/* * Copyright (c) 2020, Ali Mohammad Pur * * SPDX-License-Identifier: BSD-2-Clause */ #include #include namespace Crypto { namespace Hash { constexpr static auto ROTRIGHT(u32 a, size_t b) { return (a >> b) | (a << (32 - b)); } constexpr static auto CH(u32 x, u32 y, u32 z) { return (x & y) ^ (z & ~x); } constexpr static auto MAJ(u32 x, u32 y, u32 z) { return (x & y) ^ (x & z) ^ (y & z); } constexpr static auto EP0(u32 x) { return ROTRIGHT(x, 2) ^ ROTRIGHT(x, 13) ^ ROTRIGHT(x, 22); } constexpr static auto EP1(u32 x) { return ROTRIGHT(x, 6) ^ ROTRIGHT(x, 11) ^ ROTRIGHT(x, 25); } constexpr static auto SIGN0(u32 x) { return ROTRIGHT(x, 7) ^ ROTRIGHT(x, 18) ^ (x >> 3); } constexpr static auto SIGN1(u32 x) { return ROTRIGHT(x, 17) ^ ROTRIGHT(x, 19) ^ (x >> 10); } constexpr static auto ROTRIGHT(u64 a, size_t b) { return (a >> b) | (a << (64 - b)); } constexpr static auto CH(u64 x, u64 y, u64 z) { return (x & y) ^ (z & ~x); } constexpr static auto MAJ(u64 x, u64 y, u64 z) { return (x & y) ^ (x & z) ^ (y & z); } constexpr static auto EP0(u64 x) { return ROTRIGHT(x, 28) ^ ROTRIGHT(x, 34) ^ ROTRIGHT(x, 39); } constexpr static auto EP1(u64 x) { return ROTRIGHT(x, 14) ^ ROTRIGHT(x, 18) ^ ROTRIGHT(x, 41); } constexpr static auto SIGN0(u64 x) { return ROTRIGHT(x, 1) ^ ROTRIGHT(x, 8) ^ (x >> 7); } constexpr static auto SIGN1(u64 x) { return ROTRIGHT(x, 19) ^ ROTRIGHT(x, 61) ^ (x >> 6); } inline void SHA256::transform(const u8* data) { u32 m[64]; size_t i = 0; for (size_t j = 0; i < 16; ++i, j += 4) { m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | data[j + 3]; } for (; i < BlockSize; ++i) { m[i] = SIGN1(m[i - 2]) + m[i - 7] + SIGN0(m[i - 15]) + m[i - 16]; } auto a = m_state[0], b = m_state[1], c = m_state[2], d = m_state[3], e = m_state[4], f = m_state[5], g = m_state[6], h = m_state[7]; for (size_t i = 0; i < Rounds; ++i) { auto temp0 = h + EP1(e) + CH(e, f, g) + SHA256Constants::RoundConstants[i] + m[i]; auto temp1 = EP0(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + temp0; d = c; c = b; b = a; a = temp0 + temp1; } m_state[0] += a; m_state[1] += b; m_state[2] += c; m_state[3] += d; m_state[4] += e; m_state[5] += f; m_state[6] += g; m_state[7] += h; } void SHA256::update(const u8* message, size_t length) { for (size_t i = 0; i < length; ++i) { if (m_data_length == BlockSize) { transform(m_data_buffer); m_bit_length += 512; m_data_length = 0; } m_data_buffer[m_data_length++] = message[i]; } } SHA256::DigestType SHA256::digest() { auto digest = peek(); reset(); return digest; } SHA256::DigestType SHA256::peek() { DigestType digest; size_t i = m_data_length; if (BlockSize == m_data_length) { transform(m_data_buffer); m_bit_length += BlockSize * 8; m_data_length = 0; i = 0; } if (m_data_length < FinalBlockDataSize) { m_data_buffer[i++] = 0x80; while (i < FinalBlockDataSize) m_data_buffer[i++] = 0x00; } else { // First, complete a block with some padding. m_data_buffer[i++] = 0x80; while (i < BlockSize) m_data_buffer[i++] = 0x00; transform(m_data_buffer); // Then start another block with BlockSize - 8 bytes of zeros __builtin_memset(m_data_buffer, 0, FinalBlockDataSize); } // append total message length m_bit_length += m_data_length * 8; m_data_buffer[BlockSize - 1] = m_bit_length; m_data_buffer[BlockSize - 2] = m_bit_length >> 8; m_data_buffer[BlockSize - 3] = m_bit_length >> 16; m_data_buffer[BlockSize - 4] = m_bit_length >> 24; m_data_buffer[BlockSize - 5] = m_bit_length >> 32; m_data_buffer[BlockSize - 6] = m_bit_length >> 40; m_data_buffer[BlockSize - 7] = m_bit_length >> 48; m_data_buffer[BlockSize - 8] = m_bit_length >> 56; transform(m_data_buffer); // SHA uses big-endian and we assume little-endian // FIXME: looks like a thing for AK::NetworkOrdered, // but he doesn't support shifting operations for (size_t i = 0; i < 4; ++i) { digest.data[i + 0] = (m_state[0] >> (24 - i * 8)) & 0x000000ff; digest.data[i + 4] = (m_state[1] >> (24 - i * 8)) & 0x000000ff; digest.data[i + 8] = (m_state[2] >> (24 - i * 8)) & 0x000000ff; digest.data[i + 12] = (m_state[3] >> (24 - i * 8)) & 0x000000ff; digest.data[i + 16] = (m_state[4] >> (24 - i * 8)) & 0x000000ff; digest.data[i + 20] = (m_state[5] >> (24 - i * 8)) & 0x000000ff; digest.data[i + 24] = (m_state[6] >> (24 - i * 8)) & 0x000000ff; digest.data[i + 28] = (m_state[7] >> (24 - i * 8)) & 0x000000ff; } return digest; } inline void SHA384::transform(const u8* data) { u64 m[80]; size_t i = 0; for (size_t j = 0; i < 16; ++i, j += 8) { m[i] = ((u64)data[j] << 56) | ((u64)data[j + 1] << 48) | ((u64)data[j + 2] << 40) | ((u64)data[j + 3] << 32) | ((u64)data[j + 4] << 24) | ((u64)data[j + 5] << 16) | ((u64)data[j + 6] << 8) | (u64)data[j + 7]; } for (; i < Rounds; ++i) { m[i] = SIGN1(m[i - 2]) + m[i - 7] + SIGN0(m[i - 15]) + m[i - 16]; } auto a = m_state[0], b = m_state[1], c = m_state[2], d = m_state[3], e = m_state[4], f = m_state[5], g = m_state[6], h = m_state[7]; for (size_t i = 0; i < Rounds; ++i) { // Note : SHA384 uses the SHA512 constants. auto temp0 = h + EP1(e) + CH(e, f, g) + SHA512Constants::RoundConstants[i] + m[i]; auto temp1 = EP0(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + temp0; d = c; c = b; b = a; a = temp0 + temp1; } m_state[0] += a; m_state[1] += b; m_state[2] += c; m_state[3] += d; m_state[4] += e; m_state[5] += f; m_state[6] += g; m_state[7] += h; } void SHA384::update(const u8* message, size_t length) { for (size_t i = 0; i < length; ++i) { if (m_data_length == BlockSize) { transform(m_data_buffer); m_bit_length += 1024; m_data_length = 0; } m_data_buffer[m_data_length++] = message[i]; } } SHA384::DigestType SHA384::digest() { auto digest = peek(); reset(); return digest; } SHA384::DigestType SHA384::peek() { DigestType digest; size_t i = m_data_length; if (BlockSize == m_data_length) { transform(m_data_buffer); m_bit_length += BlockSize * 8; m_data_length = 0; i = 0; } if (m_data_length < FinalBlockDataSize) { m_data_buffer[i++] = 0x80; while (i < FinalBlockDataSize) m_data_buffer[i++] = 0x00; } else { // First, complete a block with some padding. m_data_buffer[i++] = 0x80; while (i < BlockSize) m_data_buffer[i++] = 0x00; transform(m_data_buffer); // Then start another block with BlockSize - 8 bytes of zeros __builtin_memset(m_data_buffer, 0, FinalBlockDataSize); } // append total message length m_bit_length += m_data_length * 8; m_data_buffer[BlockSize - 1] = m_bit_length; m_data_buffer[BlockSize - 2] = m_bit_length >> 8; m_data_buffer[BlockSize - 3] = m_bit_length >> 16; m_data_buffer[BlockSize - 4] = m_bit_length >> 24; m_data_buffer[BlockSize - 5] = m_bit_length >> 32; m_data_buffer[BlockSize - 6] = m_bit_length >> 40; m_data_buffer[BlockSize - 7] = m_bit_length >> 48; m_data_buffer[BlockSize - 8] = m_bit_length >> 56; transform(m_data_buffer); // SHA uses big-endian and we assume little-endian // FIXME: looks like a thing for AK::NetworkOrdered, // but he doesn't support shifting operations for (size_t i = 0; i < 8; ++i) { digest.data[i + 0] = (m_state[0] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 8] = (m_state[1] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 16] = (m_state[2] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 24] = (m_state[3] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 32] = (m_state[4] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 40] = (m_state[5] >> (56 - i * 8)) & 0x000000ff; } return digest; } inline void SHA512::transform(const u8* data) { u64 m[80]; size_t i = 0; for (size_t j = 0; i < 16; ++i, j += 8) { m[i] = ((u64)data[j] << 56) | ((u64)data[j + 1] << 48) | ((u64)data[j + 2] << 40) | ((u64)data[j + 3] << 32) | ((u64)data[j + 4] << 24) | ((u64)data[j + 5] << 16) | ((u64)data[j + 6] << 8) | (u64)data[j + 7]; } for (; i < Rounds; ++i) { m[i] = SIGN1(m[i - 2]) + m[i - 7] + SIGN0(m[i - 15]) + m[i - 16]; } auto a = m_state[0], b = m_state[1], c = m_state[2], d = m_state[3], e = m_state[4], f = m_state[5], g = m_state[6], h = m_state[7]; for (size_t i = 0; i < Rounds; ++i) { auto temp0 = h + EP1(e) + CH(e, f, g) + SHA512Constants::RoundConstants[i] + m[i]; auto temp1 = EP0(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + temp0; d = c; c = b; b = a; a = temp0 + temp1; } m_state[0] += a; m_state[1] += b; m_state[2] += c; m_state[3] += d; m_state[4] += e; m_state[5] += f; m_state[6] += g; m_state[7] += h; } void SHA512::update(const u8* message, size_t length) { for (size_t i = 0; i < length; ++i) { if (m_data_length == BlockSize) { transform(m_data_buffer); m_bit_length += 1024; m_data_length = 0; } m_data_buffer[m_data_length++] = message[i]; } } SHA512::DigestType SHA512::digest() { auto digest = peek(); reset(); return digest; } SHA512::DigestType SHA512::peek() { DigestType digest; size_t i = m_data_length; if (BlockSize == m_data_length) { transform(m_data_buffer); m_bit_length += BlockSize * 8; m_data_length = 0; i = 0; } if (m_data_length < FinalBlockDataSize) { m_data_buffer[i++] = 0x80; while (i < FinalBlockDataSize) m_data_buffer[i++] = 0x00; } else { // First, complete a block with some padding. m_data_buffer[i++] = 0x80; while (i < BlockSize) m_data_buffer[i++] = 0x00; transform(m_data_buffer); // Then start another block with BlockSize - 8 bytes of zeros __builtin_memset(m_data_buffer, 0, FinalBlockDataSize); } // append total message length m_bit_length += m_data_length * 8; m_data_buffer[BlockSize - 1] = m_bit_length; m_data_buffer[BlockSize - 2] = m_bit_length >> 8; m_data_buffer[BlockSize - 3] = m_bit_length >> 16; m_data_buffer[BlockSize - 4] = m_bit_length >> 24; m_data_buffer[BlockSize - 5] = m_bit_length >> 32; m_data_buffer[BlockSize - 6] = m_bit_length >> 40; m_data_buffer[BlockSize - 7] = m_bit_length >> 48; m_data_buffer[BlockSize - 8] = m_bit_length >> 56; transform(m_data_buffer); // SHA uses big-endian and we assume little-endian // FIXME: looks like a thing for AK::NetworkOrdered, // but he doesn't support shifting operations for (size_t i = 0; i < 8; ++i) { digest.data[i + 0] = (m_state[0] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 8] = (m_state[1] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 16] = (m_state[2] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 24] = (m_state[3] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 32] = (m_state[4] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 40] = (m_state[5] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 48] = (m_state[6] >> (56 - i * 8)) & 0x000000ff; digest.data[i + 56] = (m_state[7] >> (56 - i * 8)) & 0x000000ff; } return digest; } } }