/* * Copyright (c) 2020, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #define JPEG_INVALID 0X0000 // These names are defined in B.1.1.3 - Marker assignments #define JPEG_APPN0 0XFFE0 #define JPEG_APPN1 0XFFE1 #define JPEG_APPN2 0XFFE2 #define JPEG_APPN3 0XFFE3 #define JPEG_APPN4 0XFFE4 #define JPEG_APPN5 0XFFE5 #define JPEG_APPN6 0XFFE6 #define JPEG_APPN7 0XFFE7 #define JPEG_APPN8 0XFFE8 #define JPEG_APPN9 0XFFE9 #define JPEG_APPN10 0XFFEA #define JPEG_APPN11 0XFFEB #define JPEG_APPN12 0XFFEC #define JPEG_APPN13 0XFFED #define JPEG_APPN14 0xFFEE #define JPEG_APPN15 0xFFEF #define JPEG_RESERVED1 0xFFF1 #define JPEG_RESERVED2 0xFFF2 #define JPEG_RESERVED3 0xFFF3 #define JPEG_RESERVED4 0xFFF4 #define JPEG_RESERVED5 0xFFF5 #define JPEG_RESERVED6 0xFFF6 #define JPEG_RESERVED7 0xFFF7 #define JPEG_RESERVED8 0xFFF8 #define JPEG_RESERVED9 0xFFF9 #define JPEG_RESERVEDA 0xFFFA #define JPEG_RESERVEDB 0xFFFB #define JPEG_RESERVEDC 0xFFFC #define JPEG_RESERVEDD 0xFFFD #define JPEG_RST0 0xFFD0 #define JPEG_RST1 0xFFD1 #define JPEG_RST2 0xFFD2 #define JPEG_RST3 0xFFD3 #define JPEG_RST4 0xFFD4 #define JPEG_RST5 0xFFD5 #define JPEG_RST6 0xFFD6 #define JPEG_RST7 0xFFD7 #define JPEG_ZRL 0xF0 #define JPEG_DHP 0xFFDE #define JPEG_EXP 0xFFDF #define JPEG_DAC 0XFFCC #define JPEG_DHT 0XFFC4 #define JPEG_DQT 0XFFDB #define JPEG_EOI 0xFFD9 #define JPEG_DRI 0XFFDD #define JPEG_SOF0 0XFFC0 #define JPEG_SOF2 0xFFC2 #define JPEG_SOF15 0xFFCF #define JPEG_SOI 0XFFD8 #define JPEG_SOS 0XFFDA #define JPEG_COM 0xFFFE namespace Gfx { constexpr static u8 zigzag_map[64] { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 }; using Marker = u16; /** * MCU means group of data units that are coded together. A data unit is an 8x8 * block of component data. In interleaved scans, number of non-interleaved data * units of a component C is Ch * Cv, where Ch and Cv represent the horizontal & * vertical subsampling factors of the component, respectively. A MacroBlock is * an 8x8 block of RGB values before encoding, and 8x8 block of YCbCr values when * we're done decoding the huffman stream. */ struct Macroblock { union { i32 y[64] = { 0 }; i32 r[64]; }; union { i32 cb[64] = { 0 }; i32 g[64]; }; union { i32 cr[64] = { 0 }; i32 b[64]; }; }; struct MacroblockMeta { u32 total { 0 }; u32 padded_total { 0 }; u32 hcount { 0 }; u32 vcount { 0 }; u32 hpadded_count { 0 }; u32 vpadded_count { 0 }; }; // In the JPEG format, components are defined first at the frame level, then // referenced in each scan and aggregated with scan-specific information. The // two following structs mimic this hierarchy. struct Component { // B.2.2 - Frame header syntax u8 id { 0 }; // Ci, Component identifier u8 hsample_factor { 1 }; // Hi, Horizontal sampling factor u8 vsample_factor { 1 }; // Vi, Vertical sampling factor u8 qtable_id { 0 }; // Tqi, Quantization table destination selector // The JPEG specification does not specify which component corresponds to // Y, Cb or Cr. This field (actually the index in the parent Vector) will // act as an authority to determine the *real* component. // Please note that this is implementation specific. u8 index { 0 }; }; struct ScanComponent { // B.2.3 - Scan header syntax Component& component; u8 dc_destination_id { 0 }; // Tdj, DC entropy coding table destination selector u8 ac_destination_id { 0 }; // Taj, AC entropy coding table destination selector }; struct StartOfFrame { // Of these, only the first 3 are in mainstream use, and refers to SOF0-2. enum class FrameType { Baseline_DCT = 0, Extended_Sequential_DCT = 1, Progressive_DCT = 2, Sequential_Lossless = 3, Differential_Sequential_DCT = 5, Differential_Progressive_DCT = 6, Differential_Sequential_Lossless = 7, Extended_Sequential_DCT_Arithmetic = 9, Progressive_DCT_Arithmetic = 10, Sequential_Lossless_Arithmetic = 11, Differential_Sequential_DCT_Arithmetic = 13, Differential_Progressive_DCT_Arithmetic = 14, Differential_Sequential_Lossless_Arithmetic = 15, }; FrameType type { FrameType::Baseline_DCT }; u8 precision { 0 }; u16 height { 0 }; u16 width { 0 }; }; struct HuffmanTableSpec { u8 type { 0 }; u8 destination_id { 0 }; u8 code_counts[16] = { 0 }; Vector symbols; Vector codes; }; struct HuffmanStreamState { Vector stream; u8 bit_offset { 0 }; size_t byte_offset { 0 }; }; struct ICCMultiChunkState { u8 seen_number_of_icc_chunks { 0 }; FixedArray chunks; }; struct Scan { // B.2.3 - Scan header syntax Vector components; u8 spectral_selection_start {}; u8 spectral_selection_end {}; u8 successive_approximation {}; HuffmanStreamState huffman_stream; u64 end_of_bands_run_count { 0 }; // See the note on Figure B.4 - Scan header syntax bool are_components_interleaved() const { return components.size() != 1; } }; enum class ColorTransform { // https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items // 6.5.3 - APP14 marker segment for colour encoding CmykOrRgb = 0, YCbCr = 1, YCCK = 2, }; struct JPEGLoadingContext { enum State { NotDecoded = 0, Error, FrameDecoded, HeaderDecoded, BitmapDecoded }; State state { State::NotDecoded }; u32 luma_table[64] = { 0 }; u32 chroma_table[64] = { 0 }; StartOfFrame frame; u8 hsample_factor { 0 }; u8 vsample_factor { 0 }; Scan current_scan; Vector components; RefPtr bitmap; u16 dc_restart_interval { 0 }; HashMap dc_tables; HashMap ac_tables; i32 previous_dc_values[3] = { 0 }; MacroblockMeta mblock_meta; OwnPtr stream; Optional color_transform {}; Optional icc_multi_chunk_state; Optional icc_data; }; static void generate_huffman_codes(HuffmanTableSpec& table) { unsigned code = 0; for (auto number_of_codes : table.code_counts) { for (int i = 0; i < number_of_codes; i++) table.codes.append(code++); code <<= 1; } } static ErrorOr read_huffman_bits(HuffmanStreamState& hstream, size_t count = 1) { if (count > (8 * sizeof(size_t))) { dbgln_if(JPEG_DEBUG, "Can't read {} bits at once!", count); return Error::from_string_literal("Reading too much huffman bits at once"); } size_t value = 0; while (count--) { if (hstream.byte_offset >= hstream.stream.size()) { dbgln_if(JPEG_DEBUG, "Huffman stream exhausted. This could be an error!"); return Error::from_string_literal("Huffman stream exhausted."); } u8 current_byte = hstream.stream[hstream.byte_offset]; u8 current_bit = 1u & (u32)(current_byte >> (7 - hstream.bit_offset)); // MSB first. hstream.bit_offset++; value = (value << 1) | (size_t)current_bit; if (hstream.bit_offset == 8) { hstream.byte_offset++; hstream.bit_offset = 0; } } return value; } static ErrorOr get_next_symbol(HuffmanStreamState& hstream, HuffmanTableSpec const& table) { unsigned code = 0; size_t code_cursor = 0; for (int i = 0; i < 16; i++) { // Codes can't be longer than 16 bits. auto result = TRY(read_huffman_bits(hstream)); code = (code << 1) | (i32)result; for (int j = 0; j < table.code_counts[i]; j++) { if (code == table.codes[code_cursor]) return table.symbols[code_cursor]; code_cursor++; } } dbgln_if(JPEG_DEBUG, "If you're seeing this...the jpeg decoder needs to support more kinds of JPEGs!"); return Error::from_string_literal("This kind of JPEG is not yet supported by the decoder"); } static inline i32* get_component(Macroblock& block, unsigned component) { switch (component) { case 0: return block.y; case 1: return block.cb; default: return block.cr; } } static ErrorOr add_dc(JPEGLoadingContext& context, Macroblock& macroblock, ScanComponent const& scan_component) { auto maybe_table = context.dc_tables.get(scan_component.dc_destination_id); if (!maybe_table.has_value()) { dbgln_if(JPEG_DEBUG, "Unable to find a DC table with id: {}", scan_component.dc_destination_id); return Error::from_string_literal("Unable to find corresponding DC table"); } auto& dc_table = maybe_table.value(); auto& scan = context.current_scan; // For DC coefficients, symbol encodes the length of the coefficient. auto dc_length = TRY(get_next_symbol(scan.huffman_stream, dc_table)); if (dc_length > 11) { dbgln_if(JPEG_DEBUG, "DC coefficient too long: {}!", dc_length); return Error::from_string_literal("DC coefficient too long"); } // DC coefficients are encoded as the difference between previous and current DC values. i32 dc_diff = TRY(read_huffman_bits(scan.huffman_stream, dc_length)); // If MSB in diff is 0, the difference is -ve. Otherwise +ve. if (dc_length != 0 && dc_diff < (1 << (dc_length - 1))) dc_diff -= (1 << dc_length) - 1; auto* select_component = get_component(macroblock, scan_component.component.index); auto& previous_dc = context.previous_dc_values[scan_component.component.index]; select_component[0] = previous_dc += dc_diff; return {}; } static ErrorOr read_eob(Scan& scan, u32 symbol) { // G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding // Note: We also use it for non-progressive encoding as it supports both EOB and ZRL if (auto const eob = symbol & 0x0F; eob == 0 && symbol != JPEG_ZRL) { // We encountered an EOB marker auto const eob_base = symbol >> 4; auto const additional_value = TRY(read_huffman_bits(scan.huffman_stream, eob_base)); scan.end_of_bands_run_count = additional_value + (1 << eob_base) - 1; return true; } return false; } static ErrorOr add_ac(JPEGLoadingContext& context, Macroblock& macroblock, ScanComponent const& scan_component) { auto maybe_table = context.ac_tables.get(scan_component.ac_destination_id); if (!maybe_table.has_value()) { dbgln_if(JPEG_DEBUG, "Unable to find a AC table with id: {}", scan_component.ac_destination_id); return Error::from_string_literal("Unable to find corresponding AC table"); } auto& ac_table = maybe_table.value(); auto* select_component = get_component(macroblock, scan_component.component.index); auto& scan = context.current_scan; // Compute the AC coefficients. // 0th coefficient is the dc, which is already handled auto first_coefficient = max(1, scan.spectral_selection_start); for (int j = first_coefficient; j <= scan.spectral_selection_end;) { // AC symbols encode 2 pieces of information, the high 4 bits represent // number of zeroes to be stuffed before reading the coefficient. Low 4 // bits represent the magnitude of the coefficient. auto ac_symbol = TRY(get_next_symbol(scan.huffman_stream, ac_table)); if (TRY(read_eob(scan, ac_symbol))) break; // ac_symbol = JPEG_ZRL means we need to skip 16 zeroes. u8 run_length = ac_symbol == JPEG_ZRL ? 16 : ac_symbol >> 4; j += run_length; if (j > scan.spectral_selection_end) { dbgln_if(JPEG_DEBUG, "Run-length exceeded boundaries. Cursor: {}, Skipping: {}!", j, run_length); return Error::from_string_literal("Run-length exceeded boundaries"); } u8 coeff_length = ac_symbol & 0x0F; if (coeff_length > 10) { dbgln_if(JPEG_DEBUG, "AC coefficient too long: {}!", coeff_length); return Error::from_string_literal("AC coefficient too long"); } if (coeff_length != 0) { i32 ac_coefficient = TRY(read_huffman_bits(scan.huffman_stream, coeff_length)); if (ac_coefficient < (1 << (coeff_length - 1))) ac_coefficient -= (1 << coeff_length) - 1; select_component[zigzag_map[j++]] = ac_coefficient; } } return {}; } /** * Build the macroblocks possible by reading single (MCU) subsampled pair of CbCr. * Depending on the sampling factors, we may not see triples of y, cb, cr in that * order. If sample factors differ from one, we'll read more than one block of y- * coefficients before we get to read a cb-cr block. * In the function below, `hcursor` and `vcursor` denote the location of the block * we're building in the macroblock matrix. `vfactor_i` and `hfactor_i` are cursors * that iterate over the vertical and horizontal subsampling factors, respectively. * When we finish one iteration of the innermost loop, we'll have the coefficients * of one of the components of block at position `mb_index`. When the outermost loop * finishes first iteration, we'll have all the luminance coefficients for all the * macroblocks that share the chrominance data. Next two iterations (assuming that * we are dealing with three components) will fill up the blocks with chroma data. */ static ErrorOr build_macroblocks(JPEGLoadingContext& context, Vector& macroblocks, u32 hcursor, u32 vcursor) { for (auto const& scan_component : context.current_scan.components) { for (u8 vfactor_i = 0; vfactor_i < scan_component.component.vsample_factor; vfactor_i++) { for (u8 hfactor_i = 0; hfactor_i < scan_component.component.hsample_factor; hfactor_i++) { // A.2.3 - Interleaved order u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor); if (!context.current_scan.are_components_interleaved()) mb_index = vcursor * context.mblock_meta.hpadded_count + (hfactor_i + (hcursor * scan_component.component.vsample_factor) + (vfactor_i * scan_component.component.hsample_factor)); // G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding if (context.current_scan.end_of_bands_run_count > 0) { --context.current_scan.end_of_bands_run_count; continue; } Macroblock& block = macroblocks[mb_index]; if (context.current_scan.spectral_selection_start == 0) TRY(add_dc(context, block, scan_component)); if (context.current_scan.spectral_selection_end != 0) TRY(add_ac(context, block, scan_component)); } } } return {}; } static bool is_dct_based(StartOfFrame::FrameType frame_type) { return frame_type == StartOfFrame::FrameType::Baseline_DCT || frame_type == StartOfFrame::FrameType::Extended_Sequential_DCT || frame_type == StartOfFrame::FrameType::Progressive_DCT || frame_type == StartOfFrame::FrameType::Differential_Sequential_DCT || frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT || frame_type == StartOfFrame::FrameType::Progressive_DCT_Arithmetic || frame_type == StartOfFrame::FrameType::Differential_Sequential_DCT_Arithmetic || frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT_Arithmetic; } static void reset_decoder(JPEGLoadingContext& context) { // G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding context.current_scan.end_of_bands_run_count = 0; // E.2.4 Control procedure for decoding a restart interval if (is_dct_based(context.frame.type)) { context.previous_dc_values[0] = 0; context.previous_dc_values[1] = 0; context.previous_dc_values[2] = 0; return; } VERIFY_NOT_REACHED(); } static ErrorOr decode_huffman_stream(JPEGLoadingContext& context, Vector& macroblocks) { // Compute huffman codes for DC and AC tables. for (auto it = context.dc_tables.begin(); it != context.dc_tables.end(); ++it) generate_huffman_codes(it->value); for (auto it = context.ac_tables.begin(); it != context.ac_tables.end(); ++it) generate_huffman_codes(it->value); for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) { for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) { u32 i = vcursor * context.mblock_meta.hpadded_count + hcursor; auto& huffman_stream = context.current_scan.huffman_stream; if (context.dc_restart_interval > 0) { if (i != 0 && i % (context.dc_restart_interval * context.vsample_factor * context.hsample_factor) == 0) { reset_decoder(context); // Restart markers are stored in byte boundaries. Advance the huffman stream cursor to // the 0th bit of the next byte. if (huffman_stream.byte_offset < huffman_stream.stream.size()) { if (huffman_stream.bit_offset > 0) { huffman_stream.bit_offset = 0; huffman_stream.byte_offset++; } // Skip the restart marker (RSTn). huffman_stream.byte_offset++; } } } if (auto result = build_macroblocks(context, macroblocks, hcursor, vcursor); result.is_error()) { if constexpr (JPEG_DEBUG) { dbgln("Failed to build Macroblock {}: {}", i, result.error()); dbgln("Huffman stream byte offset {}", huffman_stream.byte_offset); dbgln("Huffman stream bit offset {}", huffman_stream.bit_offset); } return result.release_error(); } } } return {}; } static inline ErrorOr ensure_bounds_okay(const size_t cursor, const size_t delta, const size_t bound) { if (Checked::addition_would_overflow(delta, cursor)) return Error::from_string_literal("Bounds are not ok: addition would overflow"); if (delta + cursor >= bound) return Error::from_string_literal("Bounds are not ok"); return {}; } static bool is_frame_marker(Marker const marker) { // B.1.1.3 - Marker assignments bool const is_sof_marker = marker >= JPEG_SOF0 && marker <= JPEG_SOF15; // Start of frame markers are valid for JPEG_SOF0 to JPEG_SOF15 except number 4, 8 (reserved) and 12. bool const is_defined_marker = marker != JPEG_DHT && marker != 0xFFC8 && marker != JPEG_DAC; return is_sof_marker && is_defined_marker; } static inline bool is_supported_marker(Marker const marker) { if (marker >= JPEG_APPN0 && marker <= JPEG_APPN15) { if (marker != JPEG_APPN0 && marker != JPEG_APPN14) dbgln_if(JPEG_DEBUG, "{:#04x} not supported yet. The decoder may fail!", marker); return true; } if (marker >= JPEG_RESERVED1 && marker <= JPEG_RESERVEDD) return true; if (marker >= JPEG_RST0 && marker <= JPEG_RST7) return true; switch (marker) { case JPEG_COM: case JPEG_DHP: case JPEG_EXP: case JPEG_DHT: case JPEG_DQT: case JPEG_DRI: case JPEG_EOI: case JPEG_SOF0: case JPEG_SOF2: case JPEG_SOI: case JPEG_SOS: return true; } if (is_frame_marker(marker)) dbgln_if(JPEG_DEBUG, "Decoding this frame-type (SOF{}) is not currently supported. Decoder will fail!", marker & 0xf); return false; } static inline ErrorOr read_marker_at_cursor(Stream& stream) { u16 marker = TRY(stream.read_value>()); if (is_supported_marker(marker)) return marker; if (marker != 0xFFFF) return JPEG_INVALID; u8 next; do { next = TRY(stream.read_value()); if (next == 0x00) return JPEG_INVALID; } while (next == 0xFF); marker = 0xFF00 | (u16)next; return is_supported_marker(marker) ? marker : JPEG_INVALID; } static ErrorOr read_start_of_scan(AK::SeekableStream& stream, JPEGLoadingContext& context) { // B.2.3 - Scan header syntax if (context.state < JPEGLoadingContext::State::FrameDecoded) { dbgln_if(JPEG_DEBUG, "{}: SOS found before reading a SOF!", TRY(stream.tell())); return Error::from_string_literal("SOS found before reading a SOF"); } u16 bytes_to_read = TRY(stream.read_value>()) - 2; TRY(ensure_bounds_okay(TRY(stream.tell()), bytes_to_read, TRY(stream.size()))); u8 const component_count = TRY(stream.read_value()); Scan current_scan; current_scan.huffman_stream.stream.ensure_capacity(50 * KiB); Optional last_read; u8 component_read = 0; for (auto& component : context.components) { // See the Csj paragraph: // [...] the ordering in the scan header shall follow the ordering in the frame header. if (component_read == component_count) break; if (!last_read.has_value()) last_read = TRY(stream.read_value()); if (component.id != *last_read) continue; u8 table_ids = TRY(stream.read_value()); current_scan.components.empend(component, static_cast(table_ids >> 4), static_cast(table_ids & 0x0F)); component_read++; last_read.clear(); } current_scan.spectral_selection_start = TRY(stream.read_value()); current_scan.spectral_selection_end = TRY(stream.read_value()); current_scan.successive_approximation = TRY(stream.read_value()); dbgln_if(JPEG_DEBUG, "Start of Selection: {}, End of Selection: {}, Successive Approximation: {}", current_scan.spectral_selection_start, current_scan.spectral_selection_end, current_scan.successive_approximation); // FIXME: Support SOF2 jpegs with current_scan.successive_approximation != 0 if (current_scan.spectral_selection_start > 63 || current_scan.spectral_selection_end > 63 || current_scan.successive_approximation != 0) { dbgln_if(JPEG_DEBUG, "{}: ERROR! Start of Selection: {}, End of Selection: {}, Successive Approximation: {}!", TRY(stream.tell()), current_scan.spectral_selection_start, current_scan.spectral_selection_end, current_scan.successive_approximation); return Error::from_string_literal("Spectral selection is not [0,63] or successive approximation is not null"); } context.current_scan = move(current_scan); return {}; } static ErrorOr read_restart_interval(AK::SeekableStream& stream, JPEGLoadingContext& context) { // B.2.4.4 - Restart interval definition syntax u16 bytes_to_read = TRY(stream.read_value>()) - 2; if (bytes_to_read != 2) { dbgln_if(JPEG_DEBUG, "{}: Malformed DRI marker found!", TRY(stream.tell())); return Error::from_string_literal("Malformed DRI marker found"); } context.dc_restart_interval = TRY(stream.read_value>()); return {}; } static ErrorOr read_huffman_table(AK::SeekableStream& stream, JPEGLoadingContext& context) { i32 bytes_to_read = TRY(stream.read_value>()); TRY(ensure_bounds_okay(TRY(stream.tell()), bytes_to_read, TRY(stream.size()))); bytes_to_read -= 2; while (bytes_to_read > 0) { HuffmanTableSpec table; u8 table_info = TRY(stream.read_value()); u8 table_type = table_info >> 4; u8 table_destination_id = table_info & 0x0F; if (table_type > 1) { dbgln_if(JPEG_DEBUG, "{}: Unrecognized huffman table: {}!", TRY(stream.tell()), table_type); return Error::from_string_literal("Unrecognized huffman table"); } if (table_destination_id > 1) { dbgln_if(JPEG_DEBUG, "{}: Invalid huffman table destination id: {}!", TRY(stream.tell()), table_destination_id); return Error::from_string_literal("Invalid huffman table destination id"); } table.type = table_type; table.destination_id = table_destination_id; u32 total_codes = 0; // Read code counts. At each index K, the value represents the number of K+1 bit codes in this header. for (int i = 0; i < 16; i++) { u8 count = TRY(stream.read_value()); total_codes += count; table.code_counts[i] = count; } table.codes.ensure_capacity(total_codes); // Read symbols. Read X bytes, where X is the sum of the counts of codes read in the previous step. for (u32 i = 0; i < total_codes; i++) { u8 symbol = TRY(stream.read_value()); table.symbols.append(symbol); } auto& huffman_table = table.type == 0 ? context.dc_tables : context.ac_tables; huffman_table.set(table.destination_id, table); VERIFY(huffman_table.size() <= 2); bytes_to_read -= 1 + 16 + total_codes; } if (bytes_to_read != 0) { dbgln_if(JPEG_DEBUG, "{}: Extra bytes detected in huffman header!", TRY(stream.tell())); return Error::from_string_literal("Extra bytes detected in huffman header"); } return {}; } static ErrorOr read_icc_profile(SeekableStream& stream, JPEGLoadingContext& context, int bytes_to_read) { if (bytes_to_read <= 2) return Error::from_string_literal("icc marker too small"); auto chunk_sequence_number = TRY(stream.read_value()); // 1-based auto number_of_chunks = TRY(stream.read_value()); bytes_to_read -= 2; if (!context.icc_multi_chunk_state.has_value()) context.icc_multi_chunk_state.emplace(ICCMultiChunkState { 0, TRY(FixedArray::create(number_of_chunks)) }); auto& chunk_state = context.icc_multi_chunk_state; if (chunk_state->seen_number_of_icc_chunks >= number_of_chunks) return Error::from_string_literal("Too many ICC chunks"); if (chunk_state->chunks.size() != number_of_chunks) return Error::from_string_literal("Inconsistent number of total ICC chunks"); if (chunk_sequence_number == 0) return Error::from_string_literal("ICC chunk sequence number not 1 based"); u8 index = chunk_sequence_number - 1; if (index >= chunk_state->chunks.size()) return Error::from_string_literal("ICC chunk sequence number larger than number of chunks"); if (!chunk_state->chunks[index].is_empty()) return Error::from_string_literal("Duplicate ICC chunk at sequence number"); chunk_state->chunks[index] = TRY(ByteBuffer::create_zeroed(bytes_to_read)); TRY(stream.read_until_filled(chunk_state->chunks[index])); chunk_state->seen_number_of_icc_chunks++; if (chunk_state->seen_number_of_icc_chunks != chunk_state->chunks.size()) return {}; if (number_of_chunks == 1) { context.icc_data = move(chunk_state->chunks[0]); return {}; } size_t total_size = 0; for (auto const& chunk : chunk_state->chunks) total_size += chunk.size(); auto icc_bytes = TRY(ByteBuffer::create_zeroed(total_size)); size_t start = 0; for (auto const& chunk : chunk_state->chunks) { memcpy(icc_bytes.data() + start, chunk.data(), chunk.size()); start += chunk.size(); } context.icc_data = move(icc_bytes); return {}; } static ErrorOr read_colour_encoding(SeekableStream& stream, [[maybe_unused]] JPEGLoadingContext& context, int bytes_to_read) { // The App 14 segment is application specific in the first JPEG standard. // However, the Adobe implementation is globally accepted and the value of the color transform // was latter standardized as a JPEG-1 extension. // For the structure of the App 14 segment, see: // https://www.pdfa.org/norm-refs/5116.DCT_Filter.pdf // 18 Adobe Application-Specific JPEG Marker // For the value of color_transform, see: // https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items // 6.5.3 - APP14 marker segment for colour encoding if (bytes_to_read < 6) return Error::from_string_literal("App14 segment too small"); [[maybe_unused]] auto const version = TRY(stream.read_value()); [[maybe_unused]] u16 const flag0 = TRY(stream.read_value>()); [[maybe_unused]] u16 const flag1 = TRY(stream.read_value>()); auto const color_transform = TRY(stream.read_value()); if (bytes_to_read > 6) { dbgln_if(JPEG_DEBUG, "Unread bytes in App14 segment: {}", bytes_to_read - 1); TRY(stream.discard(bytes_to_read - 1)); } switch (color_transform) { case 0: context.color_transform = ColorTransform::CmykOrRgb; break; case 1: context.color_transform = ColorTransform::YCbCr; break; case 2: context.color_transform = ColorTransform::YCCK; break; default: dbgln("0x{:x} is not a specified transform flag value, ignoring", color_transform); } return {}; } static ErrorOr read_app_marker(SeekableStream& stream, JPEGLoadingContext& context, int app_marker_number) { i32 bytes_to_read = TRY(stream.read_value>()); TRY(ensure_bounds_okay(TRY(stream.tell()), bytes_to_read, TRY(stream.size()))); if (bytes_to_read <= 2) return Error::from_string_literal("app marker size too small"); bytes_to_read -= 2; StringBuilder builder; for (;;) { if (bytes_to_read == 0) return Error::from_string_literal("app marker size too small for identifier"); auto c = TRY(stream.read_value()); bytes_to_read--; if (c == '\0') break; TRY(builder.try_append(c)); } auto app_id = TRY(builder.to_string()); if (app_marker_number == 2 && app_id == "ICC_PROFILE"sv) return read_icc_profile(stream, context, bytes_to_read); if (app_marker_number == 14 && app_id == "Adobe"sv) return read_colour_encoding(stream, context, bytes_to_read); return stream.discard(bytes_to_read); } static inline bool validate_luma_and_modify_context(Component const& luma, JPEGLoadingContext& context) { if ((luma.hsample_factor == 1 || luma.hsample_factor == 2) && (luma.vsample_factor == 1 || luma.vsample_factor == 2)) { context.mblock_meta.hpadded_count += luma.hsample_factor == 1 ? 0 : context.mblock_meta.hcount % 2; context.mblock_meta.vpadded_count += luma.vsample_factor == 1 ? 0 : context.mblock_meta.vcount % 2; context.mblock_meta.padded_total = context.mblock_meta.hpadded_count * context.mblock_meta.vpadded_count; // For easy reference to relevant sample factors. context.hsample_factor = luma.hsample_factor; context.vsample_factor = luma.vsample_factor; if constexpr (JPEG_DEBUG) { dbgln("Horizontal Subsampling Factor: {}", luma.hsample_factor); dbgln("Vertical Subsampling Factor: {}", luma.vsample_factor); } return true; } return false; } static inline void set_macroblock_metadata(JPEGLoadingContext& context) { context.mblock_meta.hcount = (context.frame.width + 7) / 8; context.mblock_meta.vcount = (context.frame.height + 7) / 8; context.mblock_meta.hpadded_count = context.mblock_meta.hcount; context.mblock_meta.vpadded_count = context.mblock_meta.vcount; context.mblock_meta.total = context.mblock_meta.hcount * context.mblock_meta.vcount; } static ErrorOr read_start_of_frame(AK::SeekableStream& stream, JPEGLoadingContext& context) { if (context.state == JPEGLoadingContext::FrameDecoded) { dbgln_if(JPEG_DEBUG, "{}: SOF repeated!", TRY(stream.tell())); return Error::from_string_literal("SOF repeated"); } i32 bytes_to_read = TRY(stream.read_value>()); bytes_to_read -= 2; TRY(ensure_bounds_okay(TRY(stream.tell()), bytes_to_read, TRY(stream.size()))); context.frame.precision = TRY(stream.read_value()); if (context.frame.precision != 8) { dbgln_if(JPEG_DEBUG, "{}: SOF precision != 8!", TRY(stream.tell())); return Error::from_string_literal("SOF precision != 8"); } context.frame.height = TRY(stream.read_value>()); context.frame.width = TRY(stream.read_value>()); if (!context.frame.width || !context.frame.height) { dbgln_if(JPEG_DEBUG, "{}: ERROR! Image height: {}, Image width: {}!", TRY(stream.tell()), context.frame.height, context.frame.width); return Error::from_string_literal("Image frame height of width null"); } if (context.frame.width > maximum_width_for_decoded_images || context.frame.height > maximum_height_for_decoded_images) { dbgln("This JPEG is too large for comfort: {}x{}", context.frame.width, context.frame.height); return Error::from_string_literal("JPEG too large for comfort"); } set_macroblock_metadata(context); auto component_count = TRY(stream.read_value()); if (component_count != 1 && component_count != 3) { dbgln_if(JPEG_DEBUG, "{}: Unsupported number of components in SOF: {}!", TRY(stream.tell()), component_count); return Error::from_string_literal("Unsupported number of components in SOF"); } for (u8 i = 0; i < component_count; i++) { Component component; component.id = TRY(stream.read_value()); component.index = i; u8 subsample_factors = TRY(stream.read_value()); component.hsample_factor = subsample_factors >> 4; component.vsample_factor = subsample_factors & 0x0F; if (i == 0) { // By convention, downsampling is applied only on chroma components. So we should // hope to see the maximum sampling factor in the luma component. if (!validate_luma_and_modify_context(component, context)) { dbgln_if(JPEG_DEBUG, "{}: Unsupported luma subsampling factors: horizontal: {}, vertical: {}", TRY(stream.tell()), component.hsample_factor, component.vsample_factor); return Error::from_string_literal("Unsupported luma subsampling factors"); } } else { if (component.hsample_factor != 1 || component.vsample_factor != 1) { dbgln_if(JPEG_DEBUG, "{}: Unsupported chroma subsampling factors: horizontal: {}, vertical: {}", TRY(stream.tell()), component.hsample_factor, component.vsample_factor); return Error::from_string_literal("Unsupported chroma subsampling factors"); } } component.qtable_id = TRY(stream.read_value()); if (component.qtable_id > 1) { dbgln_if(JPEG_DEBUG, "{}: Unsupported quantization table id: {}!", TRY(stream.tell()), component.qtable_id); return Error::from_string_literal("Unsupported quantization table id"); } context.components.append(move(component)); } return {}; } static ErrorOr read_quantization_table(AK::SeekableStream& stream, JPEGLoadingContext& context) { i32 bytes_to_read = TRY(stream.read_value>()) - 2; TRY(ensure_bounds_okay(TRY(stream.tell()), bytes_to_read, TRY(stream.size()))); while (bytes_to_read > 0) { u8 info_byte = TRY(stream.read_value()); u8 element_unit_hint = info_byte >> 4; if (element_unit_hint > 1) { dbgln_if(JPEG_DEBUG, "{}: Unsupported unit hint in quantization table: {}!", TRY(stream.tell()), element_unit_hint); return Error::from_string_literal("Unsupported unit hint in quantization table"); } u8 table_id = info_byte & 0x0F; if (table_id > 1) { dbgln_if(JPEG_DEBUG, "{}: Unsupported quantization table id: {}!", TRY(stream.tell()), table_id); return Error::from_string_literal("Unsupported quantization table id"); } u32* table = table_id == 0 ? context.luma_table : context.chroma_table; for (int i = 0; i < 64; i++) { if (element_unit_hint == 0) { u8 tmp = TRY(stream.read_value()); table[zigzag_map[i]] = tmp; } else { table[zigzag_map[i]] = TRY(stream.read_value>()); } } bytes_to_read -= 1 + (element_unit_hint == 0 ? 64 : 128); } if (bytes_to_read != 0) { dbgln_if(JPEG_DEBUG, "{}: Invalid length for one or more quantization tables!", TRY(stream.tell())); return Error::from_string_literal("Invalid length for one or more quantization tables"); } return {}; } static ErrorOr skip_segment(Stream& stream) { u16 bytes_to_skip = TRY(stream.read_value>()) - 2; TRY(stream.discard(bytes_to_skip)); return {}; } static void dequantize(JPEGLoadingContext& context, Vector& macroblocks) { for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) { for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) { for (u32 i = 0; i < context.components.size(); i++) { auto& component = context.components[i]; u32 const* table = component.qtable_id == 0 ? context.luma_table : context.chroma_table; for (u32 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) { for (u32 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) { u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor); Macroblock& block = macroblocks[mb_index]; int* block_component = get_component(block, i); for (u32 k = 0; k < 64; k++) block_component[k] *= table[k]; } } } } } } static void inverse_dct(JPEGLoadingContext const& context, Vector& macroblocks) { static float const m0 = 2.0f * AK::cos(1.0f / 16.0f * 2.0f * AK::Pi); static float const m1 = 2.0f * AK::cos(2.0f / 16.0f * 2.0f * AK::Pi); static float const m3 = 2.0f * AK::cos(2.0f / 16.0f * 2.0f * AK::Pi); static float const m5 = 2.0f * AK::cos(3.0f / 16.0f * 2.0f * AK::Pi); static float const m2 = m0 - m5; static float const m4 = m0 + m5; static float const s0 = AK::cos(0.0f / 16.0f * AK::Pi) * AK::rsqrt(8.0f); static float const s1 = AK::cos(1.0f / 16.0f * AK::Pi) / 2.0f; static float const s2 = AK::cos(2.0f / 16.0f * AK::Pi) / 2.0f; static float const s3 = AK::cos(3.0f / 16.0f * AK::Pi) / 2.0f; static float const s4 = AK::cos(4.0f / 16.0f * AK::Pi) / 2.0f; static float const s5 = AK::cos(5.0f / 16.0f * AK::Pi) / 2.0f; static float const s6 = AK::cos(6.0f / 16.0f * AK::Pi) / 2.0f; static float const s7 = AK::cos(7.0f / 16.0f * AK::Pi) / 2.0f; for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) { for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) { for (u32 component_i = 0; component_i < context.components.size(); component_i++) { auto& component = context.components[component_i]; for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) { for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) { u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor); Macroblock& block = macroblocks[mb_index]; i32* block_component = get_component(block, component_i); for (u32 k = 0; k < 8; ++k) { float const g0 = block_component[0 * 8 + k] * s0; float const g1 = block_component[4 * 8 + k] * s4; float const g2 = block_component[2 * 8 + k] * s2; float const g3 = block_component[6 * 8 + k] * s6; float const g4 = block_component[5 * 8 + k] * s5; float const g5 = block_component[1 * 8 + k] * s1; float const g6 = block_component[7 * 8 + k] * s7; float const g7 = block_component[3 * 8 + k] * s3; float const f0 = g0; float const f1 = g1; float const f2 = g2; float const f3 = g3; float const f4 = g4 - g7; float const f5 = g5 + g6; float const f6 = g5 - g6; float const f7 = g4 + g7; float const e0 = f0; float const e1 = f1; float const e2 = f2 - f3; float const e3 = f2 + f3; float const e4 = f4; float const e5 = f5 - f7; float const e6 = f6; float const e7 = f5 + f7; float const e8 = f4 + f6; float const d0 = e0; float const d1 = e1; float const d2 = e2 * m1; float const d3 = e3; float const d4 = e4 * m2; float const d5 = e5 * m3; float const d6 = e6 * m4; float const d7 = e7; float const d8 = e8 * m5; float const c0 = d0 + d1; float const c1 = d0 - d1; float const c2 = d2 - d3; float const c3 = d3; float const c4 = d4 + d8; float const c5 = d5 + d7; float const c6 = d6 - d8; float const c7 = d7; float const c8 = c5 - c6; float const b0 = c0 + c3; float const b1 = c1 + c2; float const b2 = c1 - c2; float const b3 = c0 - c3; float const b4 = c4 - c8; float const b5 = c8; float const b6 = c6 - c7; float const b7 = c7; block_component[0 * 8 + k] = b0 + b7; block_component[1 * 8 + k] = b1 + b6; block_component[2 * 8 + k] = b2 + b5; block_component[3 * 8 + k] = b3 + b4; block_component[4 * 8 + k] = b3 - b4; block_component[5 * 8 + k] = b2 - b5; block_component[6 * 8 + k] = b1 - b6; block_component[7 * 8 + k] = b0 - b7; } for (u32 l = 0; l < 8; ++l) { float const g0 = block_component[l * 8 + 0] * s0; float const g1 = block_component[l * 8 + 4] * s4; float const g2 = block_component[l * 8 + 2] * s2; float const g3 = block_component[l * 8 + 6] * s6; float const g4 = block_component[l * 8 + 5] * s5; float const g5 = block_component[l * 8 + 1] * s1; float const g6 = block_component[l * 8 + 7] * s7; float const g7 = block_component[l * 8 + 3] * s3; float const f0 = g0; float const f1 = g1; float const f2 = g2; float const f3 = g3; float const f4 = g4 - g7; float const f5 = g5 + g6; float const f6 = g5 - g6; float const f7 = g4 + g7; float const e0 = f0; float const e1 = f1; float const e2 = f2 - f3; float const e3 = f2 + f3; float const e4 = f4; float const e5 = f5 - f7; float const e6 = f6; float const e7 = f5 + f7; float const e8 = f4 + f6; float const d0 = e0; float const d1 = e1; float const d2 = e2 * m1; float const d3 = e3; float const d4 = e4 * m2; float const d5 = e5 * m3; float const d6 = e6 * m4; float const d7 = e7; float const d8 = e8 * m5; float const c0 = d0 + d1; float const c1 = d0 - d1; float const c2 = d2 - d3; float const c3 = d3; float const c4 = d4 + d8; float const c5 = d5 + d7; float const c6 = d6 - d8; float const c7 = d7; float const c8 = c5 - c6; float const b0 = c0 + c3; float const b1 = c1 + c2; float const b2 = c1 - c2; float const b3 = c0 - c3; float const b4 = c4 - c8; float const b5 = c8; float const b6 = c6 - c7; float const b7 = c7; block_component[l * 8 + 0] = b0 + b7; block_component[l * 8 + 1] = b1 + b6; block_component[l * 8 + 2] = b2 + b5; block_component[l * 8 + 3] = b3 + b4; block_component[l * 8 + 4] = b3 - b4; block_component[l * 8 + 5] = b2 - b5; block_component[l * 8 + 6] = b1 - b6; block_component[l * 8 + 7] = b0 - b7; } } } } } } } static void ycbcr_to_rgb(JPEGLoadingContext const& context, Vector& macroblocks) { for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) { for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) { const u32 chroma_block_index = vcursor * context.mblock_meta.hpadded_count + hcursor; Macroblock const& chroma = macroblocks[chroma_block_index]; // Overflows are intentional. for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) { for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) { u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i); i32* y = macroblocks[mb_index].y; i32* cb = macroblocks[mb_index].cb; i32* cr = macroblocks[mb_index].cr; for (u8 i = 7; i < 8; --i) { for (u8 j = 7; j < 8; --j) { const u8 pixel = i * 8 + j; const u32 chroma_pxrow = (i / context.vsample_factor) + 4 * vfactor_i; const u32 chroma_pxcol = (j / context.hsample_factor) + 4 * hfactor_i; const u32 chroma_pixel = chroma_pxrow * 8 + chroma_pxcol; int r = y[pixel] + 1.402f * chroma.cr[chroma_pixel] + 128; int g = y[pixel] - 0.344f * chroma.cb[chroma_pixel] - 0.714f * chroma.cr[chroma_pixel] + 128; int b = y[pixel] + 1.772f * chroma.cb[chroma_pixel] + 128; y[pixel] = r < 0 ? 0 : (r > 255 ? 255 : r); cb[pixel] = g < 0 ? 0 : (g > 255 ? 255 : g); cr[pixel] = b < 0 ? 0 : (b > 255 ? 255 : b); } } } } } } } static void signed_rgb_to_unsigned(JPEGLoadingContext const& context, Vector& macroblocks) { for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) { for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) { for (u8 vfactor_i = 0; vfactor_i < context.vsample_factor; ++vfactor_i) { for (u8 hfactor_i = 0; hfactor_i < context.hsample_factor; ++hfactor_i) { u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i); for (u8 i = 0; i < 8; ++i) { for (u8 j = 0; j < 8; ++j) { macroblocks[mb_index].r[i * 8 + j] = clamp(macroblocks[mb_index].r[i * 8 + j] + 128, 0, 255); macroblocks[mb_index].g[i * 8 + j] = clamp(macroblocks[mb_index].g[i * 8 + j] + 128, 0, 255); macroblocks[mb_index].b[i * 8 + j] = clamp(macroblocks[mb_index].b[i * 8 + j] + 128, 0, 255); } } } } } } } static ErrorOr handle_color_transform(JPEGLoadingContext const& context, Vector& macroblocks) { if (context.color_transform.has_value()) { // https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items // 6.5.3 - APP14 marker segment for colour encoding switch (*context.color_transform) { case ColorTransform::CmykOrRgb: if (context.components.size() == 4) { // FIXME: implement CMYK dbgln("CMYK isn't supported yet"); } else if (context.components.size() == 3) { signed_rgb_to_unsigned(context, macroblocks); } else { return Error::from_string_literal("Wrong number of components for CMYK or RGB, aborting."); } break; case ColorTransform::YCbCr: ycbcr_to_rgb(context, macroblocks); break; case ColorTransform::YCCK: // FIXME: implement YCCK dbgln("YCCK isn't supported yet"); break; } return {}; } // No App14 segment is present, assuming : // - 1 components means grayscale // - 3 components means YCbCr // - 4 components means CMYK if (context.components.size() == 4) { // FIXME: implement CMYK dbgln("CMYK isn't supported yet"); } if (context.components.size() == 3) ycbcr_to_rgb(context, macroblocks); if (context.components.size() == 1) { // With Cb and Cr being equal to zero, this function assign the Y // value (luminosity) to R, G and B. Providing a proper conversion // from grayscale to RGB. ycbcr_to_rgb(context, macroblocks); } return {}; } static ErrorOr compose_bitmap(JPEGLoadingContext& context, Vector const& macroblocks) { context.bitmap = TRY(Bitmap::create(BitmapFormat::BGRx8888, { context.frame.width, context.frame.height })); for (u32 y = context.frame.height - 1; y < context.frame.height; y--) { const u32 block_row = y / 8; const u32 pixel_row = y % 8; for (u32 x = 0; x < context.frame.width; x++) { const u32 block_column = x / 8; auto& block = macroblocks[block_row * context.mblock_meta.hpadded_count + block_column]; const u32 pixel_column = x % 8; const u32 pixel_index = pixel_row * 8 + pixel_column; const Color color { (u8)block.y[pixel_index], (u8)block.cb[pixel_index], (u8)block.cr[pixel_index] }; context.bitmap->set_pixel(x, y, color); } } return {}; } static bool is_app_marker(Marker const marker) { return marker >= JPEG_APPN0 && marker <= JPEG_APPN15; } static bool is_miscellaneous_or_table_marker(Marker const marker) { // B.2.4 - Table-specification and miscellaneous marker segment syntax // See also B.6 - Summary: Figure B.17 – Flow of marker segment bool const is_misc = marker == JPEG_COM || marker == JPEG_DRI || is_app_marker(marker); bool const is_table = marker == JPEG_DQT || marker == JPEG_DAC || marker == JPEG_DHT; return is_misc || is_table; } static ErrorOr handle_miscellaneous_or_table(AK::SeekableStream& stream, JPEGLoadingContext& context, Marker const marker) { if (is_app_marker(marker)) { TRY(read_app_marker(stream, context, marker - JPEG_APPN0)); return {}; } switch (marker) { case JPEG_COM: case JPEG_DAC: dbgln_if(JPEG_DEBUG, "TODO: implement marker \"{:x}\"", marker); if (auto result = skip_segment(stream); result.is_error()) { dbgln_if(JPEG_DEBUG, "{}: Error skipping marker: {:x}!", TRY(stream.tell()), marker); return result.release_error(); } break; case JPEG_DHT: TRY(read_huffman_table(stream, context)); break; case JPEG_DQT: TRY(read_quantization_table(stream, context)); break; case JPEG_DRI: TRY(read_restart_interval(stream, context)); break; default: dbgln("Unexpected marker: {:x}", marker); VERIFY_NOT_REACHED(); } return {}; } static ErrorOr parse_header(AK::SeekableStream& stream, JPEGLoadingContext& context) { auto marker = TRY(read_marker_at_cursor(stream)); if (marker != JPEG_SOI) { dbgln_if(JPEG_DEBUG, "{}: SOI not found: {:x}!", TRY(stream.tell()), marker); return Error::from_string_literal("SOI not found"); } for (;;) { marker = TRY(read_marker_at_cursor(stream)); if (is_miscellaneous_or_table_marker(marker)) { TRY(handle_miscellaneous_or_table(stream, context, marker)); continue; } // Set frame type if the marker marks a new frame. if (is_frame_marker(marker)) context.frame.type = static_cast(marker & 0xF); switch (marker) { case JPEG_INVALID: case JPEG_RST0: case JPEG_RST1: case JPEG_RST2: case JPEG_RST3: case JPEG_RST4: case JPEG_RST5: case JPEG_RST6: case JPEG_RST7: case JPEG_SOI: case JPEG_EOI: dbgln_if(JPEG_DEBUG, "{}: Unexpected marker {:x}!", TRY(stream.tell()), marker); return Error::from_string_literal("Unexpected marker"); case JPEG_SOF0: case JPEG_SOF2: TRY(read_start_of_frame(stream, context)); context.state = JPEGLoadingContext::FrameDecoded; return {}; default: if (auto result = skip_segment(stream); result.is_error()) { dbgln_if(JPEG_DEBUG, "{}: Error skipping marker: {:x}!", TRY(stream.tell()), marker); return result.release_error(); } break; } } VERIFY_NOT_REACHED(); } static ErrorOr scan_huffman_stream(AK::SeekableStream& stream, HuffmanStreamState& huffman_stream) { u8 last_byte; u8 current_byte = TRY(stream.read_value()); for (;;) { last_byte = current_byte; current_byte = TRY(stream.read_value()); if (last_byte == 0xFF) { if (current_byte == 0xFF) continue; if (current_byte == 0x00) { current_byte = TRY(stream.read_value()); huffman_stream.stream.append(last_byte); continue; } Marker marker = 0xFF00 | current_byte; if (marker >= JPEG_RST0 && marker <= JPEG_RST7) { huffman_stream.stream.append(marker); current_byte = TRY(stream.read_value()); continue; } // Rollback the marker we just read TRY(stream.seek(-2, AK::SeekMode::FromCurrentPosition)); return {}; } else { huffman_stream.stream.append(last_byte); } } VERIFY_NOT_REACHED(); } static ErrorOr decode_header(JPEGLoadingContext& context) { if (context.state < JPEGLoadingContext::State::HeaderDecoded) { if (auto result = parse_header(*context.stream, context); result.is_error()) { context.state = JPEGLoadingContext::State::Error; return result.release_error(); } if constexpr (JPEG_DEBUG) { dbgln("Image width: {}", context.frame.width); dbgln("Image height: {}", context.frame.height); dbgln("Macroblocks in a row: {}", context.mblock_meta.hpadded_count); dbgln("Macroblocks in a column: {}", context.mblock_meta.vpadded_count); dbgln("Macroblock meta padded total: {}", context.mblock_meta.padded_total); } context.state = JPEGLoadingContext::State::HeaderDecoded; } return {}; } static ErrorOr> construct_macroblocks(JPEGLoadingContext& context) { // B.6 - Summary // See: Figure B.16 – Flow of compressed data syntax // This function handles the "Multi-scan" loop. Vector macroblocks; TRY(macroblocks.try_resize(context.mblock_meta.padded_total)); Marker marker = TRY(read_marker_at_cursor(*context.stream)); while (true) { if (is_miscellaneous_or_table_marker(marker)) { TRY(handle_miscellaneous_or_table(*context.stream, context, marker)); } else if (marker == JPEG_SOS) { TRY(read_start_of_scan(*context.stream, context)); TRY(scan_huffman_stream(*context.stream, context.current_scan.huffman_stream)); TRY(decode_huffman_stream(context, macroblocks)); } else if (marker == JPEG_EOI) { return macroblocks; } else { dbgln_if(JPEG_DEBUG, "{}: Unexpected marker {:x}!", TRY(context.stream->tell()), marker); return Error::from_string_literal("Unexpected marker"); } marker = TRY(read_marker_at_cursor(*context.stream)); } } static ErrorOr decode_jpeg(JPEGLoadingContext& context) { TRY(decode_header(context)); auto macroblocks = TRY(construct_macroblocks(context)); dequantize(context, macroblocks); inverse_dct(context, macroblocks); TRY(handle_color_transform(context, macroblocks)); TRY(compose_bitmap(context, macroblocks)); context.stream.clear(); return {}; } JPEGImageDecoderPlugin::JPEGImageDecoderPlugin(NonnullOwnPtr stream) { m_context = make(); m_context->stream = move(stream); } JPEGImageDecoderPlugin::~JPEGImageDecoderPlugin() = default; IntSize JPEGImageDecoderPlugin::size() { if (m_context->state == JPEGLoadingContext::State::Error) return {}; if (m_context->state >= JPEGLoadingContext::State::FrameDecoded) return { m_context->frame.width, m_context->frame.height }; return {}; } void JPEGImageDecoderPlugin::set_volatile() { if (m_context->bitmap) m_context->bitmap->set_volatile(); } bool JPEGImageDecoderPlugin::set_nonvolatile(bool& was_purged) { if (!m_context->bitmap) return false; return m_context->bitmap->set_nonvolatile(was_purged); } bool JPEGImageDecoderPlugin::initialize() { return true; } bool JPEGImageDecoderPlugin::sniff(ReadonlyBytes data) { return data.size() > 3 && data.data()[0] == 0xFF && data.data()[1] == 0xD8 && data.data()[2] == 0xFF; } ErrorOr> JPEGImageDecoderPlugin::create(ReadonlyBytes data) { auto stream = TRY(try_make(data)); return adopt_nonnull_own_or_enomem(new (nothrow) JPEGImageDecoderPlugin(move(stream))); } bool JPEGImageDecoderPlugin::is_animated() { return false; } size_t JPEGImageDecoderPlugin::loop_count() { return 0; } size_t JPEGImageDecoderPlugin::frame_count() { return 1; } ErrorOr JPEGImageDecoderPlugin::frame(size_t index) { if (index > 0) return Error::from_string_literal("JPEGImageDecoderPlugin: Invalid frame index"); if (m_context->state == JPEGLoadingContext::State::Error) return Error::from_string_literal("JPEGImageDecoderPlugin: Decoding failed"); if (m_context->state < JPEGLoadingContext::State::BitmapDecoded) { if (auto result = decode_jpeg(*m_context); result.is_error()) { m_context->state = JPEGLoadingContext::State::Error; return result.release_error(); } m_context->state = JPEGLoadingContext::State::BitmapDecoded; } return ImageFrameDescriptor { m_context->bitmap, 0 }; } ErrorOr> JPEGImageDecoderPlugin::icc_data() { TRY(decode_header(*m_context)); if (m_context->icc_data.has_value()) return *m_context->icc_data; return OptionalNone {}; } }