/* * Copyright (c) 2021-2022, kleines Filmröllchen * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include namespace DSP::Synthesizers { Classic::Classic(NonnullRefPtr transport) : DSP::SynthesizerProcessor(transport) , m_waveform("Waveform"sv, Waveform::Saw) , m_attack("Attack"sv, 0.01, 2000, 5, Logarithmic::Yes) , m_decay("Decay"sv, 0.01, 20'000, 80, Logarithmic::Yes) , m_sustain("Sustain"sv, 0.001, 1, 0.725, Logarithmic::No) , m_release("Release", 0.01, 6'000, 120, Logarithmic::Yes) { m_parameters.append(m_waveform); m_parameters.append(m_attack); m_parameters.append(m_decay); m_parameters.append(m_sustain); m_parameters.append(m_release); } void Classic::process_impl(Signal const& input_signal, [[maybe_unused]] Signal& output_signal) { auto const& in = input_signal.get(); auto& output_samples = output_signal.get>(); // Do this for every time step and set the signal accordingly. for (size_t sample_index = 0; sample_index < output_samples.size(); ++sample_index) { Sample& out = output_samples[sample_index]; out = {}; u32 sample_time = m_transport->time() + sample_index; Array, note_frequencies.size()> playing_envelopes; // "Press" the necessary notes in the internal representation, // and "release" all of the others for (u8 i = 0; i < note_frequencies.size(); ++i) { if (auto maybe_note = in[i]; maybe_note.has_value()) m_playing_notes[i] = maybe_note; if (m_playing_notes[i].has_value()) { Envelope note_envelope = m_playing_notes[i]->to_envelope(sample_time, m_attack * m_transport->ms_sample_rate(), m_decay * m_transport->ms_sample_rate(), m_release * m_transport->ms_sample_rate()); // There are two conditions for removing notes: // 1. The envelope has expired, regardless of whether the note was still given to us in the input. if (!note_envelope.is_active()) { m_playing_notes[i] = {}; continue; } // 2. The envelope has not expired, but the note was not given to us. // This means that the note abruptly stopped playing; i.e. the audio infrastructure didn't know the length of the notes initially. // That basically means we're dealing with a keyboard note. Chop its end time to end now. if (!note_envelope.is_release() && !in[i].has_value()) { // dbgln("note {} not released, setting release phase, envelope={}", i, note_envelope.envelope); note_envelope.set_release(0); auto real_note = *m_playing_notes[i]; real_note.off_sample = sample_time; m_playing_notes[i] = real_note; } playing_envelopes[i] = PitchedEnvelope { note_envelope, i }; } } for (auto envelope : playing_envelopes) { if (!envelope.has_value()) continue; double volume = volume_from_envelope(*envelope); double wave = wave_position(sample_time, envelope->note); out += volume * wave; } } } // Linear ADSR envelope with no peak adjustment. double Classic::volume_from_envelope(Envelope const& envelope) const { switch (static_cast(envelope)) { case EnvelopeState::Off: return 0; case EnvelopeState::Attack: return envelope.attack(); case EnvelopeState::Decay: // As we fade from high (1) to low (headroom above the sustain level) here, use 1-decay as the interpolation. return (1. - envelope.decay()) * (1. - m_sustain) + m_sustain; case EnvelopeState::Sustain: return m_sustain; case EnvelopeState::Release: // Same goes for the release fade from high to low. return (1. - envelope.release()) * m_sustain; } VERIFY_NOT_REACHED(); } double Classic::wave_position(u32 sample_time, u8 note) { switch (m_waveform) { case Sine: return sin_position(sample_time, note); case Triangle: return triangle_position(sample_time, note); case Square: return square_position(sample_time, note); case Saw: return saw_position(sample_time, note); case Noise: return noise_position(sample_time, note); } VERIFY_NOT_REACHED(); } double Classic::samples_per_cycle(u8 note) const { return m_transport->sample_rate() / note_frequencies[note]; } double Classic::sin_position(u32 sample_time, u8 note) const { double spc = samples_per_cycle(note); double cycle_pos = sample_time / spc; return AK::sin(cycle_pos * 2 * AK::Pi); } // Absolute value of the saw wave "flips" the negative portion into the positive, creating a ramp up and down. double Classic::triangle_position(u32 sample_time, u8 note) const { double saw = saw_position(sample_time, note); return AK::fabs(saw) * 2 - 1; } // The first half of the cycle period is 1, the other half -1. double Classic::square_position(u32 sample_time, u8 note) const { double spc = samples_per_cycle(note); double progress = AK::fmod(static_cast(sample_time), spc) / spc; return progress >= 0.5 ? -1 : 1; } // Modulus creates inverse saw, which we need to flip and scale. double Classic::saw_position(u32 sample_time, u8 note) const { double spc = samples_per_cycle(note); double unscaled = spc - AK::fmod(static_cast(sample_time), spc); return unscaled / (samples_per_cycle(note) / 2.) - 1; } // We resample the noise twenty times per cycle. double Classic::noise_position(u32 sample_time, u8 note) { double spc = samples_per_cycle(note); u32 getrandom_interval = max(static_cast(spc / 2), 1); // Note that this code only works well if the processor is called for every increment of time. if (sample_time % getrandom_interval == 0) last_random[note] = (get_random() / static_cast(NumericLimits::max()) - .5) * 2; return last_random[note]; } }