/* * Copyright (c) 2021-2022, kleines Filmröllchen * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include namespace LibDSP::Synthesizers { Classic::Classic(NonnullRefPtr transport) : LibDSP::SynthesizerProcessor(transport) , m_waveform("Waveform"sv, Waveform::Saw) , m_attack("Attack"sv, 0.01, 2000, 5, Logarithmic::Yes) , m_decay("Decay"sv, 0.01, 20'000, 80, Logarithmic::Yes) , m_sustain("Sustain"sv, 0.001, 1, 0.725, Logarithmic::No) , m_release("Release", 0.01, 6'000, 120, Logarithmic::Yes) { m_parameters.append(m_waveform); m_parameters.append(m_attack); m_parameters.append(m_decay); m_parameters.append(m_sustain); m_parameters.append(m_release); } Signal Classic::process_impl(Signal const& input_signal) { auto& in = input_signal.get(); Sample out; SinglyLinkedList playing_envelopes; // "Press" the necessary notes in the internal representation, // and "release" all of the others for (u8 i = 0; i < note_count; ++i) { if (auto maybe_note = in.get(i); maybe_note.has_value()) m_playing_notes.set(i, maybe_note.value()); if (m_playing_notes.contains(i)) { Envelope note_envelope = m_playing_notes.get(i)->to_envelope(m_transport->time(), m_attack * m_transport->ms_sample_rate(), m_decay * m_transport->ms_sample_rate(), m_release * m_transport->ms_sample_rate()); if (!note_envelope.is_active()) { m_playing_notes.remove(i); continue; } playing_envelopes.append(PitchedEnvelope { note_envelope, i }); } } for (auto envelope : playing_envelopes) { double volume = volume_from_envelope(envelope); double wave = wave_position(envelope.note); out += volume * wave; } return out; } // Linear ADSR envelope with no peak adjustment. double Classic::volume_from_envelope(Envelope const& envelope) const { switch (static_cast(envelope)) { case EnvelopeState::Off: return 0; case EnvelopeState::Attack: return envelope.attack(); case EnvelopeState::Decay: // As we fade from high (1) to low (headroom above the sustain level) here, use 1-decay as the interpolation. return (1. - envelope.decay()) * (1. - m_sustain) + m_sustain; case EnvelopeState::Sustain: return m_sustain; case EnvelopeState::Release: // Same goes for the release fade from high to low. return (1. - envelope.release()) * m_sustain; } VERIFY_NOT_REACHED(); } double Classic::wave_position(u8 note) { switch (m_waveform) { case Sine: return sin_position(note); case Triangle: return triangle_position(note); case Square: return square_position(note); case Saw: return saw_position(note); case Noise: return noise_position(note); } VERIFY_NOT_REACHED(); } double Classic::samples_per_cycle(u8 note) const { return m_transport->sample_rate() / note_frequencies[note]; } double Classic::sin_position(u8 note) const { double spc = samples_per_cycle(note); double cycle_pos = m_transport->time() / spc; return AK::sin(cycle_pos * 2 * AK::Pi); } // Absolute value of the saw wave "flips" the negative portion into the positive, creating a ramp up and down. double Classic::triangle_position(u8 note) const { double saw = saw_position(note); return AK::fabs(saw) * 2 - 1; } // The first half of the cycle period is 1, the other half -1. double Classic::square_position(u8 note) const { double spc = samples_per_cycle(note); double progress = AK::fmod(static_cast(m_transport->time()), spc) / spc; return progress >= 0.5 ? -1 : 1; } // Modulus creates inverse saw, which we need to flip and scale. double Classic::saw_position(u8 note) const { double spc = samples_per_cycle(note); double unscaled = spc - AK::fmod(static_cast(m_transport->time()), spc); return unscaled / (samples_per_cycle(note) / 2.) - 1; } // We resample the noise twenty times per cycle. double Classic::noise_position(u8 note) { double spc = samples_per_cycle(note); u32 getrandom_interval = max(static_cast(spc / 2), 1); // Note that this code only works well if the processor is called for every increment of time. if (m_transport->time() % getrandom_interval == 0) last_random[note] = (get_random() / static_cast(NumericLimits::max()) - .5) * 2; return last_random[note]; } }