/* * Copyright (c) 2021, Stephan Unverwerth * * SPDX-License-Identifier: BSD-2-Clause */ #include "Sampler2D.h" #include #include namespace GL { static constexpr float wrap_repeat(float value) { return value - floorf(value); } static constexpr float wrap_mirrored_repeat(float value) { float integer = floorf(value); float frac = value - integer; bool iseven = fmodf(integer, 2.0f) == 0.0f; return iseven ? frac : 1 - frac; } static constexpr float wrap_clamp(float value) { return clamp(value, 0.0f, 1.0f); } static constexpr float wrap(float value, GLint mode) { switch (mode) { case GL_REPEAT: return wrap_repeat(value); // FIXME: These clamp modes actually have slightly different behavior case GL_CLAMP: case GL_CLAMP_TO_BORDER: case GL_CLAMP_TO_EDGE: return wrap_clamp(value); case GL_MIRRORED_REPEAT: return wrap_mirrored_repeat(value); break; default: VERIFY_NOT_REACHED(); } } FloatVector4 Sampler2D::sample(FloatVector2 const& uv) const { // FIXME: Calculate the correct mipmap level here, need to receive uv derivatives for that unsigned lod = 0; MipMap const& mip = m_texture.mipmap(lod); if (mip.width() < 1 || mip.height() < 1) return { 1, 1, 1, 1 }; float x = wrap(uv.x(), m_wrap_t_mode); float y = wrap(uv.y(), m_wrap_s_mode); x *= mip.width() - 1; y *= mip.height() - 1; // Sampling implemented according to https://www.khronos.org/registry/OpenGL/specs/gl/glspec121.pdf Chapter 3.8 if (m_mag_filter == GL_NEAREST) { return mip.texel(static_cast(x), static_cast(y)); } else if (m_mag_filter == GL_LINEAR) { // FIXME: Implement different sampling points for wrap modes other than GL_REPEAT x -= 0.5f; y -= 0.5f; unsigned i0 = static_cast(x) % mip.width(); unsigned j0 = static_cast(y) % mip.height(); unsigned i1 = (i0 + 1) % mip.width(); unsigned j1 = (j0 + 1) % mip.height(); auto t0 = mip.texel(i0, j0); auto t1 = mip.texel(i1, j0); auto t2 = mip.texel(i0, j1); auto t3 = mip.texel(i1, j1); float frac_x = x - floorf(x); float frac_y = y - floorf(y); float one_minus_frac_x = 1 - frac_x; auto h1 = t0 * one_minus_frac_x + t1 * frac_x; auto h2 = t2 * one_minus_frac_x + t3 * frac_x; return h1 * (1 - frac_y) + h2 * frac_y; } else { VERIFY_NOT_REACHED(); } } }