/* * Copyright (c) 2020, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include "Color.h" #include #ifdef __SSE__ # include #endif #include #include #define GAMMA 2.2 // Most computer graphics are stored in the sRGB color space, which stores something close to // the square root of the display intensity of each color channel. This is problematic for most // operations that we want to perform on colors, since they typically assume that color scales // linearly (e.g. rgb(127, 0, 0) is half as bright as rgb(255, 0, 0)). This causes incorrect // results that look more gray than they should, to fix this we have to convert colors to the linear // color space before performing these operations, then convert back before displaying. // // Conversion between linear and sRGB spaces are somewhat expensive to do on the CPU, so we instead // interpret sRGB colors as gamma2.2 colors, which are close enough in most cases to be indistinguishable. // Gamma 2.2 colors follow the simple rule of `display_intensity = pow(stored_intensity, 2.2)`. // This module implements some fast color space transforms between the gamma2.2 and linear color spaces, plus // some common primitive operations like blending. // // For a more in-depth overview of how gamma-adjustment works, check out: // https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/ namespace Gfx { using AK::SIMD::f32x4; #ifdef __SSE__ // Transform f32x4 from gamma2.2 space to linear space // Assumes x is in range [0, 1] constexpr f32x4 gamma_to_linear4(f32x4 x) { return (0.8f + 0.2f * x) * x * x; } // Transform f32x4 from linear space to gamma2.2 space // Assumes x is in range [0, 1] inline f32x4 linear_to_gamma4(f32x4 x) { // Source for approximation: https://mimosa-pudica.net/fast-gamma/ constexpr float a = 0.00279491f; constexpr float b = 1.15907984f; float c = (b * AK::rsqrt(1.0f + a)) - 1; return ((b * AK::SIMD::rsqrt(x + a)) - c) * x; } // Linearize v1 and v2, lerp them by mix factor, then convert back. // The output is entirely v1 when mix = 0 and entirely v2 when mix = 1 inline f32x4 gamma_accurate_lerp4(f32x4 v1, f32x4 v2, float mix) { return linear_to_gamma4(gamma_to_linear4(v1) * (1 - mix) + gamma_to_linear4(v2) * mix); } #endif // Transform scalar from gamma2.2 space to linear space // Assumes x is in range [0, 1] constexpr float gamma_to_linear(float x) { return (0.8f + 0.2f * x) * x * x; } // Transform scalar from linear space to gamma2.2 space // Assumes x is in range [0, 1] inline float linear_to_gamma(float x) { // Source for approximation: https://mimosa-pudica.net/fast-gamma/ constexpr float a = 0.00279491; constexpr float b = 1.15907984; float c = (b * AK::rsqrt(1 + a)) - 1; return ((b * AK::rsqrt(x + a)) - c) * x; } // Linearize v1 and v2, lerp them by mix factor, then convert back. // The output is entirely v1 when mix = 0 and entirely v2 when mix = 1 inline float gamma_accurate_lerp(float v1, float v2, float mix) { return linear_to_gamma(gamma_to_linear(v1) * (1 - mix) + gamma_to_linear(v2) * mix); } // Convert a and b to linear space, blend them by mix factor, then convert back. // The output is entirely a when mix = 0 and entirely b when mix = 1 inline Color gamma_accurate_blend(Color a, Color b, float mix) { #ifdef __SSE__ f32x4 ac = { (float)a.red(), (float)a.green(), (float)a.blue(), }; f32x4 bc = { (float)b.red(), (float)b.green(), (float)b.blue(), }; f32x4 out = 255.f * gamma_accurate_lerp4(ac * (1.f / 255.f), bc * (1.f / 255.f), mix); return Color(out[0], out[1], out[2]); #else return { static_cast(255.f * gamma_accurate_lerp(a.red() / 255.f, b.red() / 255.f, mix)), static_cast(255.f * gamma_accurate_lerp(a.green() / 255.f, b.green() / 255.f, mix)), static_cast(255.f * gamma_accurate_lerp(a.blue() / 255.f, b.blue() / 255.f, mix)), }; #endif } }