/* * Copyright (c) 2021, kleines Filmröllchen * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include namespace DSP { bool Track::add_processor(NonnullRefPtr new_processor) { m_processor_chain.append(move(new_processor)); if (!check_processor_chain_valid()) { (void)m_processor_chain.take_last(); return false; } return true; } bool Track::check_processor_chain_valid_with_initial_type(SignalType initial_type) const { Processor const* previous_processor = nullptr; for (auto& processor : m_processor_chain) { // The first processor must have the given initial signal type as input. if (previous_processor == nullptr) { if (processor->input_type() != initial_type) return false; } else if (previous_processor->output_type() != processor->input_type()) return false; previous_processor = processor.ptr(); } return true; } NonnullRefPtr Track::synth() { return static_ptr_cast(m_processor_chain[0]); } NonnullRefPtr Track::delay() { return static_ptr_cast(m_processor_chain[1]); } bool AudioTrack::check_processor_chain_valid() const { return check_processor_chain_valid_with_initial_type(SignalType::Sample); } bool NoteTrack::check_processor_chain_valid() const { return check_processor_chain_valid_with_initial_type(SignalType::Note); } ErrorOr Track::resize_internal_buffers_to(size_t buffer_size) { m_secondary_sample_buffer = TRY(FixedArray::create(buffer_size)); return {}; } void Track::current_signal(FixedArray& output_signal) { // This is real-time code. We must NEVER EVER EVER allocate. NoAllocationGuard guard; VERIFY(m_secondary_sample_buffer.type() == SignalType::Sample); VERIFY(output_signal.size() == m_secondary_sample_buffer.get>().size()); compute_current_clips_signal(); Signal* source_signal = &m_current_signal; // This provides an audio buffer of the right size. It is not allocated here, but whenever we are informed about a buffer size change. Signal* target_signal = &m_secondary_sample_buffer; for (auto& processor : m_processor_chain) { // Depending on what the processor needs to have as output, we need to place either a pre-allocated note hash map or a pre-allocated sample buffer in the target signal. if (processor->output_type() == SignalType::Note) target_signal = &m_secondary_note_buffer; else target_signal = &m_secondary_sample_buffer; processor->process(*source_signal, *target_signal); swap(source_signal, target_signal); } VERIFY(source_signal->type() == SignalType::Sample); VERIFY(output_signal.size() == source_signal->get>().size()); // The last processor is the fixed mastering processor. This can write directly to the output data. We also just trust this processor that it does the right thing :^) m_track_mastering->process_to_fixed_array(*source_signal, output_signal); } void NoteTrack::compute_current_clips_signal() { // FIXME: Handle looping properly u32 start_time = m_transport->time(); VERIFY(m_secondary_sample_buffer.type() == SignalType::Sample); size_t sample_count = m_secondary_sample_buffer.get>().size(); u32 end_time = start_time + static_cast(sample_count); // Find the currently playing clips. // We can't handle more than 32 playing clips at a time, but that is a ridiculous number. Array, 32> playing_clips; size_t playing_clips_index = 0; for (auto& clip : m_clips) { // A clip is playing if its start time or end time fall in the current time range. // Or, if they both enclose the current time range. if ((clip->start() <= start_time && clip->end() >= end_time) || (clip->start() >= start_time && clip->start() < end_time) || (clip->end() > start_time && clip->end() <= end_time)) { VERIFY(playing_clips_index < playing_clips.size()); playing_clips[playing_clips_index++] = clip; } } auto& current_notes = m_current_signal.get(); m_current_signal.get().fill({}); if (playing_clips_index == 0) return; for (auto const& playing_clip : playing_clips) { if (playing_clip.is_null()) break; for (auto const& note : playing_clip->notes()) { if (note.is_playing_during(start_time, end_time)) current_notes[note.pitch] = note; } } for (auto const& keyboard_note : m_keyboard->notes()) { if (!keyboard_note.has_value() || !keyboard_note->is_playing_during(start_time, end_time)) continue; // Always overwrite roll notes with keyboard notes. current_notes[keyboard_note->pitch] = keyboard_note; } } void AudioTrack::compute_current_clips_signal() { // This is quite involved as we need to look at multiple clips and take looping into account. TODO(); } Optional NoteTrack::note_at(u32 time, u8 pitch) const { for (auto& clip : m_clips) { if (time >= clip->start() && time <= clip->end()) return clip->note_at(time, pitch); } return {}; } void NoteTrack::set_note(RollNote note) { for (auto& clip : m_clips) { if (clip->start() <= note.on_sample && clip->end() >= note.on_sample) clip->set_note(note); } } void NoteTrack::remove_note(RollNote note) { for (auto& clip : m_clips) clip->remove_note(note); } void NoteTrack::add_clip(u32 start_time, u32 end_time) { m_clips.append(AK::make_ref_counted(start_time, end_time)); } }