/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2022, Sam Atkins * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include namespace Gfx { template class DisjointRectSet { public: DisjointRectSet(DisjointRectSet const&) = delete; DisjointRectSet& operator=(DisjointRectSet const&) = delete; DisjointRectSet() = default; ~DisjointRectSet() = default; DisjointRectSet(Rect const& rect) { m_rects.append(rect); } DisjointRectSet(DisjointRectSet&&) = default; DisjointRectSet& operator=(DisjointRectSet&&) = default; DisjointRectSet clone() const { DisjointRectSet rects; rects.m_rects = m_rects; return rects; } void move_by(T dx, T dy) { for (auto& r : m_rects) r.translate_by(dx, dy); } void move_by(Point const& delta) { move_by(delta.x(), delta.y()); } void add(Rect const& rect) { if (add_no_shatter(rect) && m_rects.size() > 1) shatter(); } template void add_many(Container const& rects) { bool added = false; for (auto const& rect : rects) { if (add_no_shatter(rect)) added = true; } if (added && m_rects.size() > 1) shatter(); } void add(DisjointRectSet const& rect_set) { if (this == &rect_set) return; if (m_rects.is_empty()) { m_rects = rect_set.m_rects; } else { add_many(rect_set.rects()); } } DisjointRectSet shatter(Rect const& hammer) const { if (hammer.is_empty()) return clone(); DisjointRectSet shards; for (auto& rect : m_rects) { for (auto& shard : rect.shatter(hammer)) shards.add_no_shatter(shard); } // Since there should be no overlaps, we don't need to call shatter() return shards; } DisjointRectSet shatter(DisjointRectSet const& hammer) const { if (this == &hammer) return {}; if (hammer.is_empty() || !intersects(hammer)) return clone(); // TODO: This could use some optimization DisjointRectSet shards = shatter(hammer.m_rects[0]); auto rects_count = hammer.m_rects.size(); for (size_t i = 1; i < rects_count && !shards.is_empty(); i++) { if (hammer.m_rects[i].intersects(shards.m_rects)) { auto shattered = shards.shatter(hammer.m_rects[i]); shards = move(shattered); } } // Since there should be no overlaps, we don't need to call shatter() return shards; } bool contains(Rect const& rect) const { if (is_empty() || rect.is_empty()) return false; // TODO: This could use some optimization DisjointRectSet remainder(rect); for (auto& r : m_rects) { auto shards = remainder.shatter(r); if (shards.is_empty()) return true; remainder = move(shards); } return false; } bool intersects(Rect const& rect) const { for (auto& r : m_rects) { if (r.intersects(rect)) return true; } return false; } bool intersects(DisjointRectSet const& rects) const { if (this == &rects) return true; for (auto& r : m_rects) { for (auto& r2 : rects.m_rects) { if (r.intersects(r2)) return true; } } return false; } DisjointRectSet intersected(Rect const& rect) const { DisjointRectSet intersected_rects; intersected_rects.m_rects.ensure_capacity(m_rects.capacity()); for (auto& r : m_rects) { auto intersected_rect = r.intersected(rect); if (!intersected_rect.is_empty()) intersected_rects.m_rects.append(intersected_rect); } // Since there should be no overlaps, we don't need to call shatter() return intersected_rects; } DisjointRectSet intersected(DisjointRectSet const& rects) const { if (&rects == this) return clone(); if (is_empty() || rects.is_empty()) return {}; DisjointRectSet intersected_rects; intersected_rects.m_rects.ensure_capacity(m_rects.capacity()); for (auto& r : m_rects) { for (auto& r2 : rects.m_rects) { auto intersected_rect = r.intersected(r2); if (!intersected_rect.is_empty()) intersected_rects.m_rects.append(intersected_rect); } } // Since there should be no overlaps, we don't need to call shatter() return intersected_rects; } template IterationDecision for_each_intersected(Rect const& rect, Function f) const { if (is_empty() || rect.is_empty()) return IterationDecision::Continue; for (auto& r : m_rects) { auto intersected_rect = r.intersected(rect); if (intersected_rect.is_empty()) continue; IterationDecision decision = f(intersected_rect); if (decision != IterationDecision::Continue) return decision; } return IterationDecision::Continue; } template IterationDecision for_each_intersected(DisjointRectSet const& rects, Function f) const { if (is_empty() || rects.is_empty()) return IterationDecision::Continue; if (this == &rects) { for (auto& r : m_rects) { IterationDecision decision = f(r); if (decision != IterationDecision::Continue) return decision; } } else { for (auto& r : m_rects) { for (auto& r2 : rects.m_rects) { auto intersected_rect = r.intersected(r2); if (intersected_rect.is_empty()) continue; IterationDecision decision = f(intersected_rect); if (decision != IterationDecision::Continue) return decision; } } } return IterationDecision::Continue; } bool is_empty() const { return m_rects.is_empty(); } size_t size() const { return m_rects.size(); } void clear() { m_rects.clear(); } void clear_with_capacity() { m_rects.clear_with_capacity(); } Vector, 32> const& rects() const { return m_rects; } Vector, 32> take_rects() { return move(m_rects); } void translate_by(T dx, T dy) { for (auto& rect : m_rects) rect.translate_by(dx, dy); } void translate_by(Point const& delta) { for (auto& rect : m_rects) rect.translate_by(delta); } private: bool add_no_shatter(Rect const& new_rect) { if (new_rect.is_empty()) return false; for (auto& rect : m_rects) { if (rect.contains(new_rect)) return false; } m_rects.append(new_rect); return true; } void shatter() { Vector, 32> output; output.ensure_capacity(m_rects.size()); bool pass_had_intersections = false; do { pass_had_intersections = false; output.clear_with_capacity(); for (size_t i = 0; i < m_rects.size(); ++i) { auto& r1 = m_rects[i]; for (size_t j = 0; j < m_rects.size(); ++j) { if (i == j) continue; auto& r2 = m_rects[j]; if (!r1.intersects(r2)) continue; pass_had_intersections = true; auto pieces = r1.shatter(r2); for (auto& piece : pieces) output.append(piece); m_rects.remove(i); for (; i < m_rects.size(); ++i) output.append(m_rects[i]); goto next_pass; } output.append(r1); } next_pass: swap(output, m_rects); } while (pass_had_intersections); } Vector, 32> m_rects; }; }