/* * Copyright (c) 2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include namespace Gfx { bool AffineTransform::is_identity() const { return m_values[0] == 1 && m_values[1] == 0 && m_values[2] == 0 && m_values[3] == 1 && m_values[4] == 0 && m_values[5] == 0; } static float hypotenuse(float x, float y) { // FIXME: This won't handle overflow :( return sqrt(x * x + y * y); } float AffineTransform::x_scale() const { return hypotenuse(m_values[0], m_values[1]); } float AffineTransform::y_scale() const { return hypotenuse(m_values[2], m_values[3]); } AffineTransform& AffineTransform::scale(float sx, float sy) { m_values[0] *= sx; m_values[1] *= sx; m_values[2] *= sy; m_values[3] *= sy; return *this; } AffineTransform& AffineTransform::translate(float tx, float ty) { m_values[4] += tx * m_values[0] + ty * m_values[2]; m_values[5] += tx * m_values[1] + ty * m_values[3]; return *this; } AffineTransform& AffineTransform::multiply(const AffineTransform& other) { AffineTransform result; result.m_values[0] = other.a() * a() + other.b() * c(); result.m_values[1] = other.a() * b() + other.b() * d(); result.m_values[2] = other.c() * a() + other.d() * c(); result.m_values[3] = other.c() * b() + other.d() * d(); result.m_values[4] = other.e() * a() + other.f() * c() + e(); result.m_values[5] = other.e() * b() + other.f() * d() + f(); *this = result; return *this; } AffineTransform& AffineTransform::rotate_radians(float radians) { float sin_angle = sinf(radians); float cos_angle = cosf(radians); AffineTransform rotation(cos_angle, sin_angle, -sin_angle, cos_angle, 0, 0); multiply(rotation); return *this; } void AffineTransform::map(float unmapped_x, float unmapped_y, float& mapped_x, float& mapped_y) const { mapped_x = (m_values[0] * unmapped_x + m_values[2] * unmapped_y + m_values[4]); mapped_y = (m_values[1] * unmapped_x + m_values[3] * unmapped_y + m_values[5]); } template<> IntPoint AffineTransform::map(const IntPoint& point) const { float mapped_x; float mapped_y; map(point.x(), point.y(), mapped_x, mapped_y); return { roundf(mapped_x), roundf(mapped_y) }; } template<> FloatPoint AffineTransform::map(const FloatPoint& point) const { float mapped_x; float mapped_y; map(point.x(), point.y(), mapped_x, mapped_y); return { mapped_x, mapped_y }; } template<> IntSize AffineTransform::map(const IntSize& size) const { return { roundf(size.width() * x_scale()), roundf(size.height() * y_scale()) }; } template<> FloatSize AffineTransform::map(const FloatSize& size) const { return { size.width() * x_scale(), size.height() * y_scale() }; } template static T smallest_of(T p1, T p2, T p3, T p4) { return min(min(p1, p2), min(p3, p4)); } template static T largest_of(T p1, T p2, T p3, T p4) { return max(max(p1, p2), max(p3, p4)); } template<> FloatRect AffineTransform::map(const FloatRect& rect) const { FloatPoint p1 = map(rect.top_left()); FloatPoint p2 = map(rect.top_right().translated(1, 0)); FloatPoint p3 = map(rect.bottom_right().translated(1, 1)); FloatPoint p4 = map(rect.bottom_left().translated(0, 1)); float left = smallest_of(p1.x(), p2.x(), p3.x(), p4.x()); float top = smallest_of(p1.y(), p2.y(), p3.y(), p4.y()); float right = largest_of(p1.x(), p2.x(), p3.x(), p4.x()); float bottom = largest_of(p1.y(), p2.y(), p3.y(), p4.y()); return { left, top, right - left, bottom - top }; } template<> IntRect AffineTransform::map(const IntRect& rect) const { return enclosing_int_rect(map(FloatRect(rect))); } }