) { if (!decode_png_header(context)) return false; } u8 const* data_ptr = context.data + sizeof(PNG::header); int data_remaining = context.data_size - sizeof(PNG::header); context.compressed_data.ensure_capacity(context.data_size); Streamer streamer(data_ptr, data_remaining); while (!streamer.at_end()) { if (!process_chunk(streamer, context)) { // Ignore failed chunk and just consider chunk decoding being done. // decode_png_bitmap() will check whether we got all required ones anyway. break; } } context.state = PNGLoadingContext::State::ChunksDecoded; return true; } static ErrorOr decode_png_bitmap_simple(PNGLoadingContext& context) { Streamer streamer(context.decompression_buffer->data(), context.decompression_buffer->size()); for (int y = 0; y < context.height; ++y) { PNG::FilterType filter; if (!streamer.read(filter)) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); } if (to_underlying(filter) > 4) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Invalid PNG filter"); } context.scanlines.append({ filter }); auto& scanline_buffer = context.scanlines.last().data; auto row_size = context.compute_row_size_for_width(context.width); if (row_size.has_overflow()) return Error::from_string_literal("PNGImageDecoderPlugin: Row size overflow"); if (!streamer.wrap_bytes(scanline_buffer, row_size.value())) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); } } context.bitmap = TRY(Bitmap::try_create(context.has_alpha() ? BitmapFormat::BGRA8888 : BitmapFormat::BGRx8888, { context.width, context.height })); return unfilter(context); } static int adam7_height(PNGLoadingContext& context, int pass) { switch (pass) { case 1: return (context.height + 7) / 8; case 2: return (context.height + 7) / 8; case 3: return (context.height + 3) / 8; case 4: return (context.height + 3) / 4; case 5: return (context.height + 1) / 4; case 6: return (context.height + 1) / 2; case 7: return context.height / 2; default: VERIFY_NOT_REACHED(); } } static int adam7_width(PNGLoadingContext& context, int pass) { switch (pass) { case 1: return (context.width + 7) / 8; case 2: return (context.width + 3) / 8; case 3: return (context.width + 3) / 4; case 4: return (context.width + 1) / 4; case 5: return (context.width + 1) / 2; case 6: return context.width / 2; case 7: return context.width; default: VERIFY_NOT_REACHED(); } } // Index 0 unused (non-interlaced case) static int adam7_starty[8] = { 0, 0, 0, 4, 0, 2, 0, 1 }; static int adam7_startx[8] = { 0, 0, 4, 0, 2, 0, 1, 0 }; static int adam7_stepy[8] = { 1, 8, 8, 8, 4, 4, 2, 2 }; static int adam7_stepx[8] = { 1, 8, 8, 4, 4, 2, 2, 1 }; static ErrorOr decode_adam7_pass(PNGLoadingContext& context, Streamer& streamer, int pass) { PNGLoadingContext subimage_context; subimage_context.width = adam7_width(context, pass); subimage_context.height = adam7_height(context, pass); subimage_context.channels = context.channels; subimage_context.color_type = context.color_type; subimage_context.palette_data = context.palette_data; subimage_context.palette_transparency_data = context.palette_transparency_data; subimage_context.bit_depth = context.bit_depth; subimage_context.filter_method = context.filter_method; // For small images, some passes might be empty if (!subimage_context.width || !subimage_context.height) return {}; subimage_context.scanlines.clear_with_capacity(); for (int y = 0; y < subimage_context.height; ++y) { PNG::FilterType filter; if (!streamer.read(filter)) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); } if (to_underlying(filter) > 4) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Invalid PNG filter"); } subimage_context.scanlines.append({ filter }); auto& scanline_buffer = subimage_context.scanlines.last().data; auto row_size = context.compute_row_size_for_width(subimage_context.width); if (row_size.has_overflow()) return Error::from_string_literal("PNGImageDecoderPlugin: Row size overflow"); if (!streamer.wrap_bytes(scanline_buffer, row_size.value())) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); } } subimage_context.bitmap = TRY(Bitmap::try_create(context.bitmap->format(), { subimage_context.width, subimage_context.height })); TRY(unfilter(subimage_context)); // Copy the subimage data into the main image according to the pass pattern for (int y = 0, dy = adam7_starty[pass]; y < subimage_context.height && dy < context.height; ++y, dy += adam7_stepy[pass]) { for (int x = 0, dx = adam7_startx[pass]; x < subimage_context.width && dy < context.width; ++x, dx += adam7_stepx[pass]) { context.bitmap->set_pixel(dx, dy, subimage_context.bitmap->get_pixel(x, y)); } } return {}; } static ErrorOr decode_png_adam7(PNGLoadingContext& context) { Streamer streamer(context.decompression_buffer->data(), context.decompression_buffer->size()); context.bitmap = TRY(Bitmap::try_create(context.has_alpha() ? BitmapFormat::BGRA8888 : BitmapFormat::BGRx8888, { context.width, context.height })); for (int pass = 1; pass <= 7; ++pass) TRY(decode_adam7_pass(context, streamer, pass)); return {}; } static ErrorOr decode_png_bitmap(PNGLoadingContext& context) { if (context.state < PNGLoadingContext::State::ChunksDecoded) { if (!decode_png_chunks(context)) return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); } if (context.state >= PNGLoadingContext::State::BitmapDecoded) return {}; if (context.width == -1 || context.height == -1) return Error::from_string_literal("PNGImageDecoderPlugin: Didn't see an IHDR chunk."); if (context.color_type == PNG::ColorType::IndexedColor && context.palette_data.is_empty()) return Error::from_string_literal("PNGImageDecoderPlugin: Didn't see a PLTE chunk for a palletized image, or it was empty."); auto result = Compress::Zlib::decompress_all(context.compressed_data.span()); if (!result.has_value()) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Decompression failed"); } context.decompression_buffer = &result.value(); context.compressed_data.clear(); context.scanlines.ensure_capacity(context.height); switch (context.interlace_method) { case PngInterlaceMethod::Null: TRY(decode_png_bitmap_simple(context)); break; case PngInterlaceMethod::Adam7: TRY(decode_png_adam7(context)); break; default: context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Invalid interlace method"); } context.decompression_buffer = nullptr; context.state = PNGLoadingContext::State::BitmapDecoded; return {}; } static bool is_valid_compression_method(u8 compression_method) { return compression_method == 0; } static bool is_valid_filter_method(u8 filter_method) { return filter_method == 0; } static bool process_IHDR(ReadonlyBytes data, PNGLoadingContext& context) { if (data.size() < (int)sizeof(PNG_IHDR)) return false; auto& ihdr = *(const PNG_IHDR*)data.data(); if (ihdr.width > maximum_width_for_decoded_images || ihdr.height > maximum_height_for_decoded_images) { dbgln("This PNG is too large for comfort: {}x{}", (u32)ihdr.width, (u32)ihdr.height); return false; } if (!is_valid_compression_method(ihdr.compression_method)) { dbgln("PNG has invalid compression method {}", ihdr.compression_method); return false; } if (!is_valid_filter_method(ihdr.filter_method)) { dbgln("PNG has invalid filter method {}", ihdr.filter_method); return false; } context.width = ihdr.width; context.height = ihdr.height; context.bit_depth = ihdr.bit_depth; context.color_type = ihdr.color_type; context.compression_method = ihdr.compression_method; context.filter_method = ihdr.filter_method; context.interlace_method = ihdr.interlace_method; dbgln_if(PNG_DEBUG, "PNG: {}x{} ({} bpp)", context.width, context.height, context.bit_depth); dbgln_if(PNG_DEBUG, " Color type: {}", to_underlying(context.color_type)); dbgln_if(PNG_DEBUG, "Compress Method: {}", context.compression_method); dbgln_if(PNG_DEBUG, " Filter Method: {}", context.filter_method); dbgln_if(PNG_DEBUG, " Interlace type: {}", context.interlace_method); if (context.interlace_method != PngInterlaceMethod::Null && context.interlace_method != PngInterlaceMethod::Adam7) { dbgln_if(PNG_DEBUG, "PNGLoader::process_IHDR: unknown interlace method: {}", context.interlace_method); return false; } switch (context.color_type) { case PNG::ColorType::Greyscale: if (context.bit_depth != 1 && context.bit_depth != 2 && context.bit_depth != 4 && context.bit_depth != 8 && context.bit_depth != 16) return false; context.channels = 1; break; case PNG::ColorType::GreyscaleWithAlpha: if (context.bit_depth != 8 && context.bit_depth != 16) return false; context.channels = 2; break; case PNG::ColorType::Truecolor: if (context.bit_depth != 8 && context.bit_depth != 16) return false; context.channels = 3; break; case PNG::ColorType::IndexedColor: if (context.bit_depth != 1 && context.bit_depth != 2 && context.bit_depth != 4 && context.bit_depth != 8) return false; context.channels = 1; break; case PNG::ColorType::TruecolorWithAlpha: if (context.bit_depth != 8 && context.bit_depth != 16) return false; context.channels = 4; break; default: return false; } return true; } static bool process_IDAT(ReadonlyBytes data, PNGLoadingContext& context) { context.compressed_data.append(data.data(), data.size()); return true; } static bool process_PLTE(ReadonlyBytes data, PNGLoadingContext& context) { context.palette_data.append((PaletteEntry const*)data.data(), data.size() / 3); return true; } static bool process_tRNS(ReadonlyBytes data, PNGLoadingContext& context) { switch (context.color_type) { case PNG::ColorType::Greyscale: case PNG::ColorType::Truecolor: case PNG::ColorType::IndexedColor: context.palette_transparency_data.append(data.data(), data.size()); break; default: break; } return true; } static bool process_chunk(Streamer& streamer, PNGLoadingContext& context) { u32 chunk_size; if (!streamer.read(chunk_size)) { dbgln_if(PNG_DEBUG, "Bail at chunk_size"); return false; } u8 chunk_type[5]; chunk_type[4] = '\0'; if (!streamer.read_bytes(chunk_type, 4)) { dbgln_if(PNG_DEBUG, "Bail at chunk_type"); return false; } ReadonlyBytes chunk_data; if (!streamer.wrap_bytes(chunk_data, chunk_size)) { dbgln_if(PNG_DEBUG, "Bail at chunk_data"); return false; } u32 chunk_crc; if (!streamer.read(chunk_crc)) { dbgln_if(PNG_DEBUG, "Bail at chunk_crc"); return false; } dbgln_if(PNG_DEBUG, "Chunk type: '{}', size: {}, crc: {:x}", chunk_type, chunk_size, chunk_crc); if (!strcmp((char const*)chunk_type, "IHDR")) return process_IHDR(chunk_data, context); if (!strcmp((char const*)chunk_type, "IDAT")) return process_IDAT(chunk_data, context); if (!strcmp((char const*)chunk_type, "PLTE")) return process_PLTE(chunk_data, context); if (!strcmp((char const*)chunk_type, "tRNS")) return process_tRNS(chunk_data, context); return true; } PNGImageDecoderPlugin::PNGImageDecoderPlugin(u8 const* data, size_t size) { m_context = make(); m_context->data = data; m_context->data_size = size; } PNGImageDecoderPlugin::~PNGImageDecoderPlugin() = default; IntSize PNGImageDecoderPlugin::size() { if (m_context->state == PNGLoadingContext::State::Error) return {}; if (m_context->state < PNGLoadingContext::State::SizeDecoded) { bool success = decode_png_size(*m_context); if (!success) return {}; } return { m_context->width, m_context->height }; } void PNGImageDecoderPlugin::set_volatile() { if (m_context->bitmap) m_context->bitmap->set_volatile(); } bool PNGImageDecoderPlugin::set_nonvolatile(bool& was_purged) { if (!m_context->bitmap) return false; return m_context->bitmap->set_nonvolatile(was_purged); } bool PNGImageDecoderPlugin::sniff() { return decode_png_header(*m_context); } bool PNGImageDecoderPlugin::is_animated() { return false; } size_t PNGImageDecoderPlugin::loop_count() { return 0; } size_t PNGImageDecoderPlugin::frame_count() { return 1; } ErrorOr PNGImageDecoderPlugin::frame(size_t index) { if (index > 0) return Error::from_string_literal("PNGImageDecoderPlugin: Invalid frame index"); if (m_context->state == PNGLoadingContext::State::Error) return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); if (m_context->state < PNGLoadingContext::State::BitmapDecoded) { // NOTE: This forces the chunk decoding to happen. TRY(decode_png_bitmap(*m_context)); } VERIFY(m_context->bitmap); return ImageFrameDescriptor { m_context->bitmap, 0 }; } }