/* * Copyright (c) 2021, Ali Mohammad Pur * Copyright (c) 2022, Ben Maxwell * * SPDX-License-Identifier: BSD-2-Clause */ #include "FillPathImplementation.h" #include #include #include static float fractional_part(float x) { return x - floorf(x); } // Base algorithm from https://en.wikipedia.org/wiki/Xiaolin_Wu%27s_line_algorithm, // because there seems to be no other known method for drawing AA'd lines (?) template void Gfx::AntiAliasingPainter::draw_anti_aliased_line(FloatPoint const& actual_from, FloatPoint const& actual_to, Color color, float thickness, Gfx::Painter::LineStyle style, Color) { // FIXME: Implement this :P VERIFY(style == Painter::LineStyle::Solid); auto corrected_thickness = thickness > 1 ? thickness - 1 : thickness; auto size = IntSize(corrected_thickness, corrected_thickness); auto draw_point = [&](FloatPoint const& point, Color color) { auto center = m_transform.map(point).to_type(); m_underlying_painter.fill_rect(Gfx::IntRect::centered_on(center, size), color); }; auto color_with_alpha = [&color](float new_alpha) { return color.with_alpha(color.alpha() * new_alpha); }; auto actual_distance = actual_to - actual_from; auto from = actual_from; auto to = actual_to; auto is_steep = fabsf(actual_distance.y()) > fabsf(actual_distance.x()); if (is_steep) { from = { from.y(), from.x() }; to = { to.y(), to.x() }; } if (from.x() > to.x()) swap(from, to); auto distance = to - from; auto gradient = fabsf(distance.x()) < 1e-10f ? 1.0f : distance.y() / distance.x(); auto draw_one_end = [&](auto& point) { auto end_x = roundf(point.x()); auto end_point = FloatPoint { end_x, point.y() + gradient * (end_x - point.x()) }; auto x_gap = 1 - fractional_part(point.x() + 0.5f); auto current_point = FloatPoint { end_point.x(), floorf(end_point.y()) }; if (is_steep) { draw_point({ current_point.y(), current_point.x() }, color_with_alpha(x_gap * (1 - fractional_part(end_point.y())))); draw_point({ current_point.y() + 1, current_point.x() }, color_with_alpha(x_gap * fractional_part(end_point.y()))); } else { draw_point(current_point, color_with_alpha(x_gap * (1 - fractional_part(end_point.y())) * 255)); draw_point({ current_point.x(), current_point.y() + 1 }, color_with_alpha(x_gap * fractional_part(end_point.y()))); } return end_point; }; auto first_end_point = draw_one_end(from); auto last_end_point = draw_one_end(to); auto next_intersection = first_end_point.y() + gradient; auto delta_x = 0.7f; // Should be max(fabsf(sin_x), fabsf(cos_x)) with fewer samples needed if the line is axis-aligned. // but there's no point in doing expensive calculations when the delta range is so small (0.7-1.0) // so instead, just pick the smallest delta. auto delta_y = gradient * delta_x; auto x = first_end_point.x(); while (x < last_end_point.x()) { if (is_steep) { if constexpr (policy == AntiAliasPolicy::OnlyEnds) { draw_point({ floorf(next_intersection), x }, color); } else { draw_point({ floorf(next_intersection), x }, color_with_alpha(1 - fractional_part(next_intersection))); } draw_point({ floorf(next_intersection) + 1, x }, color_with_alpha(fractional_part(next_intersection))); } else { if constexpr (policy == AntiAliasPolicy::OnlyEnds) { draw_point({ x, floorf(next_intersection) }, color); } else { draw_point({ x, floorf(next_intersection) }, color_with_alpha(1 - fractional_part(next_intersection))); } draw_point({ x, floorf(next_intersection) + 1 }, color_with_alpha(fractional_part(next_intersection))); } next_intersection += delta_y; x += delta_x; } } void Gfx::AntiAliasingPainter::draw_aliased_line(FloatPoint const& actual_from, FloatPoint const& actual_to, Color color, float thickness, Gfx::Painter::LineStyle style, Color alternate_color) { draw_anti_aliased_line(actual_from, actual_to, color, thickness, style, alternate_color); } void Gfx::AntiAliasingPainter::draw_line(FloatPoint const& actual_from, FloatPoint const& actual_to, Color color, float thickness, Gfx::Painter::LineStyle style, Color alternate_color) { draw_anti_aliased_line(actual_from, actual_to, color, thickness, style, alternate_color); } void Gfx::AntiAliasingPainter::fill_path(Path& path, Color color, Painter::WindingRule rule) { Detail::fill_path(*this, path, color, rule); } void Gfx::AntiAliasingPainter::stroke_path(Path const& path, Color color, float thickness) { FloatPoint cursor; for (auto& segment : path.segments()) { switch (segment.type()) { case Segment::Type::Invalid: VERIFY_NOT_REACHED(); case Segment::Type::MoveTo: cursor = segment.point(); break; case Segment::Type::LineTo: draw_line(cursor, segment.point(), color, thickness); cursor = segment.point(); break; case Segment::Type::QuadraticBezierCurveTo: { auto& through = static_cast(segment).through(); draw_quadratic_bezier_curve(through, cursor, segment.point(), color, thickness); cursor = segment.point(); break; } case Segment::Type::CubicBezierCurveTo: { auto& curve = static_cast(segment); auto& through_0 = curve.through_0(); auto& through_1 = curve.through_1(); draw_cubic_bezier_curve(through_0, through_1, cursor, segment.point(), color, thickness); cursor = segment.point(); break; } case Segment::Type::EllipticalArcTo: auto& arc = static_cast(segment); draw_elliptical_arc(cursor, segment.point(), arc.center(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), color, thickness); cursor = segment.point(); break; } } } void Gfx::AntiAliasingPainter::draw_elliptical_arc(FloatPoint const& p1, FloatPoint const& p2, FloatPoint const& center, FloatPoint const& radii, float x_axis_rotation, float theta_1, float theta_delta, Color color, float thickness, Painter::LineStyle style) { Gfx::Painter::for_each_line_segment_on_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta, [&](FloatPoint const& fp1, FloatPoint const& fp2) { draw_line(fp1, fp2, color, thickness, style); }); } void Gfx::AntiAliasingPainter::draw_quadratic_bezier_curve(FloatPoint const& control_point, FloatPoint const& p1, FloatPoint const& p2, Color color, float thickness, Painter::LineStyle style) { Gfx::Painter::for_each_line_segment_on_bezier_curve(control_point, p1, p2, [&](FloatPoint const& fp1, FloatPoint const& fp2) { draw_line(fp1, fp2, color, thickness, style); }); } void Gfx::AntiAliasingPainter::draw_cubic_bezier_curve(const FloatPoint& control_point_0, const FloatPoint& control_point_1, const FloatPoint& p1, const FloatPoint& p2, Color color, float thickness, Painter::LineStyle style) { Gfx::Painter::for_each_line_segment_on_cubic_bezier_curve(control_point_0, control_point_1, p1, p2, [&](FloatPoint const& fp1, FloatPoint const& fp2) { draw_line(fp1, fp2, color, thickness, style); }); } void Gfx::AntiAliasingPainter::draw_circle(IntPoint center, int radius, Color color) { /* Algorithm from: https://cs.uwaterloo.ca/research/tr/1984/CS-84-38.pdf Inline comments are from the paper. */ // TODO: Generalize to ellipses (see paper) // These happen to be the same here, but are treated separately in the paper: // intensity is the fill alpha const int intensity = color.alpha(); // 0 to subpixel_resolution is the range of alpha values for the circle edges const int subpixel_resolution = intensity; // Note: Variable names below are based off the paper // Current pixel address int i = 0; int q = radius; // 1st and 2nd order differences of y int delta_y = 0; int delta2_y = 0; // Exact and predicted values of f(i) -- the circle equation scaled by subpixel_resolution int y = subpixel_resolution * radius; int y_hat = 0; // The value of f(i)*f(i) int f_squared = y * y; // 1st and 2nd order differences of f(i)*f(i) int delta_f_squared = subpixel_resolution * subpixel_resolution; int delta2_f_squared = -delta_f_squared - delta_f_squared; // edge_intersection_area/subpixel_resolution = percentage of pixel intersected by circle // (aka the alpha for the pixel) int edge_intersection_area = 0; int old_area = edge_intersection_area; auto predict = [&] { delta_y += delta2_y; // y_hat is the predicted value of f(i) y_hat = y + delta_y; }; auto minimize = [&] { // Initialize the minimization delta_f_squared += delta2_f_squared; f_squared += delta_f_squared; int min_squared_error = y_hat * y_hat - f_squared; int prediction_overshot = 1; y = y_hat; // Force error negative if (min_squared_error > 0) { min_squared_error = -min_squared_error; prediction_overshot = -1; } // Minimize int previous_error = min_squared_error; while (min_squared_error < 0) { y += prediction_overshot; previous_error = min_squared_error; min_squared_error += y + y - prediction_overshot; } if (min_squared_error + previous_error > 0) y -= prediction_overshot; }; auto correct = [&] { int error = y - y_hat; delta2_y += error; delta_y += error; }; auto pixel = [&](int x, int y, int alpha) { if (alpha <= 0 || alpha > 255) return; auto pixel_colour = color; pixel_colour.set_alpha(alpha); m_underlying_painter.set_pixel(center + IntPoint { x, y }, pixel_colour, true); }; auto fill = [&](int x, int ymax, int ymin, int alpha) { while (ymin <= ymax) { pixel(x, ymin, alpha); ymin += 1; } }; auto eight_pixel = [&](int x, int y, int alpha) { pixel(x, y, alpha); pixel(x, -y - 1, alpha); pixel(-x - 1, -y - 1, alpha); pixel(-x - 1, y, alpha); pixel(y, x, alpha); pixel(y, -x - 1, alpha); pixel(-y - 1, -x - 1, alpha); pixel(-y - 1, x, alpha); }; while (i < q) { predict(); minimize(); correct(); old_area = edge_intersection_area; edge_intersection_area += delta_y; if (edge_intersection_area >= 0) { // Single pixel on perimeter eight_pixel(i, q, (edge_intersection_area + old_area) / 2); fill(i, q - 1, -q, intensity); fill(-i - 1, q - 1, -q, intensity); } else { // Two pixels on perimeter edge_intersection_area += subpixel_resolution; eight_pixel(i, q, old_area / 2); q -= 1; fill(i, q - 1, -q, intensity); fill(-i - 1, q - 1, -q, intensity); if (i < q) { // Haven't gone below the diagonal eight_pixel(i, q, (edge_intersection_area + subpixel_resolution) / 2); fill(q, i - 1, -i, intensity); fill(-q - 1, i - 1, -i, intensity); } else { // Went below the diagonal, fix edge_intersection_area for final pixels edge_intersection_area += subpixel_resolution; } } i += 1; } // Fill in 4 remaning pixels int alpha = edge_intersection_area / 2; pixel(q, q, alpha); pixel(-q - 1, q, alpha); pixel(-q - 1, -q - 1, alpha); pixel(q, -q - 1, alpha); } void Gfx::AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int radius) { fill_rect_with_rounded_corners(a_rect, color, radius, radius, radius, radius); } void Gfx::AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int top_left_radius, int top_right_radius, int bottom_right_radius, int bottom_left_radius) { if (!top_left_radius && !top_right_radius && !bottom_right_radius && !bottom_left_radius) return m_underlying_painter.fill_rect(a_rect, color); if (color.alpha() == 0) return; IntPoint top_left_corner { a_rect.x() + top_left_radius, a_rect.y() + top_left_radius, }; IntPoint top_right_corner { a_rect.x() + a_rect.width() - top_right_radius, a_rect.y() + top_right_radius, }; IntPoint bottom_right_corner { a_rect.x() + bottom_left_radius, a_rect.y() + a_rect.height() - bottom_right_radius }; IntPoint bottom_left_corner { a_rect.x() + a_rect.width() - bottom_left_radius, a_rect.y() + a_rect.height() - bottom_left_radius }; IntRect top_rect { a_rect.x() + top_left_radius, a_rect.y(), a_rect.width() - top_left_radius - top_right_radius, top_left_radius }; IntRect right_rect { a_rect.x() + a_rect.width() - top_right_radius, a_rect.y() + top_right_radius, top_right_radius, a_rect.height() - top_right_radius - bottom_right_radius }; IntRect bottom_rect { a_rect.x() + bottom_left_radius, a_rect.y() + a_rect.height() - bottom_right_radius, a_rect.width() - bottom_left_radius - bottom_right_radius, bottom_right_radius }; IntRect left_rect { a_rect.x(), a_rect.y() + top_left_radius, bottom_left_radius, a_rect.height() - top_left_radius - bottom_left_radius }; IntRect inner = { left_rect.x() + left_rect.width(), left_rect.y(), a_rect.width() - left_rect.width() - right_rect.width(), a_rect.height() - top_rect.height() - bottom_rect.height() }; m_underlying_painter.fill_rect(top_rect, color); m_underlying_painter.fill_rect(right_rect, color); m_underlying_painter.fill_rect(bottom_rect, color); m_underlying_painter.fill_rect(left_rect, color); m_underlying_painter.fill_rect(inner, color); // FIXME: Don't draw a whole circle each time if (top_left_radius) draw_circle(top_left_corner, top_left_radius, color); if (top_right_radius) draw_circle(top_right_corner, top_right_radius, color); if (bottom_left_radius) draw_circle(bottom_left_corner, bottom_left_radius, color); if (bottom_right_radius) draw_circle(bottom_right_corner, bottom_right_radius, color); }