/* * Copyright (c) 2021, Jesse Buhagiar * Copyright (c) 2021, Stephan Unverwerth * Copyright (c) 2022, Jelle Raaijmakers * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include __attribute__((visibility("hidden"))) GL::GLContext* g_gl_context; namespace GL { static constexpr size_t MODELVIEW_MATRIX_STACK_LIMIT = 64; static constexpr size_t PROJECTION_MATRIX_STACK_LIMIT = 8; static constexpr size_t TEXTURE_MATRIX_STACK_LIMIT = 8; #define APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(name, ...) \ if (should_append_to_listing()) { \ append_to_listing<&GLContext::name>(__VA_ARGS__); \ if (!should_execute_after_appending_to_listing()) \ return; \ } #define APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(name, arg) \ if (should_append_to_listing()) { \ auto ptr = store_in_listing(arg); \ append_to_listing<&GLContext::name>(*ptr); \ if (!should_execute_after_appending_to_listing()) \ return; \ } #define RETURN_WITH_ERROR_IF(condition, error) \ if (condition) { \ dbgln_if(GL_DEBUG, "{}(): error {:#x}", __func__, error); \ if (m_error == GL_NO_ERROR) \ m_error = error; \ return; \ } #define RETURN_VALUE_WITH_ERROR_IF(condition, error, return_value) \ if (condition) { \ dbgln_if(GL_DEBUG, "{}(): error {:#x}", __func__, error); \ if (m_error == GL_NO_ERROR) \ m_error = error; \ return return_value; \ } GLContext::GLContext(RefPtr driver, NonnullOwnPtr device, Gfx::Bitmap& frontbuffer) : m_viewport { frontbuffer.rect() } , m_frontbuffer { frontbuffer } , m_driver { driver } , m_rasterizer { move(device) } , m_device_info { m_rasterizer->info() } { m_texture_units.resize(m_device_info.num_texture_units); m_active_texture_unit = &m_texture_units[0]; // All texture units are initialized with default textures for all targets; these // can be referenced later on with texture name 0 in operations like glBindTexture(). auto default_texture_2d = adopt_ref(*new Texture2D()); m_default_textures.set(GL_TEXTURE_2D, default_texture_2d); for (auto& texture_unit : m_texture_units) texture_unit.set_texture_2d_target_texture(default_texture_2d); // Query the number lights from the device and set set up their state // locally in the GL m_light_states.resize(m_device_info.num_lights); // Set-up light0's state, as it has a different default state // to the other lights, as per the OpenGL 1.5 spec auto& light0 = m_light_states.at(0); light0.diffuse_intensity = { 1.0f, 1.0f, 1.0f, 1.0f }; light0.specular_intensity = { 1.0f, 1.0f, 1.0f, 1.0f }; m_light_state_is_dirty = true; m_client_side_texture_coord_array_enabled.resize(m_device_info.num_texture_units); m_client_tex_coord_pointer.resize(m_device_info.num_texture_units); m_current_vertex_tex_coord.resize(m_device_info.num_texture_units); for (auto& tex_coord : m_current_vertex_tex_coord) tex_coord = { 0.0f, 0.0f, 0.0f, 1.0f }; // Initialize the texture coordinate generation coefficients // Indices 0,1,2,3 refer to the S,T,R and Q coordinate of the respective texture // coordinate generation config. m_texture_coordinate_generation.resize(m_device_info.num_texture_units); for (auto& texture_coordinate_generation : m_texture_coordinate_generation) { texture_coordinate_generation[0].object_plane_coefficients = { 1.0f, 0.0f, 0.0f, 0.0f }; texture_coordinate_generation[0].eye_plane_coefficients = { 1.0f, 0.0f, 0.0f, 0.0f }; texture_coordinate_generation[1].object_plane_coefficients = { 0.0f, 1.0f, 0.0f, 0.0f }; texture_coordinate_generation[1].eye_plane_coefficients = { 0.0f, 1.0f, 0.0f, 0.0f }; texture_coordinate_generation[2].object_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f }; texture_coordinate_generation[2].eye_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f }; texture_coordinate_generation[3].object_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f }; texture_coordinate_generation[3].eye_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f }; } build_extension_string(); } GLContext::~GLContext() { dbgln_if(GL_DEBUG, "GLContext::~GLContext() {:p}", this); if (g_gl_context == this) make_context_current(nullptr); } Optional GLContext::get_context_parameter(GLenum name) { switch (name) { case GL_ALPHA_BITS: return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } }; case GL_ALPHA_TEST: return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_alpha_test_enabled } }; case GL_BLEND: return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_blend_enabled } }; case GL_BLEND_DST_ALPHA: return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast(m_blend_destination_factor) } }; case GL_BLEND_SRC_ALPHA: return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast(m_blend_source_factor) } }; case GL_BLUE_BITS: return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } }; case GL_COLOR_MATERIAL: return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_color_material_enabled } }; case GL_COLOR_MATERIAL_FACE: return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast(m_color_material_face) } }; case GL_COLOR_MATERIAL_MODE: return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast(m_color_material_mode) } }; case GL_CULL_FACE: return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_cull_faces } }; case GL_DEPTH_BITS: return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } }; case GL_DEPTH_TEST: return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_depth_test_enabled } }; case GL_DITHER: return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_dither_enabled } }; case GL_DOUBLEBUFFER: return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = true } }; case GL_FOG: { auto fog_enabled = m_rasterizer->options().fog_enabled; return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = fog_enabled } }; } case GL_GREEN_BITS: return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } }; case GL_LIGHTING: return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_lighting_enabled } }; case GL_MAX_LIGHTS: return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast(m_device_info.num_lights) } }; case GL_MAX_MODELVIEW_STACK_DEPTH: return ContextParameter { .type = GL_INT, .value = { .integer_value = MODELVIEW_MATRIX_STACK_LIMIT } }; case GL_MAX_PROJECTION_STACK_DEPTH: return ContextParameter { .type = GL_INT, .value = { .integer_value = PROJECTION_MATRIX_STACK_LIMIT } }; case GL_MAX_TEXTURE_SIZE: return ContextParameter { .type = GL_INT, .value = { .integer_value = 4096 } }; case GL_MAX_TEXTURE_STACK_DEPTH: return ContextParameter { .type = GL_INT, .value = { .integer_value = TEXTURE_MATRIX_STACK_LIMIT } }; case GL_MAX_TEXTURE_UNITS: return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast(m_texture_units.size()) } }; case GL_NORMALIZE: return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_normalize } }; case GL_PACK_ALIGNMENT: return ContextParameter { .type = GL_INT, .value = { .integer_value = m_pack_alignment } }; case GL_PACK_IMAGE_HEIGHT: return ContextParameter { .type = GL_BOOL, .value = { .integer_value = 0 } }; case GL_PACK_LSB_FIRST: return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } }; case GL_PACK_ROW_LENGTH: return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } }; case GL_PACK_SKIP_PIXELS: return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } }; case GL_PACK_SKIP_ROWS: return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } }; case GL_PACK_SWAP_BYTES: return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } }; case GL_POLYGON_OFFSET_FILL: return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_depth_offset_enabled } }; case GL_RED_BITS: return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } }; case GL_SCISSOR_BOX: { auto scissor_box = m_rasterizer->options().scissor_box; return ContextParameter { .type = GL_INT, .count = 4, .value = { .integer_list = { scissor_box.x(), scissor_box.y(), scissor_box.width(), scissor_box.height(), } } }; } break; case GL_SCISSOR_TEST: { auto scissor_enabled = m_rasterizer->options().scissor_enabled; return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = scissor_enabled } }; } case GL_STENCIL_BITS: return ContextParameter { .type = GL_INT, .value = { .integer_value = m_device_info.stencil_bits } }; case GL_STENCIL_CLEAR_VALUE: return ContextParameter { .type = GL_INT, .value = { .integer_value = m_clear_stencil } }; case GL_STENCIL_TEST: return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_stencil_test_enabled } }; case GL_TEXTURE_1D: return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_1d_enabled() } }; case GL_TEXTURE_2D: return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_2d_enabled() } }; case GL_TEXTURE_3D: return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_3d_enabled() } }; case GL_TEXTURE_CUBE_MAP: return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_cube_map_enabled() } }; case GL_TEXTURE_GEN_Q: case GL_TEXTURE_GEN_R: case GL_TEXTURE_GEN_S: case GL_TEXTURE_GEN_T: { auto generation_enabled = texture_coordinate_generation(m_active_texture_unit_index, name).enabled; return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = generation_enabled } }; } case GL_UNPACK_ALIGNMENT: return ContextParameter { .type = GL_INT, .value = { .integer_value = m_unpack_alignment } }; case GL_UNPACK_IMAGE_HEIGHT: return ContextParameter { .type = GL_BOOL, .value = { .integer_value = 0 } }; case GL_UNPACK_LSB_FIRST: return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } }; case GL_UNPACK_ROW_LENGTH: return ContextParameter { .type = GL_INT, .value = { .integer_value = m_unpack_row_length } }; case GL_UNPACK_SKIP_PIXELS: return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } }; case GL_UNPACK_SKIP_ROWS: return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } }; case GL_UNPACK_SWAP_BYTES: return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } }; case GL_VIEWPORT: return ContextParameter { .type = GL_INT, .count = 4, .value = { .integer_list = { m_viewport.x(), m_viewport.y(), m_viewport.width(), m_viewport.height(), } } }; default: dbgln_if(GL_DEBUG, "get_context_parameter({:#x}): unknown context parameter", name); return {}; } } void GLContext::gl_begin(GLenum mode) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_begin, mode); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(mode > GL_POLYGON, GL_INVALID_ENUM); m_current_draw_mode = mode; m_in_draw_state = true; // Certain commands will now generate an error } void GLContext::gl_clear(GLbitfield mask) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear, mask); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(mask & ~(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT), GL_INVALID_ENUM); if (mask & GL_COLOR_BUFFER_BIT) m_rasterizer->clear_color(m_clear_color); if (mask & GL_DEPTH_BUFFER_BIT) m_rasterizer->clear_depth(m_clear_depth); if (mask & GL_STENCIL_BUFFER_BIT) m_rasterizer->clear_stencil(m_clear_stencil); } void GLContext::gl_clear_color(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_color, red, green, blue, alpha); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); m_clear_color = { red, green, blue, alpha }; m_clear_color.clamp(0.f, 1.f); } void GLContext::gl_clear_depth(GLdouble depth) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_depth, depth); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); m_clear_depth = clamp(static_cast(depth), 0.f, 1.f); } void GLContext::gl_clear_stencil(GLint s) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_stencil, s); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); m_clear_stencil = static_cast(s & ((1 << m_device_info.stencil_bits) - 1)); } void GLContext::gl_color(GLdouble r, GLdouble g, GLdouble b, GLdouble a) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_color, r, g, b, a); m_current_vertex_color = { static_cast(r), static_cast(g), static_cast(b), static_cast(a), }; } void GLContext::gl_end() { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_end); // Make sure we had a `glBegin` before this call... RETURN_WITH_ERROR_IF(!m_in_draw_state, GL_INVALID_OPERATION); m_in_draw_state = false; // FIXME: Add support for the remaining primitive types. if (m_current_draw_mode != GL_TRIANGLES && m_current_draw_mode != GL_TRIANGLE_FAN && m_current_draw_mode != GL_TRIANGLE_STRIP && m_current_draw_mode != GL_QUADS && m_current_draw_mode != GL_QUAD_STRIP && m_current_draw_mode != GL_POLYGON) { m_vertex_list.clear_with_capacity(); dbgln_if(GL_DEBUG, "gl_end(): draw mode {:#x} unsupported", m_current_draw_mode); RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM); } Vector enabled_texture_units; for (size_t i = 0; i < m_texture_units.size(); ++i) { if (m_texture_units[i].texture_2d_enabled()) enabled_texture_units.append(i); } sync_device_config(); GPU::PrimitiveType primitive_type; switch (m_current_draw_mode) { case GL_TRIANGLES: primitive_type = GPU::PrimitiveType::Triangles; break; case GL_TRIANGLE_STRIP: case GL_QUAD_STRIP: primitive_type = GPU::PrimitiveType::TriangleStrip; break; case GL_TRIANGLE_FAN: case GL_POLYGON: primitive_type = GPU::PrimitiveType::TriangleFan; break; case GL_QUADS: primitive_type = GPU::PrimitiveType::Quads; break; default: VERIFY_NOT_REACHED(); } m_rasterizer->draw_primitives(primitive_type, m_model_view_matrix, m_projection_matrix, m_texture_matrix, m_vertex_list, enabled_texture_units); m_vertex_list.clear_with_capacity(); } void GLContext::gl_frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_frustum, left, right, bottom, top, near_val, far_val); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(near_val < 0 || far_val < 0, GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(left == right || bottom == top || near_val == far_val, GL_INVALID_VALUE); // Let's do some math! auto a = static_cast((right + left) / (right - left)); auto b = static_cast((top + bottom) / (top - bottom)); auto c = static_cast(-((far_val + near_val) / (far_val - near_val))); auto d = static_cast(-((2 * far_val * near_val) / (far_val - near_val))); FloatMatrix4x4 frustum { static_cast(2 * near_val / (right - left)), 0, a, 0, 0, static_cast(2 * near_val / (top - bottom)), b, 0, 0, 0, c, d, 0, 0, -1, 0 }; *m_current_matrix = *m_current_matrix * frustum; } void GLContext::gl_ortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_ortho, left, right, bottom, top, near_val, far_val); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(left == right || bottom == top || near_val == far_val, GL_INVALID_VALUE); auto rl = right - left; auto tb = top - bottom; auto fn = far_val - near_val; auto tx = -(right + left) / rl; auto ty = -(top + bottom) / tb; auto tz = -(far_val + near_val) / fn; FloatMatrix4x4 projection { static_cast(2 / rl), 0, 0, static_cast(tx), 0, static_cast(2 / tb), 0, static_cast(ty), 0, 0, static_cast(-2 / fn), static_cast(tz), 0, 0, 0, 1 }; *m_current_matrix = *m_current_matrix * projection; } GLenum GLContext::gl_get_error() { if (m_in_draw_state) return GL_INVALID_OPERATION; auto last_error = m_error; m_error = GL_NO_ERROR; return last_error; } GLubyte* GLContext::gl_get_string(GLenum name) { RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, nullptr); switch (name) { case GL_VENDOR: return reinterpret_cast(const_cast(m_device_info.vendor_name.characters())); case GL_RENDERER: return reinterpret_cast(const_cast(m_device_info.device_name.characters())); case GL_VERSION: return reinterpret_cast(const_cast("1.5")); case GL_EXTENSIONS: return reinterpret_cast(const_cast(m_extensions.characters())); case GL_SHADING_LANGUAGE_VERSION: return reinterpret_cast(const_cast("0.0")); default: dbgln_if(GL_DEBUG, "gl_get_string({:#x}): unknown name", name); break; } RETURN_VALUE_WITH_ERROR_IF(true, GL_INVALID_ENUM, nullptr); } void GLContext::gl_load_identity() { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_load_identity); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); *m_current_matrix = FloatMatrix4x4::identity(); } void GLContext::gl_load_matrix(FloatMatrix4x4 const& matrix) { APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(gl_load_matrix, matrix); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); *m_current_matrix = matrix; } void GLContext::gl_matrix_mode(GLenum mode) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_matrix_mode, mode); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(mode < GL_MODELVIEW || mode > GL_TEXTURE, GL_INVALID_ENUM); m_current_matrix_mode = mode; switch (mode) { case GL_MODELVIEW: m_current_matrix = &m_model_view_matrix; m_current_matrix_stack = &m_model_view_matrix_stack; break; case GL_PROJECTION: m_current_matrix = &m_projection_matrix; m_current_matrix_stack = &m_projection_matrix_stack; break; case GL_TEXTURE: m_current_matrix = &m_texture_matrix; m_current_matrix_stack = &m_texture_matrix_stack; break; default: VERIFY_NOT_REACHED(); } } static constexpr size_t matrix_stack_limit(GLenum matrix_mode) { switch (matrix_mode) { case GL_MODELVIEW: return MODELVIEW_MATRIX_STACK_LIMIT; case GL_PROJECTION: return PROJECTION_MATRIX_STACK_LIMIT; case GL_TEXTURE: return TEXTURE_MATRIX_STACK_LIMIT; } VERIFY_NOT_REACHED(); } void GLContext::gl_push_matrix() { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_push_matrix); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF((*m_current_matrix_stack).size() >= matrix_stack_limit(m_current_matrix_mode), GL_STACK_OVERFLOW); (*m_current_matrix_stack).append(*m_current_matrix); } void GLContext::gl_pop_matrix() { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_pop_matrix); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF((*m_current_matrix_stack).is_empty(), GL_STACK_UNDERFLOW); *m_current_matrix = (*m_current_matrix_stack).take_last(); } void GLContext::gl_mult_matrix(FloatMatrix4x4 const& matrix) { APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(gl_mult_matrix, matrix); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); *m_current_matrix = *m_current_matrix * matrix; } void GLContext::gl_rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_rotate, angle, x, y, z); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); FloatVector3 axis = { x, y, z }; if (axis.length() > 0.f) axis.normalize(); auto rotation_mat = Gfx::rotation_matrix(axis, angle * static_cast(M_PI * 2 / 360)); *m_current_matrix = *m_current_matrix * rotation_mat; } void GLContext::gl_scale(GLdouble x, GLdouble y, GLdouble z) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_scale, x, y, z); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto scale_matrix = Gfx::scale_matrix(FloatVector3 { static_cast(x), static_cast(y), static_cast(z) }); *m_current_matrix = *m_current_matrix * scale_matrix; } void GLContext::gl_translate(GLdouble x, GLdouble y, GLdouble z) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_translate, x, y, z); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto translation_matrix = Gfx::translation_matrix(FloatVector3 { static_cast(x), static_cast(y), static_cast(z) }); *m_current_matrix = *m_current_matrix * translation_matrix; } void GLContext::gl_vertex(GLdouble x, GLdouble y, GLdouble z, GLdouble w) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_vertex, x, y, z, w); GPU::Vertex vertex; vertex.position = { static_cast(x), static_cast(y), static_cast(z), static_cast(w) }; vertex.color = m_current_vertex_color; for (size_t i = 0; i < m_device_info.num_texture_units; ++i) vertex.tex_coords[i] = m_current_vertex_tex_coord[i]; vertex.normal = m_current_vertex_normal; m_vertex_list.append(vertex); } void GLContext::gl_tex_coord(GLfloat s, GLfloat t, GLfloat r, GLfloat q) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_coord, s, t, r, q); m_current_vertex_tex_coord[0] = { s, t, r, q }; } void GLContext::gl_multi_tex_coord(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_multi_tex_coord, target, s, t, r, q); RETURN_WITH_ERROR_IF(target < GL_TEXTURE0 || target >= GL_TEXTURE0 + m_device_info.num_texture_units, GL_INVALID_ENUM); m_current_vertex_tex_coord[target - GL_TEXTURE0] = { s, t, r, q }; } void GLContext::gl_viewport(GLint x, GLint y, GLsizei width, GLsizei height) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_viewport, x, y, width, height); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE); m_viewport = { x, y, width, height }; auto rasterizer_options = m_rasterizer->options(); rasterizer_options.viewport = m_viewport; m_rasterizer->set_options(rasterizer_options); } void GLContext::gl_enable(GLenum capability) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_enable, capability); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto rasterizer_options = m_rasterizer->options(); bool update_rasterizer_options = false; switch (capability) { case GL_COLOR_MATERIAL: m_color_material_enabled = true; break; case GL_CULL_FACE: m_cull_faces = true; rasterizer_options.enable_culling = true; update_rasterizer_options = true; break; case GL_DEPTH_TEST: m_depth_test_enabled = true; rasterizer_options.enable_depth_test = true; update_rasterizer_options = true; break; case GL_BLEND: m_blend_enabled = true; rasterizer_options.enable_blending = true; update_rasterizer_options = true; break; case GL_ALPHA_TEST: m_alpha_test_enabled = true; rasterizer_options.enable_alpha_test = true; update_rasterizer_options = true; break; case GL_DITHER: m_dither_enabled = true; break; case GL_FOG: rasterizer_options.fog_enabled = true; update_rasterizer_options = true; break; case GL_LIGHTING: m_lighting_enabled = true; rasterizer_options.lighting_enabled = true; update_rasterizer_options = true; break; case GL_NORMALIZE: m_normalize = true; rasterizer_options.normalization_enabled = true; update_rasterizer_options = true; break; case GL_POLYGON_OFFSET_FILL: m_depth_offset_enabled = true; rasterizer_options.depth_offset_enabled = true; update_rasterizer_options = true; break; case GL_SCISSOR_TEST: rasterizer_options.scissor_enabled = true; update_rasterizer_options = true; break; case GL_STENCIL_TEST: m_stencil_test_enabled = true; rasterizer_options.enable_stencil_test = true; update_rasterizer_options = true; break; case GL_TEXTURE_1D: m_active_texture_unit->set_texture_1d_enabled(true); m_sampler_config_is_dirty = true; break; case GL_TEXTURE_2D: m_active_texture_unit->set_texture_2d_enabled(true); m_sampler_config_is_dirty = true; break; case GL_TEXTURE_3D: m_active_texture_unit->set_texture_3d_enabled(true); m_sampler_config_is_dirty = true; break; case GL_TEXTURE_CUBE_MAP: m_active_texture_unit->set_texture_cube_map_enabled(true); m_sampler_config_is_dirty = true; break; case GL_LIGHT0: case GL_LIGHT1: case GL_LIGHT2: case GL_LIGHT3: case GL_LIGHT4: case GL_LIGHT5: case GL_LIGHT6: case GL_LIGHT7: m_light_states.at(capability - GL_LIGHT0).is_enabled = true; m_light_state_is_dirty = true; break; case GL_TEXTURE_GEN_Q: case GL_TEXTURE_GEN_R: case GL_TEXTURE_GEN_S: case GL_TEXTURE_GEN_T: texture_coordinate_generation(m_active_texture_unit_index, capability).enabled = true; m_texcoord_generation_dirty = true; break; default: dbgln_if(GL_DEBUG, "gl_enable({:#x}): unknown parameter", capability); RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM); } if (update_rasterizer_options) m_rasterizer->set_options(rasterizer_options); } void GLContext::gl_disable(GLenum capability) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_disable, capability); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto rasterizer_options = m_rasterizer->options(); bool update_rasterizer_options = false; switch (capability) { case GL_COLOR_MATERIAL: m_color_material_enabled = false; break; case GL_CULL_FACE: m_cull_faces = false; rasterizer_options.enable_culling = false; update_rasterizer_options = true; break; case GL_DEPTH_TEST: m_depth_test_enabled = false; rasterizer_options.enable_depth_test = false; update_rasterizer_options = true; break; case GL_BLEND: m_blend_enabled = false; rasterizer_options.enable_blending = false; update_rasterizer_options = true; break; case GL_ALPHA_TEST: m_alpha_test_enabled = false; rasterizer_options.enable_alpha_test = false; update_rasterizer_options = true; break; case GL_DITHER: m_dither_enabled = false; break; case GL_FOG: rasterizer_options.fog_enabled = false; update_rasterizer_options = true; break; case GL_LIGHTING: m_lighting_enabled = false; rasterizer_options.lighting_enabled = false; update_rasterizer_options = true; break; case GL_LIGHT0: case GL_LIGHT1: case GL_LIGHT2: case GL_LIGHT3: case GL_LIGHT4: case GL_LIGHT5: case GL_LIGHT6: case GL_LIGHT7: m_light_states.at(capability - GL_LIGHT0).is_enabled = false; m_light_state_is_dirty = true; break; case GL_NORMALIZE: m_normalize = false; rasterizer_options.normalization_enabled = false; update_rasterizer_options = true; break; case GL_POLYGON_OFFSET_FILL: m_depth_offset_enabled = false; rasterizer_options.depth_offset_enabled = false; update_rasterizer_options = true; break; case GL_SCISSOR_TEST: rasterizer_options.scissor_enabled = false; update_rasterizer_options = true; break; case GL_STENCIL_TEST: m_stencil_test_enabled = false; rasterizer_options.enable_stencil_test = false; update_rasterizer_options = true; break; case GL_TEXTURE_1D: m_active_texture_unit->set_texture_1d_enabled(false); m_sampler_config_is_dirty = true; break; case GL_TEXTURE_2D: m_active_texture_unit->set_texture_2d_enabled(false); m_sampler_config_is_dirty = true; break; case GL_TEXTURE_3D: m_active_texture_unit->set_texture_3d_enabled(false); m_sampler_config_is_dirty = true; break; case GL_TEXTURE_CUBE_MAP: m_active_texture_unit->set_texture_cube_map_enabled(false); m_sampler_config_is_dirty = true; break; case GL_TEXTURE_GEN_Q: case GL_TEXTURE_GEN_R: case GL_TEXTURE_GEN_S: case GL_TEXTURE_GEN_T: texture_coordinate_generation(m_active_texture_unit_index, capability).enabled = false; m_texcoord_generation_dirty = true; break; default: dbgln_if(GL_DEBUG, "gl_disable({:#x}): unknown parameter", capability); RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM); } if (update_rasterizer_options) m_rasterizer->set_options(rasterizer_options); } GLboolean GLContext::gl_is_enabled(GLenum capability) { RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, 0); auto optional_parameter = get_context_parameter(capability); RETURN_VALUE_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM, 0); auto parameter = optional_parameter.release_value(); RETURN_VALUE_WITH_ERROR_IF(!parameter.is_capability, GL_INVALID_ENUM, 0); return parameter.value.boolean_value; } void GLContext::gl_gen_textures(GLsizei n, GLuint* textures) { RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); m_name_allocator.allocate(n, textures); // Initialize all texture names with a nullptr for (auto i = 0; i < n; ++i) { GLuint name = textures[i]; m_allocated_textures.set(name, nullptr); } } void GLContext::gl_delete_textures(GLsizei n, GLuint const* textures) { RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); for (auto i = 0; i < n; i++) { GLuint name = textures[i]; if (name == 0) continue; m_name_allocator.free(name); auto texture_object = m_allocated_textures.find(name); if (texture_object == m_allocated_textures.end() || texture_object->value.is_null()) continue; auto texture = texture_object->value; // Check all texture units for (auto& texture_unit : m_texture_units) { if (texture->is_texture_2d() && texture_unit.texture_2d_target_texture() == texture) { // If a texture that is currently bound is deleted, the binding reverts to 0 (the default texture) texture_unit.set_texture_2d_target_texture(get_default_texture(GL_TEXTURE_2D)); } } m_allocated_textures.remove(name); } } void GLContext::gl_tex_image_2d(GLenum target, GLint level, GLint internal_format, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, GLvoid const* data) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // We only support GL_TEXTURE_2D for now RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM); // Internal format can also be a number between 1 and 4. Symbolic formats were only added with EXT_texture, promoted to core in OpenGL 1.1 if (internal_format == 1) internal_format = GL_ALPHA; else if (internal_format == 2) internal_format = GL_LUMINANCE_ALPHA; else if (internal_format == 3) internal_format = GL_RGB; else if (internal_format == 4) internal_format = GL_RGBA; // We only support symbolic constants for now RETURN_WITH_ERROR_IF(!(internal_format == GL_RGB || internal_format == GL_RGBA || internal_format == GL_LUMINANCE8 || internal_format == GL_LUMINANCE8_ALPHA8), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_SHORT_5_6_5), GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(width < 0 || height < 0 || width > (2 + Texture2D::MAX_TEXTURE_SIZE) || height > (2 + Texture2D::MAX_TEXTURE_SIZE), GL_INVALID_VALUE); // Check if width and height are a power of 2 if (!m_device_info.supports_npot_textures) { RETURN_WITH_ERROR_IF(!is_power_of_two(width), GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(!is_power_of_two(height), GL_INVALID_VALUE); } RETURN_WITH_ERROR_IF(border != 0, GL_INVALID_VALUE); auto texture_2d = m_active_texture_unit->texture_2d_target_texture(); VERIFY(!texture_2d.is_null()); if (level == 0) { // FIXME: OpenGL has the concept of texture and mipmap completeness. A texture has to fulfill certain criteria to be considered complete. // Trying to render while an incomplete texture is bound will result in an error. // Here we simply create a complete device image when mipmap level 0 is attached to the texture object. This has the unfortunate side effect // that constructing GL textures in any but the default mipmap order, going from level 0 upwards will cause mip levels to stay uninitialized. // To be spec compliant we should create the device image once the texture has become complete and is used for rendering the first time. // All images that were attached before the device image was created need to be stored somewhere to be used to initialize the device image once complete. texture_2d->set_device_image(m_rasterizer->create_image(GPU::ImageFormat::BGRA8888, width, height, 1, 999, 1)); m_sampler_config_is_dirty = true; } texture_2d->upload_texture_data(level, internal_format, width, height, format, type, data, m_unpack_row_length, m_unpack_alignment); } void GLContext::gl_tex_sub_image_2d(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid const* data) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // We only support GL_TEXTURE_2D for now RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM); // We only support symbolic constants for now RETURN_WITH_ERROR_IF(!(format == GL_RGBA || format == GL_RGB), GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_SHORT_5_6_5), GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(width < 0 || height < 0 || width > (2 + Texture2D::MAX_TEXTURE_SIZE) || height > (2 + Texture2D::MAX_TEXTURE_SIZE), GL_INVALID_VALUE); // A 2D texture array must have been defined by a previous glTexImage2D operation auto texture_2d = m_active_texture_unit->texture_2d_target_texture(); RETURN_WITH_ERROR_IF(texture_2d.is_null(), GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(xoffset < 0 || yoffset < 0 || xoffset + width > texture_2d->width_at_lod(level) || yoffset + height > texture_2d->height_at_lod(level), GL_INVALID_VALUE); texture_2d->replace_sub_texture_data(level, xoffset, yoffset, width, height, format, type, data, m_unpack_row_length, m_unpack_alignment); } void GLContext::gl_tex_parameter(GLenum target, GLenum pname, GLfloat param) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_parameter, target, pname, param); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: We currently only support GL_TETXURE_2D targets. 1D, 3D and CUBE should also be supported (https://docs.gl/gl2/glTexParameter) RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM); // FIXME: implement the remaining parameters. (https://docs.gl/gl2/glTexParameter) RETURN_WITH_ERROR_IF(!(pname == GL_TEXTURE_MIN_FILTER || pname == GL_TEXTURE_MAG_FILTER || pname == GL_TEXTURE_WRAP_S || pname == GL_TEXTURE_WRAP_T), GL_INVALID_ENUM); // We assume GL_TEXTURE_2D (see above) auto texture_2d = m_active_texture_unit->texture_2d_target_texture(); if (texture_2d.is_null()) return; switch (pname) { case GL_TEXTURE_MIN_FILTER: RETURN_WITH_ERROR_IF(!(param == GL_NEAREST || param == GL_LINEAR || param == GL_NEAREST_MIPMAP_NEAREST || param == GL_LINEAR_MIPMAP_NEAREST || param == GL_NEAREST_MIPMAP_LINEAR || param == GL_LINEAR_MIPMAP_LINEAR), GL_INVALID_ENUM); texture_2d->sampler().set_min_filter(param); break; case GL_TEXTURE_MAG_FILTER: RETURN_WITH_ERROR_IF(!(param == GL_NEAREST || param == GL_LINEAR), GL_INVALID_ENUM); texture_2d->sampler().set_mag_filter(param); break; case GL_TEXTURE_WRAP_S: RETURN_WITH_ERROR_IF(!(param == GL_CLAMP || param == GL_CLAMP_TO_BORDER || param == GL_CLAMP_TO_EDGE || param == GL_MIRRORED_REPEAT || param == GL_REPEAT), GL_INVALID_ENUM); texture_2d->sampler().set_wrap_s_mode(param); break; case GL_TEXTURE_WRAP_T: RETURN_WITH_ERROR_IF(!(param == GL_CLAMP || param == GL_CLAMP_TO_BORDER || param == GL_CLAMP_TO_EDGE || param == GL_MIRRORED_REPEAT || param == GL_REPEAT), GL_INVALID_ENUM); texture_2d->sampler().set_wrap_t_mode(param); break; default: VERIFY_NOT_REACHED(); } m_sampler_config_is_dirty = true; } void GLContext::gl_tex_parameterfv(GLenum target, GLenum pname, GLfloat const* params) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_parameterfv, target, pname, params); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: We currently only support GL_TETXURE_2D targets. 1D, 3D and CUBE should also be supported (https://docs.gl/gl2/glTexParameter) RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM); // FIXME: implement the remaining parameters. (https://docs.gl/gl2/glTexParameter) RETURN_WITH_ERROR_IF(!(pname == GL_TEXTURE_BORDER_COLOR), GL_INVALID_ENUM); // We assume GL_TEXTURE_2D (see above) auto texture_2d = m_active_texture_unit->texture_2d_target_texture(); RETURN_WITH_ERROR_IF(texture_2d.is_null(), GL_INVALID_OPERATION); switch (pname) { case GL_TEXTURE_BORDER_COLOR: texture_2d->sampler().set_border_color(params[0], params[1], params[2], params[3]); break; default: VERIFY_NOT_REACHED(); } m_sampler_config_is_dirty = true; } void GLContext::gl_front_face(GLenum face) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_front_face, face); RETURN_WITH_ERROR_IF(face < GL_CW || face > GL_CCW, GL_INVALID_ENUM); m_front_face = face; auto rasterizer_options = m_rasterizer->options(); rasterizer_options.front_face = (face == GL_CW) ? GPU::WindingOrder::Clockwise : GPU::WindingOrder::CounterClockwise; m_rasterizer->set_options(rasterizer_options); } void GLContext::gl_cull_face(GLenum cull_mode) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_cull_face, cull_mode); RETURN_WITH_ERROR_IF(cull_mode < GL_FRONT || cull_mode > GL_FRONT_AND_BACK, GL_INVALID_ENUM); m_culled_sides = cull_mode; auto rasterizer_options = m_rasterizer->options(); rasterizer_options.cull_back = cull_mode == GL_BACK || cull_mode == GL_FRONT_AND_BACK; rasterizer_options.cull_front = cull_mode == GL_FRONT || cull_mode == GL_FRONT_AND_BACK; m_rasterizer->set_options(rasterizer_options); } GLuint GLContext::gl_gen_lists(GLsizei range) { RETURN_VALUE_WITH_ERROR_IF(range <= 0, GL_INVALID_VALUE, 0); RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, 0); auto initial_entry = m_listings.size(); m_listings.resize(range + initial_entry); return initial_entry + 1; } void GLContext::invoke_list(size_t list_index) { auto& listing = m_listings[list_index - 1]; for (auto& entry : listing.entries) { entry.function.visit([&](auto& function) { entry.arguments.visit([&](auto& arguments) { auto apply = [&](Args&&... args) { if constexpr (requires { (this->*function)(forward(args)...); }) (this->*function)(forward(args)...); }; arguments.apply_as_args(apply); }); }); } } void GLContext::gl_call_list(GLuint list) { if (m_gl_call_depth > max_allowed_gl_call_depth) return; APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_call_list, list); if (m_listings.size() < list) return; TemporaryChange change { m_gl_call_depth, m_gl_call_depth + 1 }; invoke_list(list); } void GLContext::gl_call_lists(GLsizei n, GLenum type, void const* lists) { if (m_gl_call_depth > max_allowed_gl_call_depth) return; APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_call_lists, n, type, lists); RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(!(type == GL_BYTE || type == GL_UNSIGNED_BYTE || type == GL_SHORT || type == GL_UNSIGNED_SHORT || type == GL_INT || type == GL_UNSIGNED_INT || type == GL_FLOAT || type == GL_2_BYTES || type == GL_3_BYTES || type == GL_4_BYTES), GL_INVALID_ENUM); TemporaryChange change { m_gl_call_depth, m_gl_call_depth + 1 }; auto invoke_all_lists = [&](T const* lists) { for (int i = 0; i < n; ++i) { auto list = static_cast(lists[i]); invoke_list(m_list_base + list); } }; switch (type) { case GL_BYTE: invoke_all_lists(static_cast(lists)); break; case GL_UNSIGNED_BYTE: invoke_all_lists(static_cast(lists)); break; case GL_SHORT: invoke_all_lists(static_cast(lists)); break; case GL_UNSIGNED_SHORT: invoke_all_lists(static_cast(lists)); break; case GL_INT: invoke_all_lists(static_cast(lists)); break; case GL_UNSIGNED_INT: invoke_all_lists(static_cast(lists)); break; case GL_FLOAT: invoke_all_lists(static_cast(lists)); break; case GL_2_BYTES: case GL_3_BYTES: case GL_4_BYTES: dbgln("GLContext FIXME: unimplemented glCallLists() with type {}", type); break; default: VERIFY_NOT_REACHED(); } } void GLContext::gl_delete_lists(GLuint list, GLsizei range) { if (m_listings.size() < list || m_listings.size() <= list + range) return; for (auto& entry : m_listings.span().slice(list - 1, range)) entry.entries.clear_with_capacity(); } void GLContext::gl_list_base(GLuint base) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_list_base, base); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); m_list_base = base; } void GLContext::gl_end_list() { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(!m_current_listing_index.has_value(), GL_INVALID_OPERATION); m_listings[m_current_listing_index->index] = move(m_current_listing_index->listing); m_current_listing_index.clear(); } void GLContext::gl_new_list(GLuint list, GLenum mode) { RETURN_WITH_ERROR_IF(list == 0, GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(mode != GL_COMPILE && mode != GL_COMPILE_AND_EXECUTE, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(m_current_listing_index.has_value(), GL_INVALID_OPERATION); if (m_listings.size() < list) return; m_current_listing_index = CurrentListing { {}, static_cast(list - 1), mode }; } GLboolean GLContext::gl_is_list(GLuint list) { RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, GL_FALSE); return list < m_listings.size() ? GL_TRUE : GL_FALSE; } void GLContext::gl_flush() { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // No-op since GLContext is completely synchronous at the moment } void GLContext::gl_finish() { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // No-op since GLContext is completely synchronous at the moment } void GLContext::gl_blend_func(GLenum src_factor, GLenum dst_factor) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_blend_func, src_factor, dst_factor); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: The list of allowed enums differs between API versions // This was taken from the 2.0 spec on https://docs.gl/gl2/glBlendFunc RETURN_WITH_ERROR_IF(!(src_factor == GL_ZERO || src_factor == GL_ONE || src_factor == GL_SRC_COLOR || src_factor == GL_ONE_MINUS_SRC_COLOR || src_factor == GL_DST_COLOR || src_factor == GL_ONE_MINUS_DST_COLOR || src_factor == GL_SRC_ALPHA || src_factor == GL_ONE_MINUS_SRC_ALPHA || src_factor == GL_DST_ALPHA || src_factor == GL_ONE_MINUS_DST_ALPHA || src_factor == GL_CONSTANT_COLOR || src_factor == GL_ONE_MINUS_CONSTANT_COLOR || src_factor == GL_CONSTANT_ALPHA || src_factor == GL_ONE_MINUS_CONSTANT_ALPHA || src_factor == GL_SRC_ALPHA_SATURATE), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(dst_factor == GL_ZERO || dst_factor == GL_ONE || dst_factor == GL_SRC_COLOR || dst_factor == GL_ONE_MINUS_SRC_COLOR || dst_factor == GL_DST_COLOR || dst_factor == GL_ONE_MINUS_DST_COLOR || dst_factor == GL_SRC_ALPHA || dst_factor == GL_ONE_MINUS_SRC_ALPHA || dst_factor == GL_DST_ALPHA || dst_factor == GL_ONE_MINUS_DST_ALPHA || dst_factor == GL_CONSTANT_COLOR || dst_factor == GL_ONE_MINUS_CONSTANT_COLOR || dst_factor == GL_CONSTANT_ALPHA || dst_factor == GL_ONE_MINUS_CONSTANT_ALPHA), GL_INVALID_ENUM); m_blend_source_factor = src_factor; m_blend_destination_factor = dst_factor; auto map_gl_blend_factor_to_device = [](GLenum factor) constexpr { switch (factor) { case GL_ZERO: return GPU::BlendFactor::Zero; case GL_ONE: return GPU::BlendFactor::One; case GL_SRC_ALPHA: return GPU::BlendFactor::SrcAlpha; case GL_ONE_MINUS_SRC_ALPHA: return GPU::BlendFactor::OneMinusSrcAlpha; case GL_SRC_COLOR: return GPU::BlendFactor::SrcColor; case GL_ONE_MINUS_SRC_COLOR: return GPU::BlendFactor::OneMinusSrcColor; case GL_DST_ALPHA: return GPU::BlendFactor::DstAlpha; case GL_ONE_MINUS_DST_ALPHA: return GPU::BlendFactor::OneMinusDstAlpha; case GL_DST_COLOR: return GPU::BlendFactor::DstColor; case GL_ONE_MINUS_DST_COLOR: return GPU::BlendFactor::OneMinusDstColor; case GL_SRC_ALPHA_SATURATE: return GPU::BlendFactor::SrcAlphaSaturate; default: VERIFY_NOT_REACHED(); } }; auto options = m_rasterizer->options(); options.blend_source_factor = map_gl_blend_factor_to_device(m_blend_source_factor); options.blend_destination_factor = map_gl_blend_factor_to_device(m_blend_destination_factor); m_rasterizer->set_options(options); } void GLContext::gl_shade_model(GLenum mode) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_shade_model, mode); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(mode != GL_FLAT && mode != GL_SMOOTH, GL_INVALID_ENUM); auto options = m_rasterizer->options(); options.shade_smooth = (mode == GL_SMOOTH); m_rasterizer->set_options(options); } void GLContext::gl_alpha_func(GLenum func, GLclampf ref) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_alpha_func, func, ref); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(func < GL_NEVER || func > GL_ALWAYS, GL_INVALID_ENUM); m_alpha_test_func = func; m_alpha_test_ref_value = ref; auto options = m_rasterizer->options(); switch (func) { case GL_NEVER: options.alpha_test_func = GPU::AlphaTestFunction::Never; break; case GL_ALWAYS: options.alpha_test_func = GPU::AlphaTestFunction::Always; break; case GL_LESS: options.alpha_test_func = GPU::AlphaTestFunction::Less; break; case GL_LEQUAL: options.alpha_test_func = GPU::AlphaTestFunction::LessOrEqual; break; case GL_EQUAL: options.alpha_test_func = GPU::AlphaTestFunction::Equal; break; case GL_NOTEQUAL: options.alpha_test_func = GPU::AlphaTestFunction::NotEqual; break; case GL_GEQUAL: options.alpha_test_func = GPU::AlphaTestFunction::GreaterOrEqual; break; case GL_GREATER: options.alpha_test_func = GPU::AlphaTestFunction::Greater; break; default: VERIFY_NOT_REACHED(); } options.alpha_test_ref_value = m_alpha_test_ref_value; m_rasterizer->set_options(options); } void GLContext::gl_hint(GLenum target, GLenum mode) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_hint, target, mode); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(target != GL_PERSPECTIVE_CORRECTION_HINT && target != GL_POINT_SMOOTH_HINT && target != GL_LINE_SMOOTH_HINT && target != GL_POLYGON_SMOOTH_HINT && target != GL_FOG_HINT && target != GL_GENERATE_MIPMAP_HINT && target != GL_TEXTURE_COMPRESSION_HINT, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(mode != GL_DONT_CARE && mode != GL_FASTEST && mode != GL_NICEST, GL_INVALID_ENUM); // According to the spec implementors are free to ignore glHint. So we do. } void GLContext::gl_read_buffer(GLenum mode) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_read_buffer, mode); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: Also allow aux buffers GL_AUX0 through GL_AUX3 here // plus any aux buffer between 0 and GL_AUX_BUFFERS RETURN_WITH_ERROR_IF(mode != GL_FRONT_LEFT && mode != GL_FRONT_RIGHT && mode != GL_BACK_LEFT && mode != GL_BACK_RIGHT && mode != GL_FRONT && mode != GL_BACK && mode != GL_LEFT && mode != GL_RIGHT, GL_INVALID_ENUM); // FIXME: We do not currently have aux buffers, so make it an invalid // operation to select anything but front or back buffers. Also we do // not allow selecting the stereoscopic RIGHT buffers since we do not // have them configured. RETURN_WITH_ERROR_IF(mode != GL_FRONT_LEFT && mode != GL_FRONT && mode != GL_BACK_LEFT && mode != GL_BACK && mode != GL_FRONT && mode != GL_BACK && mode != GL_LEFT, GL_INVALID_OPERATION); m_current_read_buffer = mode; } void GLContext::gl_draw_buffer(GLenum buffer) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_buffer, buffer); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: Also allow aux buffers GL_AUX0 through GL_AUX3 here // plus any aux buffer between 0 and GL_AUX_BUFFERS RETURN_WITH_ERROR_IF(buffer != GL_NONE && buffer != GL_FRONT_LEFT && buffer != GL_FRONT_RIGHT && buffer != GL_BACK_LEFT && buffer != GL_BACK_RIGHT && buffer != GL_FRONT && buffer != GL_BACK && buffer != GL_LEFT && buffer != GL_RIGHT, GL_INVALID_ENUM); // FIXME: We do not currently have aux buffers, so make it an invalid // operation to select anything but front or back buffers. Also we do // not allow selecting the stereoscopic RIGHT buffers since we do not // have them configured. RETURN_WITH_ERROR_IF(buffer != GL_NONE && buffer != GL_FRONT_LEFT && buffer != GL_FRONT && buffer != GL_BACK_LEFT && buffer != GL_BACK && buffer != GL_FRONT && buffer != GL_BACK && buffer != GL_LEFT, GL_INVALID_OPERATION); m_current_draw_buffer = buffer; auto rasterizer_options = m_rasterizer->options(); // FIXME: We only have a single draw buffer in SoftGPU at the moment, // so we simply disable color writes if GL_NONE is selected rasterizer_options.enable_color_write = m_current_draw_buffer != GL_NONE; m_rasterizer->set_options(rasterizer_options); } void GLContext::gl_read_pixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid* pixels) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(format != GL_COLOR_INDEX && format != GL_STENCIL_INDEX && format != GL_DEPTH_COMPONENT && format != GL_RED && format != GL_GREEN && format != GL_BLUE && format != GL_ALPHA && format != GL_RGB && format != GL_RGBA && format != GL_LUMINANCE && format != GL_LUMINANCE_ALPHA, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(type != GL_UNSIGNED_BYTE && type != GL_BYTE && type != GL_BITMAP && type != GL_UNSIGNED_SHORT && type != GL_SHORT && type != GL_BLUE && type != GL_UNSIGNED_INT && type != GL_INT && type != GL_FLOAT, GL_INVALID_ENUM); // FIXME: We only support RGBA buffers for now. // Once we add support for indexed color modes do the correct check here RETURN_WITH_ERROR_IF(format == GL_COLOR_INDEX, GL_INVALID_OPERATION); // FIXME: We do not have stencil buffers yet // Once we add support for stencil buffers do the correct check here RETURN_WITH_ERROR_IF(format == GL_STENCIL_INDEX, GL_INVALID_OPERATION); if (format == GL_DEPTH_COMPONENT) { // FIXME: This check needs to be a bit more sophisticated. Currently the buffers // are hardcoded. Once we add proper structures for them we need to correct this check // Error because only back buffer has a depth buffer RETURN_WITH_ERROR_IF(m_current_read_buffer == GL_FRONT || m_current_read_buffer == GL_FRONT_LEFT || m_current_read_buffer == GL_FRONT_RIGHT, GL_INVALID_OPERATION); } // Some helper functions for converting float values to integer types auto float_to_i8 = [](float f) -> GLchar { return static_cast((0x7f * min(max(f, 0.0f), 1.0f) - 1) / 2); }; auto float_to_i16 = [](float f) -> GLshort { return static_cast((0x7fff * min(max(f, 0.0f), 1.0f) - 1) / 2); }; auto float_to_i32 = [](float f) -> GLint { return static_cast((0x7fffffff * min(max(f, 0.0f), 1.0f) - 1) / 2); }; auto float_to_u8 = [](float f) -> GLubyte { return static_cast(0xff * min(max(f, 0.0f), 1.0f)); }; auto float_to_u16 = [](float f) -> GLushort { return static_cast(0xffff * min(max(f, 0.0f), 1.0f)); }; auto float_to_u32 = [](float f) -> GLuint { return static_cast(0xffffffff * min(max(f, 0.0f), 1.0f)); }; u8 component_size = 0; switch (type) { case GL_BYTE: case GL_UNSIGNED_BYTE: component_size = 1; break; case GL_SHORT: case GL_UNSIGNED_SHORT: component_size = 2; break; case GL_INT: case GL_UNSIGNED_INT: case GL_FLOAT: component_size = 4; break; } if (format == GL_DEPTH_COMPONENT) { auto const row_stride = (width * component_size + m_pack_alignment - 1) / m_pack_alignment * m_pack_alignment; // Read from depth buffer for (GLsizei i = 0; i < height; ++i) { for (GLsizei j = 0; j < width; ++j) { float depth = m_rasterizer->get_depthbuffer_value(x + j, y + i); auto char_ptr = reinterpret_cast(pixels) + i * row_stride + j * component_size; switch (type) { case GL_BYTE: *reinterpret_cast(char_ptr) = float_to_i8(depth); break; case GL_SHORT: *reinterpret_cast(char_ptr) = float_to_i16(depth); break; case GL_INT: *reinterpret_cast(char_ptr) = float_to_i32(depth); break; case GL_UNSIGNED_BYTE: *reinterpret_cast(char_ptr) = float_to_u8(depth); break; case GL_UNSIGNED_SHORT: *reinterpret_cast(char_ptr) = float_to_u16(depth); break; case GL_UNSIGNED_INT: *reinterpret_cast(char_ptr) = float_to_u32(depth); break; case GL_FLOAT: *reinterpret_cast(char_ptr) = min(max(depth, 0.0f), 1.0f); break; } } } return; } bool write_red = false; bool write_green = false; bool write_blue = false; bool write_alpha = false; size_t component_count = 0; size_t red_offset = 0; size_t green_offset = 0; size_t blue_offset = 0; size_t alpha_offset = 0; char* red_ptr = nullptr; char* green_ptr = nullptr; char* blue_ptr = nullptr; char* alpha_ptr = nullptr; switch (format) { case GL_RGB: write_red = true; write_green = true; write_blue = true; component_count = 3; red_offset = 2; green_offset = 1; blue_offset = 0; break; case GL_RGBA: write_red = true; write_green = true; write_blue = true; write_alpha = true; component_count = 4; red_offset = 3; green_offset = 2; blue_offset = 1; alpha_offset = 0; break; case GL_RED: write_red = true; component_count = 1; red_offset = 0; break; case GL_GREEN: write_green = true; component_count = 1; green_offset = 0; break; case GL_BLUE: write_blue = true; component_count = 1; blue_offset = 0; break; case GL_ALPHA: write_alpha = true; component_count = 1; alpha_offset = 0; break; } auto const pixel_bytes = component_size * component_count; auto const row_alignment_bytes = (m_pack_alignment - ((width * pixel_bytes) % m_pack_alignment)) % m_pack_alignment; char* out_ptr = reinterpret_cast(pixels); for (int i = 0; i < (int)height; ++i) { for (int j = 0; j < (int)width; ++j) { Gfx::ARGB32 color {}; if (m_current_read_buffer == GL_FRONT || m_current_read_buffer == GL_LEFT || m_current_read_buffer == GL_FRONT_LEFT) { if (y + i >= m_frontbuffer->width() || x + j >= m_frontbuffer->height()) color = 0; else color = m_frontbuffer->scanline(y + i)[x + j]; } else { color = m_rasterizer->get_color_buffer_pixel(x + j, y + i); } float red = ((color >> 24) & 0xff) / 255.0f; float green = ((color >> 16) & 0xff) / 255.0f; float blue = ((color >> 8) & 0xff) / 255.0f; float alpha = (color & 0xff) / 255.0f; // FIXME: Set up write pointers based on selected endianness (glPixelStore) red_ptr = out_ptr + (component_size * red_offset); green_ptr = out_ptr + (component_size * green_offset); blue_ptr = out_ptr + (component_size * blue_offset); alpha_ptr = out_ptr + (component_size * alpha_offset); switch (type) { case GL_BYTE: if (write_red) *reinterpret_cast(red_ptr) = float_to_i8(red); if (write_green) *reinterpret_cast(green_ptr) = float_to_i8(green); if (write_blue) *reinterpret_cast(blue_ptr) = float_to_i8(blue); if (write_alpha) *reinterpret_cast(alpha_ptr) = float_to_i8(alpha); break; case GL_UNSIGNED_BYTE: if (write_red) *reinterpret_cast(red_ptr) = float_to_u8(red); if (write_green) *reinterpret_cast(green_ptr) = float_to_u8(green); if (write_blue) *reinterpret_cast(blue_ptr) = float_to_u8(blue); if (write_alpha) *reinterpret_cast(alpha_ptr) = float_to_u8(alpha); break; case GL_SHORT: if (write_red) *reinterpret_cast(red_ptr) = float_to_i16(red); if (write_green) *reinterpret_cast(green_ptr) = float_to_i16(green); if (write_blue) *reinterpret_cast(blue_ptr) = float_to_i16(blue); if (write_alpha) *reinterpret_cast(alpha_ptr) = float_to_i16(alpha); break; case GL_UNSIGNED_SHORT: if (write_red) *reinterpret_cast(red_ptr) = float_to_u16(red); if (write_green) *reinterpret_cast(green_ptr) = float_to_u16(green); if (write_blue) *reinterpret_cast(blue_ptr) = float_to_u16(blue); if (write_alpha) *reinterpret_cast(alpha_ptr) = float_to_u16(alpha); break; case GL_INT: if (write_red) *reinterpret_cast(red_ptr) = float_to_i32(red); if (write_green) *reinterpret_cast(green_ptr) = float_to_i32(green); if (write_blue) *reinterpret_cast(blue_ptr) = float_to_i32(blue); if (write_alpha) *reinterpret_cast(alpha_ptr) = float_to_i32(alpha); break; case GL_UNSIGNED_INT: if (write_red) *reinterpret_cast(red_ptr) = float_to_u32(red); if (write_green) *reinterpret_cast(green_ptr) = float_to_u32(green); if (write_blue) *reinterpret_cast(blue_ptr) = float_to_u32(blue); if (write_alpha) *reinterpret_cast(alpha_ptr) = float_to_u32(alpha); break; case GL_FLOAT: if (write_red) *reinterpret_cast(red_ptr) = min(max(red, 0.0f), 1.0f); if (write_green) *reinterpret_cast(green_ptr) = min(max(green, 0.0f), 1.0f); if (write_blue) *reinterpret_cast(blue_ptr) = min(max(blue, 0.0f), 1.0f); if (write_alpha) *reinterpret_cast(alpha_ptr) = min(max(alpha, 0.0f), 1.0f); break; } out_ptr += pixel_bytes; } out_ptr += row_alignment_bytes; } } void GLContext::gl_bind_texture(GLenum target, GLuint texture) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(target != GL_TEXTURE_1D && target != GL_TEXTURE_2D && target != GL_TEXTURE_3D && target != GL_TEXTURE_1D_ARRAY && target != GL_TEXTURE_2D_ARRAY && target != GL_TEXTURE_CUBE_MAP, GL_INVALID_ENUM); // FIXME: We only support GL_TEXTURE_2D for now if (target != GL_TEXTURE_2D) { dbgln("gl_bind_texture(target = {:#x}): currently only GL_TEXTURE_2D is supported", target); return; } RefPtr texture_2d; if (texture == 0) { // Texture name 0 refers to the default texture texture_2d = get_default_texture(target); } else { // Find this texture name in our previously allocated textures auto it = m_allocated_textures.find(texture); if (it != m_allocated_textures.end()) { auto texture_object = it->value; if (!texture_object.is_null()) { // Texture must have been created with the same target RETURN_WITH_ERROR_IF(!texture_object->is_texture_2d(), GL_INVALID_OPERATION); texture_2d = static_cast(texture_object.ptr()); } } // OpenGL 1.x supports binding texture names that were not previously generated by glGenTextures. // If there is not an allocated texture, meaning it was not previously generated by glGenTextures, // we can keep texture_object null to both allocate and bind the texture with the passed in texture name. // FIXME: Later OpenGL versions such as 4.x enforce that texture names being bound were previously generated // by glGenTextures. if (!texture_2d) { texture_2d = adopt_ref(*new Texture2D()); m_allocated_textures.set(texture, texture_2d); } } m_active_texture_unit->set_texture_2d_target_texture(texture_2d); m_sampler_config_is_dirty = true; } GLboolean GLContext::gl_is_texture(GLuint texture) { RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, GL_FALSE); if (texture == 0) return GL_FALSE; auto it = m_allocated_textures.find(texture); if (it == m_allocated_textures.end()) return GL_FALSE; return it->value.is_null() ? GL_FALSE : GL_TRUE; } void GLContext::gl_active_texture(GLenum texture) { RETURN_WITH_ERROR_IF(texture < GL_TEXTURE0 || texture >= GL_TEXTURE0 + m_device_info.num_texture_units, GL_INVALID_ENUM); m_active_texture_unit_index = texture - GL_TEXTURE0; m_active_texture_unit = &m_texture_units.at(m_active_texture_unit_index); } void GLContext::gl_get_booleanv(GLenum pname, GLboolean* data) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto optional_parameter = get_context_parameter(pname); RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM); auto parameter = optional_parameter.release_value(); switch (parameter.type) { case GL_BOOL: *data = parameter.value.boolean_value ? GL_TRUE : GL_FALSE; break; case GL_DOUBLE: *data = (parameter.value.double_value == 0.0) ? GL_FALSE : GL_TRUE; break; case GL_INT: *data = (parameter.value.integer_value == 0) ? GL_FALSE : GL_TRUE; break; default: VERIFY_NOT_REACHED(); } } void GLContext::gl_get_doublev(GLenum pname, GLdouble* params) { get_floating_point(pname, params); } void GLContext::gl_get_floatv(GLenum pname, GLfloat* params) { get_floating_point(pname, params); } template void GLContext::get_floating_point(GLenum pname, T* params) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // Handle matrix retrieval first auto flatten_and_assign_matrix = [¶ms](FloatMatrix4x4 const& matrix) { auto elements = matrix.elements(); for (size_t i = 0; i < 4; ++i) { for (size_t j = 0; j < 4; ++j) { // Return transposed matrix since OpenGL defines them as column-major params[i * 4 + j] = static_cast(elements[j][i]); } } }; switch (pname) { case GL_MODELVIEW_MATRIX: flatten_and_assign_matrix(m_model_view_matrix); return; case GL_PROJECTION_MATRIX: flatten_and_assign_matrix(m_projection_matrix); return; } // Regular parameters auto optional_parameter = get_context_parameter(pname); RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM); auto parameter = optional_parameter.release_value(); switch (parameter.type) { case GL_BOOL: *params = parameter.value.boolean_value ? GL_TRUE : GL_FALSE; break; case GL_DOUBLE: for (size_t i = 0; i < parameter.count; ++i) params[i] = parameter.value.double_list[i]; break; case GL_INT: for (size_t i = 0; i < parameter.count; ++i) params[i] = parameter.value.integer_list[i]; break; default: VERIFY_NOT_REACHED(); } } void GLContext::gl_get_integerv(GLenum pname, GLint* data) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto optional_parameter = get_context_parameter(pname); RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM); auto parameter = optional_parameter.release_value(); switch (parameter.type) { case GL_BOOL: *data = parameter.value.boolean_value ? GL_TRUE : GL_FALSE; break; case GL_DOUBLE: { double const int_range = static_cast(NumericLimits::max()) - NumericLimits::min(); for (size_t i = 0; i < parameter.count; ++i) { double const result_factor = (clamp(parameter.value.double_list[i], -1.0, 1.0) + 1.0) / 2.0; data[i] = static_cast(NumericLimits::min() + result_factor * int_range); } break; } case GL_INT: for (size_t i = 0; i < parameter.count; ++i) data[i] = parameter.value.integer_list[i]; break; default: VERIFY_NOT_REACHED(); } } void GLContext::gl_depth_mask(GLboolean flag) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_mask, flag); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto options = m_rasterizer->options(); options.enable_depth_write = (flag != GL_FALSE); m_rasterizer->set_options(options); } void GLContext::gl_clip_plane(GLenum plane, [[maybe_unused]] GLdouble const* equation) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clip_plane, plane, equation); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF((plane < GL_CLIP_PLANE0) || (plane > GL_CLIP_PLANE5), GL_INVALID_ENUM); dbgln_if(GL_DEBUG, "GLContext FIXME: implement gl_clip_plane() (equation = [{} {} {} {}])", equation[0], equation[1], equation[2], equation[3]); } void GLContext::gl_enable_client_state(GLenum cap) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); switch (cap) { case GL_COLOR_ARRAY: m_client_side_color_array_enabled = true; break; case GL_NORMAL_ARRAY: m_client_side_normal_array_enabled = true; break; case GL_TEXTURE_COORD_ARRAY: m_client_side_texture_coord_array_enabled[m_client_active_texture] = true; break; case GL_VERTEX_ARRAY: m_client_side_vertex_array_enabled = true; break; default: RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM); } } void GLContext::gl_disable_client_state(GLenum cap) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); switch (cap) { case GL_COLOR_ARRAY: m_client_side_color_array_enabled = false; break; case GL_NORMAL_ARRAY: m_client_side_normal_array_enabled = false; break; case GL_TEXTURE_COORD_ARRAY: m_client_side_texture_coord_array_enabled[m_client_active_texture] = false; break; case GL_VERTEX_ARRAY: m_client_side_vertex_array_enabled = false; break; default: RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM); } } void GLContext::gl_client_active_texture(GLenum target) { RETURN_WITH_ERROR_IF(target < GL_TEXTURE0 || target >= GL_TEXTURE0 + m_device_info.num_texture_units, GL_INVALID_ENUM); m_client_active_texture = target - GL_TEXTURE0; } void GLContext::gl_vertex_pointer(GLint size, GLenum type, GLsizei stride, void const* pointer) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(!(size == 2 || size == 3 || size == 4), GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(!(type == GL_SHORT || type == GL_INT || type == GL_FLOAT || type == GL_DOUBLE), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE); m_client_vertex_pointer = { .size = size, .type = type, .stride = stride, .pointer = pointer }; } void GLContext::gl_color_pointer(GLint size, GLenum type, GLsizei stride, void const* pointer) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(!(size == 3 || size == 4), GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(type != GL_BYTE && type != GL_UNSIGNED_BYTE && type != GL_SHORT && type != GL_UNSIGNED_SHORT && type != GL_INT && type != GL_UNSIGNED_INT && type != GL_FLOAT && type != GL_DOUBLE, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE); m_client_color_pointer = { .size = size, .type = type, .stride = stride, .pointer = pointer }; } void GLContext::gl_tex_coord_pointer(GLint size, GLenum type, GLsizei stride, void const* pointer) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(!(size == 1 || size == 2 || size == 3 || size == 4), GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(!(type == GL_SHORT || type == GL_INT || type == GL_FLOAT || type == GL_DOUBLE), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE); auto& tex_coord_pointer = m_client_tex_coord_pointer[m_client_active_texture]; tex_coord_pointer = { .size = size, .type = type, .stride = stride, .pointer = pointer }; } void GLContext::gl_normal_pointer(GLenum type, GLsizei stride, void const* pointer) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(type != GL_BYTE && type != GL_SHORT && type != GL_INT && type != GL_FLOAT && type != GL_DOUBLE, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE); m_client_normal_pointer = { .size = 3, .type = type, .stride = stride, .pointer = pointer }; } void GLContext::gl_tex_env(GLenum target, GLenum pname, GLfloat param) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_env, target, pname, param); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: We currently only support a subset of possible target values. Implement the rest! RETURN_WITH_ERROR_IF(target != GL_TEXTURE_ENV, GL_INVALID_ENUM); // FIXME: We currently only support a subset of possible pname values. Implement the rest! RETURN_WITH_ERROR_IF(pname != GL_TEXTURE_ENV_MODE, GL_INVALID_ENUM); auto param_enum = static_cast(param); switch (param_enum) { case GL_MODULATE: case GL_REPLACE: case GL_DECAL: case GL_ADD: m_active_texture_unit->set_env_mode(param_enum); m_sampler_config_is_dirty = true; break; default: // FIXME: We currently only support a subset of possible param values. Implement the rest! dbgln_if(GL_DEBUG, "gl_tex_env({:#x}, {:#x}, {}): param unimplemented", target, pname, param); RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM); } } void GLContext::gl_draw_arrays(GLenum mode, GLint first, GLsizei count) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_arrays, mode, first, count); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: Some modes are still missing (GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES) RETURN_WITH_ERROR_IF(!(mode == GL_TRIANGLE_STRIP || mode == GL_TRIANGLE_FAN || mode == GL_TRIANGLES || mode == GL_QUADS || mode == GL_QUAD_STRIP || mode == GL_POLYGON), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(count < 0, GL_INVALID_VALUE); // At least the vertex array needs to be enabled if (!m_client_side_vertex_array_enabled) return; auto last = first + count; gl_begin(mode); for (int i = first; i < last; i++) { if (m_client_side_color_array_enabled) { float color[4] { 0, 0, 0, 1 }; read_from_vertex_attribute_pointer(m_client_color_pointer, i, color); gl_color(color[0], color[1], color[2], color[3]); } for (size_t t = 0; t < m_client_tex_coord_pointer.size(); ++t) { if (m_client_side_texture_coord_array_enabled[t]) { float tex_coords[4] { 0, 0, 0, 0 }; read_from_vertex_attribute_pointer(m_client_tex_coord_pointer[t], i, tex_coords); gl_multi_tex_coord(GL_TEXTURE0 + t, tex_coords[0], tex_coords[1], tex_coords[2], tex_coords[3]); } } if (m_client_side_normal_array_enabled) { float normal[3]; read_from_vertex_attribute_pointer(m_client_normal_pointer, i, normal); gl_normal(normal[0], normal[1], normal[2]); } float vertex[4] { 0, 0, 0, 1 }; read_from_vertex_attribute_pointer(m_client_vertex_pointer, i, vertex); gl_vertex(vertex[0], vertex[1], vertex[2], vertex[3]); } gl_end(); } void GLContext::gl_draw_elements(GLenum mode, GLsizei count, GLenum type, void const* indices) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_elements, mode, count, type, indices); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: Some modes are still missing (GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES) RETURN_WITH_ERROR_IF(!(mode == GL_TRIANGLE_STRIP || mode == GL_TRIANGLE_FAN || mode == GL_TRIANGLES || mode == GL_QUADS || mode == GL_QUAD_STRIP || mode == GL_POLYGON), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_SHORT || type == GL_UNSIGNED_INT), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(count < 0, GL_INVALID_VALUE); // At least the vertex array needs to be enabled if (!m_client_side_vertex_array_enabled) return; gl_begin(mode); for (int index = 0; index < count; index++) { int i = 0; switch (type) { case GL_UNSIGNED_BYTE: i = reinterpret_cast(indices)[index]; break; case GL_UNSIGNED_SHORT: i = reinterpret_cast(indices)[index]; break; case GL_UNSIGNED_INT: i = reinterpret_cast(indices)[index]; break; } if (m_client_side_color_array_enabled) { float color[4] { 0, 0, 0, 1 }; read_from_vertex_attribute_pointer(m_client_color_pointer, i, color); gl_color(color[0], color[1], color[2], color[3]); } for (size_t t = 0; t < m_client_tex_coord_pointer.size(); ++t) { if (m_client_side_texture_coord_array_enabled[t]) { float tex_coords[4] { 0, 0, 0, 0 }; read_from_vertex_attribute_pointer(m_client_tex_coord_pointer[t], i, tex_coords); gl_multi_tex_coord(GL_TEXTURE0 + t, tex_coords[0], tex_coords[1], tex_coords[2], tex_coords[3]); } } if (m_client_side_normal_array_enabled) { float normal[3]; read_from_vertex_attribute_pointer(m_client_normal_pointer, i, normal); gl_normal(normal[0], normal[1], normal[2]); } float vertex[4] { 0, 0, 0, 1 }; read_from_vertex_attribute_pointer(m_client_vertex_pointer, i, vertex); gl_vertex(vertex[0], vertex[1], vertex[2], vertex[3]); } gl_end(); } void GLContext::gl_draw_pixels(GLsizei width, GLsizei height, GLenum format, GLenum type, void const* data) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_pixels, width, height, format, type, data); RETURN_WITH_ERROR_IF(format < GL_COLOR_INDEX || format > GL_BGRA, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF((type < GL_BYTE || type > GL_FLOAT) && (type < GL_UNSIGNED_BYTE_3_3_2 || type > GL_UNSIGNED_INT_10_10_10_2) && (type < GL_UNSIGNED_BYTE_2_3_3_REV || type > GL_UNSIGNED_INT_2_10_10_10_REV), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(type == GL_BITMAP && !(format == GL_COLOR_INDEX || format == GL_STENCIL_INDEX), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE); // FIXME: GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no stencil buffer // FIXME: GL_INVALID_OPERATION is generated if format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, // GL_BGR, GL_BGRA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA, and the GL is in color index mode RETURN_WITH_ERROR_IF(format != GL_RGB && (type == GL_UNSIGNED_BYTE_3_3_2 || type == GL_UNSIGNED_BYTE_2_3_3_REV || type == GL_UNSIGNED_SHORT_5_6_5 || type == GL_UNSIGNED_SHORT_5_6_5_REV), GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(!(format == GL_RGBA || format == GL_BGRA) && (type == GL_UNSIGNED_SHORT_4_4_4_4 || type == GL_UNSIGNED_SHORT_4_4_4_4_REV || type == GL_UNSIGNED_SHORT_5_5_5_1 || type == GL_UNSIGNED_SHORT_1_5_5_5_REV || type == GL_UNSIGNED_INT_8_8_8_8 || type == GL_UNSIGNED_INT_8_8_8_8_REV || type == GL_UNSIGNED_INT_10_10_10_2 || type == GL_UNSIGNED_INT_2_10_10_10_REV), GL_INVALID_OPERATION); // FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER // target and the buffer object's data store is currently mapped. // FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER // target and the data would be unpacked from the buffer object such that the memory reads required would // exceed the data store size. // FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER // target and data is not evenly divisible into the number of bytes needed to store in memory a datum // indicated by type. RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: we only support RGBA + UNSIGNED_BYTE and DEPTH_COMPONENT + UNSIGNED_SHORT, implement all combinations! if (!((format == GL_RGBA && type == GL_UNSIGNED_BYTE) || (format == GL_DEPTH_COMPONENT && type == GL_UNSIGNED_SHORT))) { dbgln_if(GL_DEBUG, "gl_draw_pixels(): support for format {:#x} and/or type {:#x} not implemented", format, type); return; } // FIXME: implement support for pixel parameters such as GL_UNPACK_ALIGNMENT if (format == GL_RGBA) { auto bitmap_or_error = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, { width, height }); RETURN_WITH_ERROR_IF(bitmap_or_error.is_error(), GL_OUT_OF_MEMORY); auto bitmap = bitmap_or_error.release_value(); auto pixel_data = static_cast(data); for (int y = 0; y < height; ++y) for (int x = 0; x < width; ++x) bitmap->set_pixel(x, y, Color::from_argb(*(pixel_data++))); m_rasterizer->blit_to_color_buffer_at_raster_position(bitmap); } else if (format == GL_DEPTH_COMPONENT) { Vector depth_values; depth_values.ensure_capacity(width * height); auto depth_data = static_cast(data); for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { auto u16_value = *(depth_data++); auto float_value = static_cast(u16_value) / NumericLimits::max(); depth_values.append(float_value); } } m_rasterizer->blit_to_depth_buffer_at_raster_position(depth_values, width, height); } else { VERIFY_NOT_REACHED(); } } void GLContext::gl_array_element(GLint i) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_array_element, i); RETURN_WITH_ERROR_IF(i < 0, GL_INVALID_VALUE); // This is effectively the same as `gl_draw_elements`, except we only output a single // vertex (this is done between a `gl_begin/end` call) that is to be rendered. if (!m_client_side_vertex_array_enabled) return; if (m_client_side_color_array_enabled) { float color[4] { 0, 0, 0, 1 }; read_from_vertex_attribute_pointer(m_client_color_pointer, i, color); gl_color(color[0], color[1], color[2], color[3]); } for (size_t t = 0; t < m_client_tex_coord_pointer.size(); ++t) { if (m_client_side_texture_coord_array_enabled[t]) { float tex_coords[4] { 0, 0, 0, 0 }; read_from_vertex_attribute_pointer(m_client_tex_coord_pointer[t], i, tex_coords); gl_multi_tex_coord(GL_TEXTURE0 + t, tex_coords[0], tex_coords[1], tex_coords[2], tex_coords[3]); } } if (m_client_side_normal_array_enabled) { float normal[3]; read_from_vertex_attribute_pointer(m_client_normal_pointer, i, normal); gl_normal(normal[0], normal[1], normal[2]); } float vertex[4] { 0, 0, 0, 1 }; read_from_vertex_attribute_pointer(m_client_vertex_pointer, i, vertex); gl_vertex(vertex[0], vertex[1], vertex[2], vertex[3]); } void GLContext::gl_depth_range(GLdouble min, GLdouble max) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_range, min, max); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto options = m_rasterizer->options(); options.depth_min = clamp(min, 0.f, 1.f); options.depth_max = clamp(max, 0.f, 1.f); m_rasterizer->set_options(options); } void GLContext::gl_depth_func(GLenum func) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_func, func); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(!(func == GL_NEVER || func == GL_LESS || func == GL_EQUAL || func == GL_LEQUAL || func == GL_GREATER || func == GL_NOTEQUAL || func == GL_GEQUAL || func == GL_ALWAYS), GL_INVALID_ENUM); auto options = m_rasterizer->options(); switch (func) { case GL_NEVER: options.depth_func = GPU::DepthTestFunction::Never; break; case GL_ALWAYS: options.depth_func = GPU::DepthTestFunction::Always; break; case GL_LESS: options.depth_func = GPU::DepthTestFunction::Less; break; case GL_LEQUAL: options.depth_func = GPU::DepthTestFunction::LessOrEqual; break; case GL_EQUAL: options.depth_func = GPU::DepthTestFunction::Equal; break; case GL_NOTEQUAL: options.depth_func = GPU::DepthTestFunction::NotEqual; break; case GL_GEQUAL: options.depth_func = GPU::DepthTestFunction::GreaterOrEqual; break; case GL_GREATER: options.depth_func = GPU::DepthTestFunction::Greater; break; default: VERIFY_NOT_REACHED(); } m_rasterizer->set_options(options); } // General helper function to read arbitrary vertex attribute data into a float array void GLContext::read_from_vertex_attribute_pointer(VertexAttribPointer const& attrib, int index, float* elements) { auto byte_ptr = reinterpret_cast(attrib.pointer); auto normalize = attrib.normalize; size_t stride = attrib.stride; switch (attrib.type) { case GL_BYTE: { if (stride == 0) stride = sizeof(GLbyte) * attrib.size; for (int i = 0; i < attrib.size; i++) { elements[i] = *(reinterpret_cast(byte_ptr + stride * index) + i); if (normalize) elements[i] /= 0x80; } break; } case GL_UNSIGNED_BYTE: { if (stride == 0) stride = sizeof(GLubyte) * attrib.size; for (int i = 0; i < attrib.size; i++) { elements[i] = *(reinterpret_cast(byte_ptr + stride * index) + i); if (normalize) elements[i] /= 0xff; } break; } case GL_SHORT: { if (stride == 0) stride = sizeof(GLshort) * attrib.size; for (int i = 0; i < attrib.size; i++) { elements[i] = *(reinterpret_cast(byte_ptr + stride * index) + i); if (normalize) elements[i] /= 0x8000; } break; } case GL_UNSIGNED_SHORT: { if (stride == 0) stride = sizeof(GLushort) * attrib.size; for (int i = 0; i < attrib.size; i++) { elements[i] = *(reinterpret_cast(byte_ptr + stride * index) + i); if (normalize) elements[i] /= 0xffff; } break; } case GL_INT: { if (stride == 0) stride = sizeof(GLint) * attrib.size; for (int i = 0; i < attrib.size; i++) { elements[i] = *(reinterpret_cast(byte_ptr + stride * index) + i); if (normalize) elements[i] /= 0x80000000; } break; } case GL_UNSIGNED_INT: { if (stride == 0) stride = sizeof(GLuint) * attrib.size; for (int i = 0; i < attrib.size; i++) { elements[i] = *(reinterpret_cast(byte_ptr + stride * index) + i); if (normalize) elements[i] /= 0xffffffff; } break; } case GL_FLOAT: { if (stride == 0) stride = sizeof(GLfloat) * attrib.size; for (int i = 0; i < attrib.size; i++) elements[i] = *(reinterpret_cast(byte_ptr + stride * index) + i); break; } case GL_DOUBLE: { if (stride == 0) stride = sizeof(GLdouble) * attrib.size; for (int i = 0; i < attrib.size; i++) elements[i] = static_cast(*(reinterpret_cast(byte_ptr + stride * index) + i)); break; } } } void GLContext::gl_color_mask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha) { auto options = m_rasterizer->options(); auto mask = options.color_mask; if (!red) mask &= ~0x000000ff; else mask |= 0x000000ff; if (!green) mask &= ~0x0000ff00; else mask |= 0x0000ff00; if (!blue) mask &= ~0x00ff0000; else mask |= 0x00ff0000; if (!alpha) mask &= ~0xff000000; else mask |= 0xff000000; options.color_mask = mask; m_rasterizer->set_options(options); } void GLContext::gl_polygon_mode(GLenum face, GLenum mode) { RETURN_WITH_ERROR_IF(!(face == GL_BACK || face == GL_FRONT || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(mode == GL_POINT || mode == GL_LINE || mode == GL_FILL), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto options = m_rasterizer->options(); // FIXME: This must support different polygon modes for front- and backside if (face == GL_BACK) { dbgln_if(GL_DEBUG, "gl_polygon_mode(GL_BACK, {:#x}): unimplemented", mode); return; } auto map_mode = [](GLenum mode) -> GPU::PolygonMode { switch (mode) { case GL_FILL: return GPU::PolygonMode::Fill; case GL_LINE: return GPU::PolygonMode::Line; case GL_POINT: return GPU::PolygonMode::Point; default: VERIFY_NOT_REACHED(); } }; options.polygon_mode = map_mode(mode); m_rasterizer->set_options(options); } void GLContext::gl_polygon_offset(GLfloat factor, GLfloat units) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_polygon_offset, factor, units); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto rasterizer_options = m_rasterizer->options(); rasterizer_options.depth_offset_factor = factor; rasterizer_options.depth_offset_constant = units; m_rasterizer->set_options(rasterizer_options); } void GLContext::gl_fogfv(GLenum pname, GLfloat* params) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_fogfv, pname, params); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); auto options = m_rasterizer->options(); switch (pname) { case GL_FOG_COLOR: options.fog_color = { params[0], params[1], params[2], params[3] }; break; default: RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM); } m_rasterizer->set_options(options); } void GLContext::gl_fogf(GLenum pname, GLfloat param) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_fogf, pname, param); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(param < 0.0f, GL_INVALID_VALUE); auto options = m_rasterizer->options(); switch (pname) { case GL_FOG_DENSITY: options.fog_density = param; break; case GL_FOG_END: options.fog_end = param; break; case GL_FOG_START: options.fog_start = param; break; default: RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM); } m_rasterizer->set_options(options); } void GLContext::gl_fogi(GLenum pname, GLint param) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_fogi, pname, param); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(param != GL_LINEAR && param != GL_EXP && param != GL_EXP2, GL_INVALID_ENUM); auto options = m_rasterizer->options(); switch (pname) { case GL_FOG_MODE: switch (param) { case GL_LINEAR: options.fog_mode = GPU::FogMode::Linear; break; case GL_EXP: options.fog_mode = GPU::FogMode::Exp; break; case GL_EXP2: options.fog_mode = GPU::FogMode::Exp2; break; } break; default: RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM); } m_rasterizer->set_options(options); } void GLContext::gl_pixel_storei(GLenum pname, GLint param) { // FIXME: Implement missing parameters switch (pname) { case GL_PACK_ALIGNMENT: RETURN_WITH_ERROR_IF(param != 1 && param != 2 && param != 4 && param != 8, GL_INVALID_VALUE); m_pack_alignment = param; break; case GL_UNPACK_ROW_LENGTH: RETURN_WITH_ERROR_IF(param < 0, GL_INVALID_VALUE); m_unpack_row_length = static_cast(param); break; case GL_UNPACK_ALIGNMENT: RETURN_WITH_ERROR_IF(param != 1 && param != 2 && param != 4 && param != 8, GL_INVALID_VALUE); m_unpack_alignment = param; break; default: RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM); break; } } void GLContext::gl_scissor(GLint x, GLint y, GLsizei width, GLsizei height) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_scissor, x, y, width, height); RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE); auto options = m_rasterizer->options(); options.scissor_box = { x, y, width, height }; m_rasterizer->set_options(options); } void GLContext::gl_stencil_func_separate(GLenum face, GLenum func, GLint ref, GLuint mask) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_func_separate, face, func, ref, mask); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(func == GL_NEVER || func == GL_LESS || func == GL_LEQUAL || func == GL_GREATER || func == GL_GEQUAL || func == GL_EQUAL || func == GL_NOTEQUAL || func == GL_ALWAYS), GL_INVALID_ENUM); ref = clamp(ref, 0, (1 << m_device_info.stencil_bits) - 1); StencilFunctionOptions new_options = { func, ref, mask }; if (face == GL_FRONT || face == GL_FRONT_AND_BACK) m_stencil_function[Face::Front] = new_options; if (face == GL_BACK || face == GL_FRONT_AND_BACK) m_stencil_function[Face::Back] = new_options; m_stencil_configuration_dirty = true; } void GLContext::gl_stencil_mask_separate(GLenum face, GLuint mask) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_mask_separate, face, mask); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); if (face == GL_FRONT || face == GL_FRONT_AND_BACK) m_stencil_operation[Face::Front].write_mask = mask; if (face == GL_BACK || face == GL_FRONT_AND_BACK) m_stencil_operation[Face::Back].write_mask = mask; m_stencil_configuration_dirty = true; } void GLContext::gl_stencil_op_separate(GLenum face, GLenum sfail, GLenum dpfail, GLenum dppass) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_op_separate, face, sfail, dpfail, dppass); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM); auto is_valid_op = [](GLenum op) -> bool { return op == GL_KEEP || op == GL_ZERO || op == GL_REPLACE || op == GL_INCR || op == GL_INCR_WRAP || op == GL_DECR || op == GL_DECR_WRAP || op == GL_INVERT; }; RETURN_WITH_ERROR_IF(!is_valid_op(sfail), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!is_valid_op(dpfail), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!is_valid_op(dppass), GL_INVALID_ENUM); auto update_stencil_operation = [&](Face face, GLenum sfail, GLenum dpfail, GLenum dppass) { auto& stencil_operation = m_stencil_operation[face]; stencil_operation.op_fail = sfail; stencil_operation.op_depth_fail = dpfail; stencil_operation.op_pass = dppass; }; if (face == GL_FRONT || face == GL_FRONT_AND_BACK) update_stencil_operation(Face::Front, sfail, dpfail, dppass); if (face == GL_BACK || face == GL_FRONT_AND_BACK) update_stencil_operation(Face::Back, sfail, dpfail, dppass); m_stencil_configuration_dirty = true; } void GLContext::gl_normal(GLfloat nx, GLfloat ny, GLfloat nz) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_normal, nx, ny, nz); m_current_vertex_normal = { nx, ny, nz }; } void GLContext::gl_raster_pos(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_raster_pos, x, y, z, w); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); m_rasterizer->set_raster_position({ x, y, z, w }, m_model_view_matrix, m_projection_matrix); } void GLContext::gl_line_width(GLfloat width) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_line_width, width); RETURN_WITH_ERROR_IF(width <= 0, GL_INVALID_VALUE); m_line_width = width; } void GLContext::gl_push_attrib(GLbitfield mask) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_push_attrib, mask); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: implement dbgln_if(GL_DEBUG, "GLContext FIXME: implement gl_push_attrib({})", mask); } void GLContext::gl_pop_attrib() { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_pop_attrib); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: implement dbgln_if(GL_DEBUG, "GLContext FIXME: implement gl_pop_attrib()"); } void GLContext::gl_light_model(GLenum pname, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_light_model, pname, x, y, z, w); RETURN_WITH_ERROR_IF(pname != GL_LIGHT_MODEL_AMBIENT && pname != GL_LIGHT_MODEL_COLOR_CONTROL && pname != GL_LIGHT_MODEL_LOCAL_VIEWER && pname != GL_LIGHT_MODEL_TWO_SIDE, GL_INVALID_ENUM); auto lighting_params = m_rasterizer->light_model(); switch (pname) { case GL_LIGHT_MODEL_AMBIENT: lighting_params.scene_ambient_color = { x, y, z, w }; break; case GL_LIGHT_MODEL_COLOR_CONTROL: { GLenum color_control = static_cast(x); RETURN_WITH_ERROR_IF(color_control != GL_SINGLE_COLOR && color_control != GL_SEPARATE_SPECULAR_COLOR, GL_INVALID_ENUM); lighting_params.color_control = (color_control == GL_SINGLE_COLOR) ? GPU::ColorControl::SingleColor : GPU::ColorControl::SeparateSpecularColor; break; } case GL_LIGHT_MODEL_LOCAL_VIEWER: // 0 means the viewer is at infinity // 1 means they're in local (eye) space lighting_params.viewer_at_infinity = (x != 1.0f); break; case GL_LIGHT_MODEL_TWO_SIDE: VERIFY(y == 0.0f && z == 0.0f && w == 0.0f); lighting_params.two_sided_lighting = x; break; default: VERIFY_NOT_REACHED(); } m_rasterizer->set_light_model_params(lighting_params); } void GLContext::gl_bitmap(GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove, GLfloat ymove, GLubyte const* bitmap) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_bitmap, width, height, xorig, yorig, xmove, ymove, bitmap); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); if (bitmap != nullptr) { // FIXME: implement dbgln_if(GL_DEBUG, "gl_bitmap({}, {}, {}, {}, {}, {}, {}): unimplemented", width, height, xorig, yorig, xmove, ymove, bitmap); } auto raster_position = m_rasterizer->raster_position(); raster_position.window_coordinates += { xmove, ymove, 0.f, 0.f }; m_rasterizer->set_raster_position(raster_position); } void GLContext::gl_copy_tex_image_2d(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_copy_tex_image_2d, target, level, internalformat, x, y, width, height, border); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: implement dbgln_if(GL_DEBUG, "GLContext FIXME: implement gl_copy_tex_image_2d({:#x}, {}, {:#x}, {}, {}, {}, {}, {})", target, level, internalformat, x, y, width, height, border); } void GLContext::gl_get_tex_parameter_integerv(GLenum target, GLint level, GLenum pname, GLint* params) { RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: support targets other than GL_TEXTURE_2D RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM); // FIXME: support other parameter names RETURN_WITH_ERROR_IF(pname < GL_TEXTURE_WIDTH || pname > GL_TEXTURE_HEIGHT, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE); // FIXME: GL_INVALID_VALUE is generated if target is GL_TEXTURE_BUFFER and level is not zero // FIXME: GL_INVALID_OPERATION is generated if GL_TEXTURE_COMPRESSED_IMAGE_SIZE is queried on texture images with an uncompressed internal format or on proxy targets VERIFY(!m_active_texture_unit->texture_2d_target_texture().is_null()); auto const texture_2d = m_active_texture_unit->texture_2d_target_texture(); switch (pname) { case GL_TEXTURE_HEIGHT: *params = texture_2d->height_at_lod(level); break; case GL_TEXTURE_WIDTH: *params = texture_2d->width_at_lod(level); break; } } void GLContext::gl_rect(GLdouble x1, GLdouble y1, GLdouble x2, GLdouble y2) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_rect, x1, y1, x2, y2); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); gl_begin(GL_POLYGON); gl_vertex(x1, y1, 0.0, 0.0); gl_vertex(x2, y1, 0.0, 0.0); gl_vertex(x2, y2, 0.0, 0.0); gl_vertex(x1, y2, 0.0, 0.0); gl_end(); } void GLContext::gl_tex_gen(GLenum coord, GLenum pname, GLint param) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_gen, coord, pname, param); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(coord < GL_S || coord > GL_Q, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(pname != GL_TEXTURE_GEN_MODE, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(param != GL_EYE_LINEAR && param != GL_OBJECT_LINEAR && param != GL_SPHERE_MAP && param != GL_NORMAL_MAP && param != GL_REFLECTION_MAP, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF((coord == GL_R || coord == GL_Q) && param == GL_SPHERE_MAP, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(coord == GL_Q && (param == GL_REFLECTION_MAP || param == GL_NORMAL_MAP), GL_INVALID_ENUM); GLenum const capability = GL_TEXTURE_GEN_S + (coord - GL_S); texture_coordinate_generation(m_active_texture_unit_index, capability).generation_mode = param; m_texcoord_generation_dirty = true; } void GLContext::gl_tex_gen_floatv(GLenum coord, GLenum pname, GLfloat const* params) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_gen_floatv, coord, pname, params); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(coord < GL_S || coord > GL_Q, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(pname != GL_TEXTURE_GEN_MODE && pname != GL_OBJECT_PLANE && pname != GL_EYE_PLANE, GL_INVALID_ENUM); GLenum const capability = GL_TEXTURE_GEN_S + (coord - GL_S); switch (pname) { case GL_TEXTURE_GEN_MODE: { auto param = static_cast(params[0]); RETURN_WITH_ERROR_IF(param != GL_EYE_LINEAR && param != GL_OBJECT_LINEAR && param != GL_SPHERE_MAP && param != GL_NORMAL_MAP && param != GL_REFLECTION_MAP, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF((coord == GL_R || coord == GL_Q) && param == GL_SPHERE_MAP, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(coord == GL_Q && (param == GL_REFLECTION_MAP || param == GL_NORMAL_MAP), GL_INVALID_ENUM); texture_coordinate_generation(m_active_texture_unit_index, capability).generation_mode = param; break; } case GL_OBJECT_PLANE: texture_coordinate_generation(m_active_texture_unit_index, capability).object_plane_coefficients = { params[0], params[1], params[2], params[3] }; break; case GL_EYE_PLANE: { auto const& inverse_model_view = m_model_view_matrix.inverse(); auto input_coefficients = FloatVector4 { params[0], params[1], params[2], params[3] }; // Note: we are allowed to store transformed coefficients here, according to the documentation on // `glGetTexGen`: // // "The returned values are those maintained in eye coordinates. They are not equal to the values // specified using glTexGen, unless the modelview matrix was identity when glTexGen was called." texture_coordinate_generation(m_active_texture_unit_index, capability).eye_plane_coefficients = inverse_model_view * input_coefficients; break; } default: VERIFY_NOT_REACHED(); } m_texcoord_generation_dirty = true; } void GLContext::present() { m_rasterizer->blit_color_buffer_to(*m_frontbuffer); } void GLContext::sync_device_config() { sync_device_sampler_config(); sync_device_texcoord_config(); sync_light_state(); sync_stencil_configuration(); } void GLContext::sync_device_sampler_config() { if (!m_sampler_config_is_dirty) return; m_sampler_config_is_dirty = false; for (unsigned i = 0; i < m_texture_units.size(); ++i) { auto const& texture_unit = m_texture_units[i]; if (!texture_unit.texture_2d_enabled()) continue; GPU::SamplerConfig config; auto texture_2d = texture_unit.texture_2d_target_texture(); if (texture_2d.is_null()) { config.bound_image = nullptr; m_rasterizer->set_sampler_config(i, config); continue; } config.bound_image = texture_2d->device_image(); auto const& sampler = texture_2d->sampler(); switch (sampler.min_filter()) { case GL_NEAREST: config.texture_min_filter = GPU::TextureFilter::Nearest; config.mipmap_filter = GPU::MipMapFilter::None; break; case GL_LINEAR: config.texture_min_filter = GPU::TextureFilter::Linear; config.mipmap_filter = GPU::MipMapFilter::None; break; case GL_NEAREST_MIPMAP_NEAREST: config.texture_min_filter = GPU::TextureFilter::Nearest; config.mipmap_filter = GPU::MipMapFilter::Nearest; break; case GL_LINEAR_MIPMAP_NEAREST: config.texture_min_filter = GPU::TextureFilter::Linear; config.mipmap_filter = GPU::MipMapFilter::Nearest; break; case GL_NEAREST_MIPMAP_LINEAR: config.texture_min_filter = GPU::TextureFilter::Nearest; config.mipmap_filter = GPU::MipMapFilter::Linear; break; case GL_LINEAR_MIPMAP_LINEAR: config.texture_min_filter = GPU::TextureFilter::Linear; config.mipmap_filter = GPU::MipMapFilter::Linear; break; default: VERIFY_NOT_REACHED(); } switch (sampler.mag_filter()) { case GL_NEAREST: config.texture_mag_filter = GPU::TextureFilter::Nearest; break; case GL_LINEAR: config.texture_mag_filter = GPU::TextureFilter::Linear; break; default: VERIFY_NOT_REACHED(); } switch (sampler.wrap_s_mode()) { case GL_CLAMP: config.texture_wrap_u = GPU::TextureWrapMode::Clamp; break; case GL_CLAMP_TO_BORDER: config.texture_wrap_u = GPU::TextureWrapMode::ClampToBorder; break; case GL_CLAMP_TO_EDGE: config.texture_wrap_u = GPU::TextureWrapMode::ClampToEdge; break; case GL_REPEAT: config.texture_wrap_u = GPU::TextureWrapMode::Repeat; break; case GL_MIRRORED_REPEAT: config.texture_wrap_u = GPU::TextureWrapMode::MirroredRepeat; break; default: VERIFY_NOT_REACHED(); } switch (sampler.wrap_t_mode()) { case GL_CLAMP: config.texture_wrap_v = GPU::TextureWrapMode::Clamp; break; case GL_CLAMP_TO_BORDER: config.texture_wrap_v = GPU::TextureWrapMode::ClampToBorder; break; case GL_CLAMP_TO_EDGE: config.texture_wrap_v = GPU::TextureWrapMode::ClampToEdge; break; case GL_REPEAT: config.texture_wrap_v = GPU::TextureWrapMode::Repeat; break; case GL_MIRRORED_REPEAT: config.texture_wrap_v = GPU::TextureWrapMode::MirroredRepeat; break; default: VERIFY_NOT_REACHED(); } switch (texture_unit.env_mode()) { case GL_MODULATE: config.fixed_function_texture_env_mode = GPU::TextureEnvMode::Modulate; break; case GL_REPLACE: config.fixed_function_texture_env_mode = GPU::TextureEnvMode::Replace; break; case GL_DECAL: config.fixed_function_texture_env_mode = GPU::TextureEnvMode::Decal; break; case GL_ADD: config.fixed_function_texture_env_mode = GPU::TextureEnvMode::Add; break; default: VERIFY_NOT_REACHED(); } config.border_color = sampler.border_color(); m_rasterizer->set_sampler_config(i, config); } } void GLContext::sync_light_state() { if (!m_light_state_is_dirty) return; m_light_state_is_dirty = false; auto options = m_rasterizer->options(); options.color_material_enabled = m_color_material_enabled; switch (m_color_material_face) { case GL_BACK: options.color_material_face = GPU::ColorMaterialFace::Back; break; case GL_FRONT: options.color_material_face = GPU::ColorMaterialFace::Front; break; case GL_FRONT_AND_BACK: options.color_material_face = GPU::ColorMaterialFace::FrontAndBack; break; default: VERIFY_NOT_REACHED(); } switch (m_color_material_mode) { case GL_AMBIENT: options.color_material_mode = GPU::ColorMaterialMode::Ambient; break; case GL_AMBIENT_AND_DIFFUSE: options.color_material_mode = GPU::ColorMaterialMode::Ambient; options.color_material_mode = GPU::ColorMaterialMode::Diffuse; break; case GL_DIFFUSE: options.color_material_mode = GPU::ColorMaterialMode::Diffuse; break; case GL_EMISSION: options.color_material_mode = GPU::ColorMaterialMode::Emissive; break; case GL_SPECULAR: options.color_material_mode = GPU::ColorMaterialMode::Specular; break; default: VERIFY_NOT_REACHED(); } m_rasterizer->set_options(options); for (auto light_id = 0u; light_id < m_device_info.num_lights; light_id++) { auto const& current_light_state = m_light_states.at(light_id); m_rasterizer->set_light_state(light_id, current_light_state); } m_rasterizer->set_material_state(GPU::Face::Front, m_material_states[Face::Front]); m_rasterizer->set_material_state(GPU::Face::Back, m_material_states[Face::Back]); } void GLContext::sync_device_texcoord_config() { if (!m_texcoord_generation_dirty) return; m_texcoord_generation_dirty = false; auto options = m_rasterizer->options(); for (size_t i = 0; i < m_device_info.num_texture_units; ++i) { u8 enabled_coordinates = GPU::TexCoordGenerationCoordinate::None; for (GLenum capability = GL_TEXTURE_GEN_S; capability <= GL_TEXTURE_GEN_Q; ++capability) { auto const context_coordinate_config = texture_coordinate_generation(i, capability); if (!context_coordinate_config.enabled) continue; GPU::TexCoordGenerationConfig* texcoord_generation_config; switch (capability) { case GL_TEXTURE_GEN_S: enabled_coordinates |= GPU::TexCoordGenerationCoordinate::S; texcoord_generation_config = &options.texcoord_generation_config[i][0]; break; case GL_TEXTURE_GEN_T: enabled_coordinates |= GPU::TexCoordGenerationCoordinate::T; texcoord_generation_config = &options.texcoord_generation_config[i][1]; break; case GL_TEXTURE_GEN_R: enabled_coordinates |= GPU::TexCoordGenerationCoordinate::R; texcoord_generation_config = &options.texcoord_generation_config[i][2]; break; case GL_TEXTURE_GEN_Q: enabled_coordinates |= GPU::TexCoordGenerationCoordinate::Q; texcoord_generation_config = &options.texcoord_generation_config[i][3]; break; default: VERIFY_NOT_REACHED(); } switch (context_coordinate_config.generation_mode) { case GL_OBJECT_LINEAR: texcoord_generation_config->mode = GPU::TexCoordGenerationMode::ObjectLinear; texcoord_generation_config->coefficients = context_coordinate_config.object_plane_coefficients; break; case GL_EYE_LINEAR: texcoord_generation_config->mode = GPU::TexCoordGenerationMode::EyeLinear; texcoord_generation_config->coefficients = context_coordinate_config.eye_plane_coefficients; break; case GL_SPHERE_MAP: texcoord_generation_config->mode = GPU::TexCoordGenerationMode::SphereMap; break; case GL_REFLECTION_MAP: texcoord_generation_config->mode = GPU::TexCoordGenerationMode::ReflectionMap; break; case GL_NORMAL_MAP: texcoord_generation_config->mode = GPU::TexCoordGenerationMode::NormalMap; break; } } options.texcoord_generation_enabled_coordinates[i] = enabled_coordinates; } m_rasterizer->set_options(options); } void GLContext::sync_stencil_configuration() { if (!m_stencil_configuration_dirty) return; m_stencil_configuration_dirty = false; auto set_device_stencil = [&](GPU::Face face, StencilFunctionOptions func, StencilOperationOptions op) { GPU::StencilConfiguration device_configuration; // Stencil test function auto map_func = [](GLenum func) -> GPU::StencilTestFunction { switch (func) { case GL_ALWAYS: return GPU::StencilTestFunction::Always; case GL_EQUAL: return GPU::StencilTestFunction::Equal; case GL_GEQUAL: return GPU::StencilTestFunction::GreaterOrEqual; case GL_GREATER: return GPU::StencilTestFunction::Greater; case GL_LESS: return GPU::StencilTestFunction::Less; case GL_LEQUAL: return GPU::StencilTestFunction::LessOrEqual; case GL_NEVER: return GPU::StencilTestFunction::Never; case GL_NOTEQUAL: return GPU::StencilTestFunction::NotEqual; } VERIFY_NOT_REACHED(); }; device_configuration.test_function = map_func(func.func); device_configuration.reference_value = func.reference_value; device_configuration.test_mask = func.mask; // Stencil operation auto map_operation = [](GLenum operation) -> GPU::StencilOperation { switch (operation) { case GL_DECR: return GPU::StencilOperation::Decrement; case GL_DECR_WRAP: return GPU::StencilOperation::DecrementWrap; case GL_INCR: return GPU::StencilOperation::Increment; case GL_INCR_WRAP: return GPU::StencilOperation::IncrementWrap; case GL_INVERT: return GPU::StencilOperation::Invert; case GL_KEEP: return GPU::StencilOperation::Keep; case GL_REPLACE: return GPU::StencilOperation::Replace; case GL_ZERO: return GPU::StencilOperation::Zero; } VERIFY_NOT_REACHED(); }; device_configuration.on_stencil_test_fail = map_operation(op.op_fail); device_configuration.on_depth_test_fail = map_operation(op.op_depth_fail); device_configuration.on_pass = map_operation(op.op_pass); device_configuration.write_mask = op.write_mask; m_rasterizer->set_stencil_configuration(face, device_configuration); }; set_device_stencil(GPU::Face::Front, m_stencil_function[Face::Front], m_stencil_operation[Face::Front]); set_device_stencil(GPU::Face::Back, m_stencil_function[Face::Back], m_stencil_operation[Face::Back]); } void GLContext::build_extension_string() { Vector extensions; // FIXME: npot texture support became a required core feature starting with OpenGL 2.0 (https://www.khronos.org/opengl/wiki/NPOT_Texture) // Ideally we would verify if the selected device adheres to the requested OpenGL context version before context creation // and refuse to create a context if it doesn't. if (m_device_info.supports_npot_textures) extensions.append("GL_ARB_texture_non_power_of_two"); if (m_device_info.num_texture_units > 1) extensions.append("GL_ARB_multitexture"); m_extensions = String::join(" ", extensions); } void GLContext::gl_lightf(GLenum light, GLenum pname, GLfloat param) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_lightf, light, pname, param); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light >= (GL_LIGHT0 + m_device_info.num_lights), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION || pname != GL_SPOT_EXPONENT || pname != GL_SPOT_CUTOFF), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(param < 0.f, GL_INVALID_VALUE); auto& light_state = m_light_states.at(light - GL_LIGHT0); switch (pname) { case GL_CONSTANT_ATTENUATION: light_state.constant_attenuation = param; break; case GL_LINEAR_ATTENUATION: light_state.linear_attenuation = param; break; case GL_QUADRATIC_ATTENUATION: light_state.quadratic_attenuation = param; break; case GL_SPOT_EXPONENT: RETURN_WITH_ERROR_IF(param > 128.f, GL_INVALID_VALUE); light_state.spotlight_exponent = param; break; case GL_SPOT_CUTOFF: RETURN_WITH_ERROR_IF(param > 90.f && param != 180.f, GL_INVALID_VALUE); light_state.spotlight_cutoff_angle = param; break; default: VERIFY_NOT_REACHED(); } m_light_state_is_dirty = true; } void GLContext::gl_lightfv(GLenum light, GLenum pname, GLfloat const* params) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_lightfv, light, pname, params); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light >= (GL_LIGHT0 + m_device_info.num_lights), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_POSITION || pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION || pname == GL_SPOT_CUTOFF || pname == GL_SPOT_EXPONENT || pname == GL_SPOT_DIRECTION), GL_INVALID_ENUM); auto& light_state = m_light_states.at(light - GL_LIGHT0); switch (pname) { case GL_AMBIENT: light_state.ambient_intensity = { params[0], params[1], params[2], params[3] }; break; case GL_DIFFUSE: light_state.diffuse_intensity = { params[0], params[1], params[2], params[3] }; break; case GL_SPECULAR: light_state.specular_intensity = { params[0], params[1], params[2], params[3] }; break; case GL_POSITION: light_state.position = { params[0], params[1], params[2], params[3] }; light_state.position = m_model_view_matrix * light_state.position; break; case GL_CONSTANT_ATTENUATION: RETURN_WITH_ERROR_IF(params[0] < 0.f, GL_INVALID_VALUE); light_state.constant_attenuation = params[0]; break; case GL_LINEAR_ATTENUATION: RETURN_WITH_ERROR_IF(params[0] < 0.f, GL_INVALID_VALUE); light_state.linear_attenuation = params[0]; break; case GL_QUADRATIC_ATTENUATION: RETURN_WITH_ERROR_IF(params[0] < 0.f, GL_INVALID_VALUE); light_state.quadratic_attenuation = params[0]; break; case GL_SPOT_EXPONENT: { auto exponent = params[0]; RETURN_WITH_ERROR_IF(exponent < 0.f || exponent > 128.f, GL_INVALID_VALUE); light_state.spotlight_exponent = exponent; break; } case GL_SPOT_CUTOFF: { auto cutoff = params[0]; RETURN_WITH_ERROR_IF((cutoff < 0.f || cutoff > 90.f) && cutoff != 180.f, GL_INVALID_VALUE); light_state.spotlight_cutoff_angle = cutoff; break; } case GL_SPOT_DIRECTION: { FloatVector4 direction_vector = { params[0], params[1], params[2], 0.f }; direction_vector = m_model_view_matrix * direction_vector; light_state.spotlight_direction = direction_vector.xyz(); break; } default: VERIFY_NOT_REACHED(); } m_light_state_is_dirty = true; } void GLContext::gl_lightiv(GLenum light, GLenum pname, GLint const* params) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_lightiv, light, pname, params); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light >= (GL_LIGHT0 + m_device_info.num_lights), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_POSITION || pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION || pname == GL_SPOT_CUTOFF || pname == GL_SPOT_EXPONENT || pname == GL_SPOT_DIRECTION), GL_INVALID_ENUM); auto& light_state = m_light_states[light - GL_LIGHT0]; auto const to_float_vector = [](GLfloat x, GLfloat y, GLfloat z, GLfloat w) { return FloatVector4(x, y, z, w); }; switch (pname) { case GL_AMBIENT: light_state.ambient_intensity = to_float_vector(params[0], params[1], params[2], params[3]); break; case GL_DIFFUSE: light_state.diffuse_intensity = to_float_vector(params[0], params[1], params[2], params[3]); break; case GL_SPECULAR: light_state.specular_intensity = to_float_vector(params[0], params[1], params[2], params[3]); break; case GL_POSITION: light_state.position = to_float_vector(params[0], params[1], params[2], params[3]); light_state.position = m_model_view_matrix * light_state.position; break; case GL_CONSTANT_ATTENUATION: RETURN_WITH_ERROR_IF(params[0] < 0, GL_INVALID_VALUE); light_state.constant_attenuation = static_cast(params[0]); break; case GL_LINEAR_ATTENUATION: RETURN_WITH_ERROR_IF(params[0] < 0, GL_INVALID_VALUE); light_state.linear_attenuation = static_cast(params[0]); break; case GL_QUADRATIC_ATTENUATION: RETURN_WITH_ERROR_IF(params[0] < 0, GL_INVALID_VALUE); light_state.quadratic_attenuation = static_cast(params[0]); break; case GL_SPOT_EXPONENT: { auto exponent = static_cast(params[0]); RETURN_WITH_ERROR_IF(exponent < 0.f || exponent > 128.f, GL_INVALID_VALUE); light_state.spotlight_exponent = exponent; break; } case GL_SPOT_CUTOFF: { auto cutoff = static_cast(params[0]); RETURN_WITH_ERROR_IF((cutoff < 0.f || cutoff > 90.f) && cutoff != 180.f, GL_INVALID_VALUE); light_state.spotlight_cutoff_angle = cutoff; break; } case GL_SPOT_DIRECTION: { auto direction_vector = to_float_vector(params[0], params[1], params[2], 0.0f); direction_vector = m_model_view_matrix * direction_vector; light_state.spotlight_direction = direction_vector.xyz(); break; } default: VERIFY_NOT_REACHED(); } m_light_state_is_dirty = true; } void GLContext::gl_materialf(GLenum face, GLenum pname, GLfloat param) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_materialf, face, pname, param); RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(pname != GL_SHININESS, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(param > 128.0f, GL_INVALID_VALUE); switch (face) { case GL_FRONT: m_material_states[Face::Front].shininess = param; break; case GL_BACK: m_material_states[Face::Back].shininess = param; break; case GL_FRONT_AND_BACK: m_material_states[Face::Front].shininess = param; m_material_states[Face::Back].shininess = param; break; default: VERIFY_NOT_REACHED(); } m_light_state_is_dirty = true; } void GLContext::gl_materialfv(GLenum face, GLenum pname, GLfloat const* params) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_materialfv, face, pname, params); RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_EMISSION || pname == GL_SHININESS || pname == GL_AMBIENT_AND_DIFFUSE), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF((pname == GL_SHININESS && *params > 128.0f), GL_INVALID_VALUE); auto update_material = [](GPU::Material& material, GLenum pname, GLfloat const* params) { switch (pname) { case GL_AMBIENT: material.ambient = { params[0], params[1], params[2], params[3] }; break; case GL_DIFFUSE: material.diffuse = { params[0], params[1], params[2], params[3] }; break; case GL_SPECULAR: material.specular = { params[0], params[1], params[2], params[3] }; break; case GL_EMISSION: material.emissive = { params[0], params[1], params[2], params[3] }; break; case GL_SHININESS: material.shininess = *params; break; case GL_AMBIENT_AND_DIFFUSE: material.ambient = { params[0], params[1], params[2], params[3] }; material.diffuse = { params[0], params[1], params[2], params[3] }; break; } }; switch (face) { case GL_FRONT: update_material(m_material_states[Face::Front], pname, params); break; case GL_BACK: update_material(m_material_states[Face::Back], pname, params); break; case GL_FRONT_AND_BACK: update_material(m_material_states[Face::Front], pname, params); update_material(m_material_states[Face::Back], pname, params); break; } m_light_state_is_dirty = true; } void GLContext::gl_materialiv(GLenum face, GLenum pname, GLint const* params) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_materialiv, face, pname, params); RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_EMISSION || pname == GL_SHININESS || pname == GL_AMBIENT_AND_DIFFUSE), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF((pname == GL_SHININESS && *params > 128), GL_INVALID_VALUE); auto update_material = [](GPU::Material& material, GLenum pname, GLint const* params) { switch (pname) { case GL_AMBIENT: material.ambient = { static_cast(params[0]), static_cast(params[1]), static_cast(params[2]), static_cast(params[3]) }; break; case GL_DIFFUSE: material.diffuse = { static_cast(params[0]), static_cast(params[1]), static_cast(params[2]), static_cast(params[3]) }; break; case GL_SPECULAR: material.specular = { static_cast(params[0]), static_cast(params[1]), static_cast(params[2]), static_cast(params[3]) }; break; case GL_EMISSION: material.emissive = { static_cast(params[0]), static_cast(params[1]), static_cast(params[2]), static_cast(params[3]) }; break; case GL_SHININESS: material.shininess = static_cast(params[0]); break; case GL_AMBIENT_AND_DIFFUSE: material.ambient = { static_cast(params[0]), static_cast(params[1]), static_cast(params[2]), static_cast(params[3]) }; material.diffuse = { static_cast(params[0]), static_cast(params[1]), static_cast(params[2]), static_cast(params[3]) }; break; } }; switch (face) { case GL_FRONT: update_material(m_material_states[Face::Front], pname, params); break; case GL_BACK: update_material(m_material_states[Face::Back], pname, params); break; case GL_FRONT_AND_BACK: update_material(m_material_states[Face::Front], pname, params); update_material(m_material_states[Face::Back], pname, params); break; } m_light_state_is_dirty = true; } void GLContext::gl_color_material(GLenum face, GLenum mode) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_color_material, face, mode); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(face != GL_FRONT && face != GL_BACK && face != GL_FRONT_AND_BACK, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(mode != GL_EMISSION && mode != GL_AMBIENT && mode != GL_DIFFUSE && mode != GL_SPECULAR && mode != GL_AMBIENT_AND_DIFFUSE, GL_INVALID_ENUM); m_color_material_face = face; m_color_material_mode = mode; m_light_state_is_dirty = true; } void GLContext::gl_get_light(GLenum light, GLenum pname, void* params, GLenum type) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_get_light, light, pname, params, type); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light > GL_LIGHT0 + m_device_info.num_lights, GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_SPOT_DIRECTION || pname == GL_SPOT_EXPONENT || pname == GL_SPOT_CUTOFF || pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION), GL_INVALID_ENUM); if (type == GL_FLOAT) get_light_param(light, pname, static_cast(params)); else if (type == GL_INT) get_light_param(light, pname, static_cast(params)); else VERIFY_NOT_REACHED(); } template void GLContext::get_light_param(GLenum light, GLenum pname, T* params) { auto const& light_state = m_light_states[light - GL_LIGHT0]; switch (pname) { case GL_AMBIENT: params[0] = light_state.ambient_intensity.x(); params[1] = light_state.ambient_intensity.y(); params[2] = light_state.ambient_intensity.z(); params[3] = light_state.ambient_intensity.w(); break; case GL_DIFFUSE: params[0] = light_state.diffuse_intensity.x(); params[1] = light_state.diffuse_intensity.y(); params[2] = light_state.diffuse_intensity.z(); params[3] = light_state.diffuse_intensity.w(); break; case GL_SPECULAR: params[0] = light_state.specular_intensity.x(); params[1] = light_state.specular_intensity.y(); params[2] = light_state.specular_intensity.z(); params[3] = light_state.specular_intensity.w(); break; case GL_SPOT_DIRECTION: params[0] = light_state.spotlight_direction.x(); params[1] = light_state.spotlight_direction.y(); params[2] = light_state.spotlight_direction.z(); break; case GL_SPOT_EXPONENT: *params = light_state.spotlight_exponent; break; case GL_SPOT_CUTOFF: *params = light_state.spotlight_cutoff_angle; break; case GL_CONSTANT_ATTENUATION: *params = light_state.constant_attenuation; break; case GL_LINEAR_ATTENUATION: *params = light_state.linear_attenuation; break; case GL_QUADRATIC_ATTENUATION: *params = light_state.quadratic_attenuation; break; } } void GLContext::gl_get_material(GLenum face, GLenum pname, void* params, GLenum type) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_get_material, face, pname, params, type); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_EMISSION), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK), GL_INVALID_ENUM); Face material_face = Front; switch (face) { case GL_FRONT: material_face = Front; break; case GL_BACK: material_face = Back; break; } if (type == GL_FLOAT) get_material_param(material_face, pname, static_cast(params)); else if (type == GL_INT) get_material_param(material_face, pname, static_cast(params)); else VERIFY_NOT_REACHED(); } template void GLContext::get_material_param(Face face, GLenum pname, T* params) { auto const& material = m_material_states[face]; switch (pname) { case GL_AMBIENT: params[0] = static_cast(material.ambient.x()); params[1] = static_cast(material.ambient.y()); params[2] = static_cast(material.ambient.z()); params[3] = static_cast(material.ambient.w()); break; case GL_DIFFUSE: params[0] = static_cast(material.diffuse.x()); params[1] = static_cast(material.diffuse.y()); params[2] = static_cast(material.diffuse.z()); params[3] = static_cast(material.diffuse.w()); break; case GL_SPECULAR: params[0] = static_cast(material.specular.x()); params[1] = static_cast(material.specular.y()); params[2] = static_cast(material.specular.z()); params[3] = static_cast(material.specular.w()); break; case GL_EMISSION: params[0] = static_cast(material.emissive.x()); params[1] = static_cast(material.emissive.y()); params[2] = static_cast(material.emissive.z()); params[3] = static_cast(material.emissive.w()); break; case GL_SHININESS: *params = material.shininess; break; } } void GLContext::gl_copy_tex_sub_image_2d(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height) { APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_copy_tex_sub_image_2d, target, level, xoffset, yoffset, x, y, width, height); RETURN_WITH_ERROR_IF(!(target == GL_TEXTURE_2D || target == GL_TEXTURE_1D_ARRAY), GL_INVALID_ENUM); RETURN_WITH_ERROR_IF(level < 0, GL_INVALID_VALUE); RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION); // FIXME: implement dbgln_if(GL_DEBUG, "GLContext FIXME: implement gl_copy_tex_sub_image_2d({:#x}, {}, {}, {}, {}, {}, {}, {})", target, level, xoffset, yoffset, x, y, width, height); } NonnullOwnPtr create_context(Gfx::Bitmap& bitmap) { // FIXME: Make driver selectable. This is currently hardcoded to LibSoftGPU auto driver = MUST(GPU::Driver::try_create("softgpu")); auto device = MUST(driver->try_create_device(bitmap.size())); auto context = make(driver, move(device), bitmap); dbgln_if(GL_DEBUG, "GL::create_context({}) -> {:p}", bitmap.size(), context.ptr()); if (!g_gl_context) make_context_current(context); return context; } void make_context_current(GLContext* context) { if (g_gl_context == context) return; dbgln_if(GL_DEBUG, "GL::make_context_current({:p})", context); g_gl_context = context; } void present_context(GLContext* context) { context->present(); } }