/* * Copyright (c) 2018-2021, Andreas Kling * Copyright (c) 2022, Timothy Slater * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Gfx { struct BackingStore { void* data { nullptr }; size_t pitch { 0 }; size_t size_in_bytes { 0 }; }; size_t Bitmap::minimum_pitch(size_t physical_width, BitmapFormat format) { size_t element_size; switch (determine_storage_format(format)) { case StorageFormat::Indexed8: element_size = 1; break; case StorageFormat::BGRx8888: case StorageFormat::BGRA8888: case StorageFormat::RGBA8888: element_size = 4; break; default: VERIFY_NOT_REACHED(); } return physical_width * element_size; } static bool size_would_overflow(BitmapFormat format, IntSize size, int scale_factor) { if (size.width() < 0 || size.height() < 0) return true; // This check is a bit arbitrary, but should protect us from most shenanigans: if (size.width() >= INT16_MAX || size.height() >= INT16_MAX || scale_factor < 1 || scale_factor > 4) return true; // In contrast, this check is absolutely necessary: size_t pitch = Bitmap::minimum_pitch(size.width() * scale_factor, format); return Checked::multiplication_would_overflow(pitch, size.height() * scale_factor); } ErrorOr> Bitmap::try_create(BitmapFormat format, IntSize size, int scale_factor) { auto backing_store = TRY(Bitmap::allocate_backing_store(format, size, scale_factor)); return AK::adopt_nonnull_ref_or_enomem(new (nothrow) Bitmap(format, size, scale_factor, backing_store)); } ErrorOr> Bitmap::try_create_shareable(BitmapFormat format, IntSize size, int scale_factor) { if (size_would_overflow(format, size, scale_factor)) return Error::from_string_literal("Gfx::Bitmap::try_create_shareable size overflow"); auto const pitch = minimum_pitch(size.width() * scale_factor, format); auto const data_size = size_in_bytes(pitch, size.height() * scale_factor); auto buffer = TRY(Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(data_size, PAGE_SIZE))); auto bitmap = TRY(Bitmap::try_create_with_anonymous_buffer(format, buffer, size, scale_factor, {})); return bitmap; } Bitmap::Bitmap(BitmapFormat format, IntSize size, int scale_factor, BackingStore const& backing_store) : m_size(size) , m_scale(scale_factor) , m_data(backing_store.data) , m_pitch(backing_store.pitch) , m_format(format) { VERIFY(!m_size.is_empty()); VERIFY(!size_would_overflow(format, size, scale_factor)); VERIFY(m_data); VERIFY(backing_store.size_in_bytes == size_in_bytes()); allocate_palette_from_format(format, {}); m_needs_munmap = true; } ErrorOr> Bitmap::try_create_wrapper(BitmapFormat format, IntSize size, int scale_factor, size_t pitch, void* data) { if (size_would_overflow(format, size, scale_factor)) return Error::from_string_literal("Gfx::Bitmap::try_create_wrapper size overflow"); return adopt_ref(*new Bitmap(format, size, scale_factor, pitch, data)); } ErrorOr> Bitmap::try_load_from_file(StringView path, int scale_factor) { if (scale_factor > 1 && path.starts_with("/res/"sv)) { auto load_scaled_bitmap = [](StringView path, int scale_factor) -> ErrorOr> { LexicalPath lexical_path { path }; StringBuilder highdpi_icon_path; TRY(highdpi_icon_path.try_appendff("{}/{}-{}x.{}", lexical_path.dirname(), lexical_path.title(), scale_factor, lexical_path.extension())); auto highdpi_icon_string = highdpi_icon_path.string_view(); auto fd = TRY(Core::System::open(highdpi_icon_string, O_RDONLY)); auto bitmap = TRY(try_load_from_fd_and_close(fd, highdpi_icon_string)); if (bitmap->width() % scale_factor != 0 || bitmap->height() % scale_factor != 0) return Error::from_string_literal("Bitmap::try_load_from_file: HighDPI image size should be divisible by scale factor"); bitmap->m_size.set_width(bitmap->width() / scale_factor); bitmap->m_size.set_height(bitmap->height() / scale_factor); bitmap->m_scale = scale_factor; return bitmap; }; auto scaled_bitmap_or_error = load_scaled_bitmap(path, scale_factor); if (!scaled_bitmap_or_error.is_error()) return scaled_bitmap_or_error.release_value(); auto error = scaled_bitmap_or_error.release_error(); if (!(error.is_syscall() && error.code() == ENOENT)) { dbgln("Couldn't load scaled bitmap: {}", error); dbgln("Trying base scale instead."); } } auto fd = TRY(Core::System::open(path, O_RDONLY)); return try_load_from_fd_and_close(fd, path); } ErrorOr> Bitmap::try_load_from_fd_and_close(int fd, StringView path) { auto file = TRY(Core::MappedFile::map_from_fd_and_close(fd, path)); if (auto decoder = ImageDecoder::try_create(file->bytes())) { auto frame = TRY(decoder->frame(0)); if (auto& bitmap = frame.image) return bitmap.release_nonnull(); } return Error::from_string_literal("Gfx::Bitmap unable to load from fd"); } Bitmap::Bitmap(BitmapFormat format, IntSize size, int scale_factor, size_t pitch, void* data) : m_size(size) , m_scale(scale_factor) , m_data(data) , m_pitch(pitch) , m_format(format) { VERIFY(pitch >= minimum_pitch(size.width() * scale_factor, format)); VERIFY(!size_would_overflow(format, size, scale_factor)); // FIXME: assert that `data` is actually long enough! allocate_palette_from_format(format, {}); } static bool check_size(IntSize size, int scale_factor, BitmapFormat format, unsigned actual_size) { // FIXME: Code duplication of size_in_bytes() and m_pitch unsigned expected_size_min = Bitmap::minimum_pitch(size.width() * scale_factor, format) * size.height() * scale_factor; unsigned expected_size_max = round_up_to_power_of_two(expected_size_min, PAGE_SIZE); if (expected_size_min > actual_size || actual_size > expected_size_max) { // Getting here is most likely an error. dbgln("Constructing a shared bitmap for format {} and size {} @ {}x, which demands {} bytes, which rounds up to at most {}.", static_cast(format), size, scale_factor, expected_size_min, expected_size_max); dbgln("However, we were given {} bytes, which is outside this range?! Refusing cowardly.", actual_size); return false; } return true; } ErrorOr> Bitmap::try_create_with_anonymous_buffer(BitmapFormat format, Core::AnonymousBuffer buffer, IntSize size, int scale_factor, Vector const& palette) { if (size_would_overflow(format, size, scale_factor)) return Error::from_string_literal("Gfx::Bitmap::try_create_with_anonymous_buffer size overflow"); return adopt_nonnull_ref_or_enomem(new (nothrow) Bitmap(format, move(buffer), size, scale_factor, palette)); } ErrorOr> Bitmap::try_create_from_serialized_byte_buffer(ByteBuffer&& buffer) { return try_create_from_serialized_bytes(buffer.bytes()); } /// Read a bitmap as described by: /// - actual size /// - width /// - height /// - scale_factor /// - format /// - palette count /// - palette data (= palette count * BGRA8888) /// - image data (= actual size * u8) ErrorOr> Bitmap::try_create_from_serialized_bytes(ReadonlyBytes bytes) { InputMemoryStream stream { bytes }; size_t actual_size; unsigned width; unsigned height; unsigned scale_factor; BitmapFormat format; unsigned palette_size; Vector palette; auto read = [&](T& value) { if (stream.read({ &value, sizeof(T) }) != sizeof(T)) return false; return true; }; if (!read(actual_size) || !read(width) || !read(height) || !read(scale_factor) || !read(format) || !read(palette_size)) return Error::from_string_literal("Gfx::Bitmap::try_create_from_serialized_byte_buffer: decode failed"); if (format > BitmapFormat::BGRA8888 || format < BitmapFormat::Indexed1) return Error::from_string_literal("Gfx::Bitmap::try_create_from_serialized_byte_buffer: decode failed"); if (!check_size({ width, height }, scale_factor, format, actual_size)) return Error::from_string_literal("Gfx::Bitmap::try_create_from_serialized_byte_buffer: decode failed"); palette.ensure_capacity(palette_size); for (size_t i = 0; i < palette_size; ++i) { if (!read(palette[i])) return Error::from_string_literal("Gfx::Bitmap::try_create_from_serialized_byte_buffer: decode failed"); } if (stream.remaining() < actual_size) return Error::from_string_literal("Gfx::Bitmap::try_create_from_serialized_byte_buffer: decode failed"); auto data = stream.bytes().slice(stream.offset(), actual_size); auto bitmap = TRY(Bitmap::try_create(format, { width, height }, scale_factor)); bitmap->m_palette = new ARGB32[palette_size]; memcpy(bitmap->m_palette, palette.data(), palette_size * sizeof(ARGB32)); data.copy_to({ bitmap->scanline(0), bitmap->size_in_bytes() }); return bitmap; } ByteBuffer Bitmap::serialize_to_byte_buffer() const { // FIXME: Somehow handle possible OOM situation here. auto buffer = ByteBuffer::create_uninitialized(sizeof(size_t) + 4 * sizeof(unsigned) + sizeof(BitmapFormat) + sizeof(ARGB32) * palette_size(m_format) + size_in_bytes()).release_value_but_fixme_should_propagate_errors(); OutputMemoryStream stream { buffer }; auto write = [&](T value) { if (stream.write({ &value, sizeof(T) }) != sizeof(T)) return false; return true; }; auto palette = palette_to_vector(); if (!write(size_in_bytes()) || !write((unsigned)size().width()) || !write((unsigned)size().height()) || !write((unsigned)scale()) || !write(m_format) || !write((unsigned)palette.size())) return {}; for (auto& p : palette) { if (!write(p)) return {}; } auto size = size_in_bytes(); VERIFY(stream.remaining() == size); if (stream.write({ scanline(0), size }) != size) return {}; return buffer; } Bitmap::Bitmap(BitmapFormat format, Core::AnonymousBuffer buffer, IntSize size, int scale_factor, Vector const& palette) : m_size(size) , m_scale(scale_factor) , m_data(buffer.data()) , m_pitch(minimum_pitch(size.width() * scale_factor, format)) , m_format(format) , m_buffer(move(buffer)) { VERIFY(!is_indexed() || !palette.is_empty()); VERIFY(!size_would_overflow(format, size, scale_factor)); if (is_indexed(m_format)) allocate_palette_from_format(m_format, palette); } ErrorOr> Bitmap::clone() const { auto new_bitmap = TRY(Bitmap::try_create(format(), size(), scale())); VERIFY(size_in_bytes() == new_bitmap->size_in_bytes()); memcpy(new_bitmap->scanline(0), scanline(0), size_in_bytes()); return new_bitmap; } ErrorOr> Bitmap::rotated(Gfx::RotationDirection rotation_direction) const { auto new_bitmap = TRY(Gfx::Bitmap::try_create(this->format(), { height(), width() }, scale())); auto w = this->physical_width(); auto h = this->physical_height(); for (int i = 0; i < w; i++) { for (int j = 0; j < h; j++) { Color color; if (rotation_direction == Gfx::RotationDirection::CounterClockwise) color = this->get_pixel(w - i - 1, j); else color = this->get_pixel(i, h - j - 1); new_bitmap->set_pixel(j, i, color); } } return new_bitmap; } ErrorOr> Bitmap::flipped(Gfx::Orientation orientation) const { auto new_bitmap = TRY(Gfx::Bitmap::try_create(this->format(), { width(), height() }, scale())); auto w = this->physical_width(); auto h = this->physical_height(); for (int i = 0; i < w; i++) { for (int j = 0; j < h; j++) { Color color = this->get_pixel(i, j); if (orientation == Orientation::Vertical) new_bitmap->set_pixel(i, h - j - 1, color); else new_bitmap->set_pixel(w - i - 1, j, color); } } return new_bitmap; } ErrorOr> Bitmap::scaled(int sx, int sy) const { VERIFY(sx >= 0 && sy >= 0); if (sx == 1 && sy == 1) return NonnullRefPtr { *this }; auto new_bitmap = TRY(Gfx::Bitmap::try_create(format(), { width() * sx, height() * sy }, scale())); auto old_width = physical_width(); auto old_height = physical_height(); for (int y = 0; y < old_height; y++) { for (int x = 0; x < old_width; x++) { auto color = get_pixel(x, y); auto base_x = x * sx; auto base_y = y * sy; for (int new_y = base_y; new_y < base_y + sy; new_y++) { for (int new_x = base_x; new_x < base_x + sx; new_x++) { new_bitmap->set_pixel(new_x, new_y, color); } } } } return new_bitmap; } // http://fourier.eng.hmc.edu/e161/lectures/resize/node3.html ErrorOr> Bitmap::scaled(float sx, float sy) const { VERIFY(sx >= 0.0f && sy >= 0.0f); if (floorf(sx) == sx && floorf(sy) == sy) return scaled(static_cast(sx), static_cast(sy)); int scaled_width = (int)ceilf(sx * (float)width()); int scaled_height = (int)ceilf(sy * (float)height()); auto new_bitmap = TRY(Gfx::Bitmap::try_create(format(), { scaled_width, scaled_height }, scale())); auto old_width = physical_width(); auto old_height = physical_height(); auto new_width = new_bitmap->physical_width(); auto new_height = new_bitmap->physical_height(); // The interpolation goes out of bounds on the bottom- and right-most edges. // We handle those in two specialized loops not only to make them faster, but // also to avoid four branch checks for every pixel. for (int y = 0; y < new_height - 1; y++) { for (int x = 0; x < new_width - 1; x++) { auto p = static_cast(x) * static_cast(old_width - 1) / static_cast(new_width - 1); auto q = static_cast(y) * static_cast(old_height - 1) / static_cast(new_height - 1); int i = floorf(p); int j = floorf(q); float u = p - static_cast(i); float v = q - static_cast(j); auto a = get_pixel(i, j); auto b = get_pixel(i + 1, j); auto c = get_pixel(i, j + 1); auto d = get_pixel(i + 1, j + 1); auto e = a.interpolate(b, u); auto f = c.interpolate(d, u); auto color = e.interpolate(f, v); new_bitmap->set_pixel(x, y, color); } } // Bottom strip (excluding last pixel) auto old_bottom_y = old_height - 1; auto new_bottom_y = new_height - 1; for (int x = 0; x < new_width - 1; x++) { auto p = static_cast(x) * static_cast(old_width - 1) / static_cast(new_width - 1); int i = floorf(p); float u = p - static_cast(i); auto a = get_pixel(i, old_bottom_y); auto b = get_pixel(i + 1, old_bottom_y); auto color = a.interpolate(b, u); new_bitmap->set_pixel(x, new_bottom_y, color); } // Right strip (excluding last pixel) auto old_right_x = old_width - 1; auto new_right_x = new_width - 1; for (int y = 0; y < new_height - 1; y++) { auto q = static_cast(y) * static_cast(old_height - 1) / static_cast(new_height - 1); int j = floorf(q); float v = q - static_cast(j); auto c = get_pixel(old_right_x, j); auto d = get_pixel(old_right_x, j + 1); auto color = c.interpolate(d, v); new_bitmap->set_pixel(new_right_x, y, color); } // Bottom-right pixel new_bitmap->set_pixel(new_width - 1, new_height - 1, get_pixel(physical_width() - 1, physical_height() - 1)); return new_bitmap; } ErrorOr> Bitmap::cropped(Gfx::IntRect crop, Optional new_bitmap_format) const { auto new_bitmap = TRY(Gfx::Bitmap::try_create(new_bitmap_format.value_or(format()), { crop.width(), crop.height() }, scale())); auto scaled_crop = crop * scale(); for (int y = 0; y < scaled_crop.height(); ++y) { for (int x = 0; x < scaled_crop.width(); ++x) { int global_x = x + scaled_crop.left(); int global_y = y + scaled_crop.top(); if (global_x >= physical_width() || global_y >= physical_height() || global_x < 0 || global_y < 0) { new_bitmap->set_pixel(x, y, Gfx::Color::Black); } else { new_bitmap->set_pixel(x, y, get_pixel(global_x, global_y)); } } } return new_bitmap; } ErrorOr> Bitmap::to_bitmap_backed_by_anonymous_buffer() const { if (m_buffer.is_valid()) return NonnullRefPtr { *this }; auto buffer = TRY(Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(size_in_bytes(), PAGE_SIZE))); auto bitmap = TRY(Bitmap::try_create_with_anonymous_buffer(m_format, move(buffer), size(), scale(), palette_to_vector())); memcpy(bitmap->scanline(0), scanline(0), size_in_bytes()); return bitmap; } void Bitmap::invert() { for (auto y = 0; y < height(); y++) { for (auto x = 0; x < width(); x++) set_pixel(x, y, get_pixel(x, y).inverted()); } } Bitmap::~Bitmap() { if (m_needs_munmap) { int rc = munmap(m_data, size_in_bytes()); VERIFY(rc == 0); } m_data = nullptr; delete[] m_palette; } void Bitmap::set_mmap_name([[maybe_unused]] DeprecatedString const& name) { VERIFY(m_needs_munmap); #ifdef AK_OS_SERENITY ::set_mmap_name(m_data, size_in_bytes(), name.characters()); #endif } void Bitmap::fill(Color color) { VERIFY(!is_indexed(m_format)); for (int y = 0; y < physical_height(); ++y) { auto* scanline = this->scanline(y); fast_u32_fill(scanline, color.value(), physical_width()); } } void Bitmap::set_volatile() { if (m_volatile) return; #ifdef AK_OS_SERENITY int rc = madvise(m_data, size_in_bytes(), MADV_SET_VOLATILE); if (rc < 0) { perror("madvise(MADV_SET_VOLATILE)"); VERIFY_NOT_REACHED(); } #endif m_volatile = true; } [[nodiscard]] bool Bitmap::set_nonvolatile(bool& was_purged) { if (!m_volatile) { was_purged = false; return true; } #ifdef AK_OS_SERENITY int rc = madvise(m_data, size_in_bytes(), MADV_SET_NONVOLATILE); if (rc < 0) { if (errno == ENOMEM) { was_purged = true; return false; } perror("madvise(MADV_SET_NONVOLATILE)"); VERIFY_NOT_REACHED(); } was_purged = rc != 0; #endif m_volatile = false; return true; } Gfx::ShareableBitmap Bitmap::to_shareable_bitmap() const { auto bitmap_or_error = to_bitmap_backed_by_anonymous_buffer(); if (bitmap_or_error.is_error()) return {}; return Gfx::ShareableBitmap { bitmap_or_error.release_value_but_fixme_should_propagate_errors(), Gfx::ShareableBitmap::ConstructWithKnownGoodBitmap }; } ErrorOr Bitmap::allocate_backing_store(BitmapFormat format, IntSize size, int scale_factor) { if (size_would_overflow(format, size, scale_factor)) return Error::from_string_literal("Gfx::Bitmap backing store size overflow"); auto const pitch = minimum_pitch(size.width() * scale_factor, format); auto const data_size_in_bytes = size_in_bytes(pitch, size.height() * scale_factor); int map_flags = MAP_ANONYMOUS | MAP_PRIVATE; #ifdef AK_OS_SERENITY map_flags |= MAP_PURGEABLE; void* data = mmap_with_name(nullptr, data_size_in_bytes, PROT_READ | PROT_WRITE, map_flags, 0, 0, DeprecatedString::formatted("GraphicsBitmap [{}]", size).characters()); #else void* data = mmap(nullptr, data_size_in_bytes, PROT_READ | PROT_WRITE, map_flags, -1, 0); #endif if (data == MAP_FAILED) return Error::from_errno(errno); return BackingStore { data, pitch, data_size_in_bytes }; } void Bitmap::allocate_palette_from_format(BitmapFormat format, Vector const& source_palette) { size_t size = palette_size(format); if (size == 0) return; m_palette = new ARGB32[size]; if (!source_palette.is_empty()) { VERIFY(source_palette.size() == size); memcpy(m_palette, source_palette.data(), size * sizeof(ARGB32)); } } Vector Bitmap::palette_to_vector() const { Vector vector; auto size = palette_size(m_format); vector.ensure_capacity(size); for (size_t i = 0; i < size; ++i) vector.unchecked_append(palette_color(i).value()); return vector; } bool Bitmap::visually_equals(Bitmap const& other) const { auto own_width = width(); auto own_height = height(); if (other.width() != own_width || other.height() != own_height) return false; for (auto y = 0; y < own_height; ++y) { for (auto x = 0; x < own_width; ++x) { if (get_pixel(x, y) != other.get_pixel(x, y)) return false; } } return true; } Optional Bitmap::solid_color(u8 alpha_threshold) const { Optional color; for (auto y = 0; y < height(); ++y) { for (auto x = 0; x < width(); ++x) { auto const& pixel = get_pixel(x, y); if (has_alpha_channel() && pixel.alpha() <= alpha_threshold) continue; if (!color.has_value()) color = pixel; else if (pixel != color) return {}; } } return color; } void Bitmap::flood_visit_from_point(Gfx::IntPoint start_point, int threshold, Function pixel_reached) { VERIFY(rect().contains(start_point)); auto target_color = get_pixel(start_point.x(), start_point.y()); float threshold_normalized_squared = (threshold / 100.0f) * (threshold / 100.0f); Queue points_to_visit = Queue(); points_to_visit.enqueue(start_point); pixel_reached(start_point); auto flood_mask = AK::Bitmap::create(width() * height(), false).release_value_but_fixme_should_propagate_errors(); flood_mask.set(width() * start_point.y() + start_point.x(), true); // This implements a non-recursive flood fill. This is a breadth-first search of paintable neighbors // As we find neighbors that are reachable we call the location_reached callback, add them to the queue, and mark them in the mask while (!points_to_visit.is_empty()) { auto current_point = points_to_visit.dequeue(); auto candidate_points = Array { current_point.moved_left(1), current_point.moved_right(1), current_point.moved_up(1), current_point.moved_down(1) }; for (auto candidate_point : candidate_points) { auto flood_mask_index = width() * candidate_point.y() + candidate_point.x(); if (!rect().contains(candidate_point)) continue; auto pixel_color = get_pixel(candidate_point.x(), candidate_point.y()); auto can_paint = pixel_color.distance_squared_to(target_color) <= threshold_normalized_squared; if (flood_mask.get(flood_mask_index) == false && can_paint) { points_to_visit.enqueue(candidate_point); pixel_reached(candidate_point); } flood_mask.set(flood_mask_index, true); } } } }