/* * Copyright (c) 2021, Mustafa Quraish * * SPDX-License-Identifier: BSD-2-Clause */ #include "Generator.h" namespace Diff { Vector from_text(StringView old_text, StringView new_text) { auto old_lines = old_text.lines(); auto new_lines = new_text.lines(); /** * This is a simple implementation of the Longest Common Subsequence algorithm (over * the lines of the text as opposed to the characters). A Dynamic programming approach * is used here. */ enum class Direction { Down, // Added a new line Right, // Removed a line Diagonal, // Line remained the same }; // A single cell in the DP-matrix. Cell (i, j) represents the longest common // sub-sequence of lines between old_lines[0 : i] and new_lines[0 : j]. struct Cell { size_t length; Direction direction; }; auto dp_matrix = Vector(); dp_matrix.resize((old_lines.size() + 1) * (new_lines.size() + 1)); auto dp = [&dp_matrix, width = old_lines.size() + 1](size_t i, size_t j) -> Cell& { return dp_matrix[i + width * j]; }; // Initialize the first row and column for (size_t i = 0; i <= old_lines.size(); ++i) dp(i, new_lines.size()) = { 0, Direction::Right }; for (size_t j = 0; j <= new_lines.size(); ++j) dp(old_lines.size(), 0) = { 0, Direction::Down }; // Fill in the rest of the DP table for (int i = old_lines.size() - 1; i >= 0; --i) { for (int j = new_lines.size() - 1; j >= 0; --j) { if (old_lines[i] == new_lines[j]) { dp(i, j) = { dp(i + 1, j + 1).length + 1, Direction::Diagonal }; } else { auto down = dp(i, j + 1).length; auto right = dp(i + 1, j).length; if (down > right) dp(i, j) = { down, Direction::Down }; else dp(i, j) = { right, Direction::Right }; } } } Vector hunks; Hunk cur_hunk; bool in_hunk = false; auto update_hunk = [&](size_t i, size_t j, Direction direction) { if (!in_hunk) { in_hunk = true; cur_hunk = { i, j, {}, {} }; } if (direction == Direction::Down) { cur_hunk.added_lines.append(new_lines[j]); } else if (direction == Direction::Right) { cur_hunk.removed_lines.append(old_lines[i]); } }; auto flush_hunk = [&]() { if (in_hunk) { if (cur_hunk.added_lines.size() > 0) cur_hunk.target_start_line++; if (cur_hunk.removed_lines.size() > 0) cur_hunk.original_start_line++; hunks.append(cur_hunk); in_hunk = false; } }; size_t i = 0; size_t j = 0; while (i < old_lines.size() && j < new_lines.size()) { auto& cell = dp(i, j); if (cell.direction == Direction::Down) { update_hunk(i, j, cell.direction); ++j; } else if (cell.direction == Direction::Right) { update_hunk(i, j, cell.direction); ++i; } else { ++i; ++j; flush_hunk(); } } while (i < old_lines.size()) { update_hunk(i, new_lines.is_empty() ? 0 : new_lines.size() - 1, Direction::Right); // Remove a line ++i; } while (j < new_lines.size()) { update_hunk(old_lines.is_empty() ? 0 : old_lines.size() - 1, j, Direction::Down); // Add a line ++j; } flush_hunk(); return hunks; } }