/* * Copyright (c) 2022, stelar7 * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include namespace Crypto::Curves { void Curve25519::set(u32* state, u32 value) { state[0] = value; for (auto i = 1; i < WORDS; i++) { state[i] = 0; } } void Curve25519::modular_square(u32* state, u32 const* value) { // Compute R = (A ^ 2) mod p modular_multiply(state, value, value); } void Curve25519::modular_subtract(u32* state, u32 const* first, u32 const* second) { // R = (A - B) mod p i64 temp = -19; for (auto i = 0; i < WORDS; i++) { temp += first[i]; temp -= second[i]; state[i] = temp & 0xFFFFFFFF; temp >>= 32; } // Compute R = A + (2^255 - 19) - B state[7] += 0x80000000; modular_reduce(state, state); } void Curve25519::modular_add(u32* state, u32 const* first, u32 const* second) { // R = (A + B) mod p u64 temp = 0; for (auto i = 0; i < WORDS; i++) { temp += first[i]; temp += second[i]; state[i] = temp & 0xFFFFFFFF; temp >>= 32; } modular_reduce(state, state); } void Curve25519::modular_multiply(u32* state, u32 const* first, u32 const* second) { // Compute R = (A * B) mod p u64 temp = 0; u64 carry = 0; u32 output[WORDS * 2]; // Comba's method for (auto i = 0; i < 16; i++) { if (i < WORDS) { for (auto j = 0; j <= i; j++) { temp += (u64)first[j] * second[i - j]; carry += temp >> 32; temp &= 0xFFFFFFFF; } } else { for (auto j = i - 7; j < WORDS; j++) { temp += (u64)first[j] * second[i - j]; carry += temp >> 32; temp &= 0xFFFFFFFF; } } output[i] = temp & 0xFFFFFFFF; temp = carry & 0xFFFFFFFF; carry >>= 32; } // Reduce bit 255 (2^255 = 19 mod p) temp = (output[7] >> 31) * 19; // Mask the most significant bit output[7] &= 0x7FFFFFFF; // Fast modular reduction 1st pass for (auto i = 0; i < WORDS; i++) { temp += output[i]; temp += (u64)output[i + 8] * 38; output[i] = temp & 0xFFFFFFFF; temp >>= 32; } // Reduce bit 256 (2^256 = 38 mod p) temp *= 38; // Reduce bit 255 (2^255 = 19 mod p) temp += (output[7] >> 31) * 19; // Mask the most significant bit output[7] &= 0x7FFFFFFF; // Fast modular reduction 2nd pass for (auto i = 0; i < WORDS; i++) { temp += output[i]; output[i] = temp & 0xFFFFFFFF; temp >>= 32; } modular_reduce(state, output); } void Curve25519::export_state(u32* state, u8* output) { for (u32 i = 0; i < WORDS; i++) { state[i] = AK::convert_between_host_and_little_endian(state[i]); } memcpy(output, state, BYTES); } void Curve25519::import_state(u32* state, u8 const* data) { memcpy(state, data, BYTES); for (u32 i = 0; i < WORDS; i++) { state[i] = AK::convert_between_host_and_little_endian(state[i]); } } void Curve25519::modular_subtract_single(u32* r, u32 const* a, u32 b) { i64 temp = -19; temp -= b; // Compute R = A - 19 - B for (u32 i = 0; i < 8; i++) { temp += a[i]; r[i] = temp & 0xFFFFFFFF; temp >>= 32; } // Compute R = A + (2^255 - 19) - B r[7] += 0x80000000; modular_reduce(r, r); } void Curve25519::modular_add_single(u32* state, u32 const* first, u32 second) { u64 temp = second; // Compute R = A + B for (u32 i = 0; i < 8; i++) { temp += first[i]; state[i] = temp & 0xFFFFFFFF; temp >>= 32; } modular_reduce(state, state); } u32 Curve25519::modular_square_root(u32* r, u32 const* a, u32 const* b) { u32 c[8]; u32 u[8]; u32 v[8]; // To compute the square root of (A / B), the first step is to compute the candidate root x = (A / B)^((p+3)/8) modular_square(v, b); modular_multiply(v, v, b); modular_square(v, v); modular_multiply(v, v, b); modular_multiply(c, a, v); modular_square(u, c); modular_multiply(u, u, c); modular_square(u, u); modular_multiply(v, u, c); to_power_of_2n(u, v, 3); modular_multiply(u, u, v); modular_square(u, u); modular_multiply(v, u, c); to_power_of_2n(u, v, 7); modular_multiply(u, u, v); modular_square(u, u); modular_multiply(v, u, c); to_power_of_2n(u, v, 15); modular_multiply(u, u, v); modular_square(u, u); modular_multiply(v, u, c); to_power_of_2n(u, v, 31); modular_multiply(v, u, v); to_power_of_2n(u, v, 62); modular_multiply(u, u, v); modular_square(u, u); modular_multiply(v, u, c); to_power_of_2n(u, v, 125); modular_multiply(u, u, v); modular_square(u, u); modular_square(u, u); modular_multiply(u, u, c); // The first candidate root is U = A * B^3 * (A * B^7)^((p - 5) / 8) modular_multiply(u, u, a); modular_square(v, b); modular_multiply(v, v, b); modular_multiply(u, u, v); // The second candidate root is V = U * sqrt(-1) modular_multiply(v, u, SQRT_MINUS_1); modular_square(c, u); modular_multiply(c, c, b); // Check whether B * U^2 = A u32 first_comparison = compare(c, a); modular_square(c, v); modular_multiply(c, c, b); // Check whether B * V^2 = A u32 second_comparison = compare(c, a); // Select the first or the second candidate root select(r, u, v, first_comparison); // Return 0 if the square root exists return first_comparison & second_comparison; } u32 Curve25519::compare(u32 const* a, u32 const* b) { u32 mask = 0; for (u32 i = 0; i < 8; i++) { mask |= a[i] ^ b[i]; } // Return 0 if A = B, else 1 return ((u32)(mask | (~mask + 1))) >> 31; } void Curve25519::modular_reduce(u32* state, u32 const* data) { // R = A mod p u64 temp = 19; u32 other[WORDS]; for (auto i = 0; i < WORDS; i++) { temp += data[i]; other[i] = temp & 0xFFFFFFFF; temp >>= 32; } // Compute B = A - (2^255 - 19) other[7] -= 0x80000000; u32 mask = (other[7] & 0x80000000) >> 31; select(state, other, data, mask); } void Curve25519::to_power_of_2n(u32* state, u32 const* value, u8 n) { // Pre-compute (A ^ 2) mod p modular_square(state, value); // Compute R = (A ^ (2^n)) mod p for (u32 i = 1; i < n; i++) { modular_square(state, state); } } void Curve25519::select(u32* state, u32 const* a, u32 const* b, u32 condition) { // If B < (2^255 - 19) then R = B, else R = A u32 mask = condition - 1; for (auto i = 0; i < WORDS; i++) { state[i] = (a[i] & mask) | (b[i] & ~mask); } } void Curve25519::copy(u32* state, u32 const* value) { for (auto i = 0; i < WORDS; i++) { state[i] = value[i]; } } void Curve25519::modular_multiply_inverse(u32* state, u32 const* value) { // Compute R = A^-1 mod p u32 u[WORDS]; u32 v[WORDS]; // Fermat's little theorem modular_square(u, value); modular_multiply(u, u, value); modular_square(u, u); modular_multiply(v, u, value); to_power_of_2n(u, v, 3); modular_multiply(u, u, v); modular_square(u, u); modular_multiply(v, u, value); to_power_of_2n(u, v, 7); modular_multiply(u, u, v); modular_square(u, u); modular_multiply(v, u, value); to_power_of_2n(u, v, 15); modular_multiply(u, u, v); modular_square(u, u); modular_multiply(v, u, value); to_power_of_2n(u, v, 31); modular_multiply(v, u, v); to_power_of_2n(u, v, 62); modular_multiply(u, u, v); modular_square(u, u); modular_multiply(v, u, value); to_power_of_2n(u, v, 125); modular_multiply(u, u, v); modular_square(u, u); modular_square(u, u); modular_multiply(u, u, value); modular_square(u, u); modular_square(u, u); modular_multiply(u, u, value); modular_square(u, u); modular_multiply(state, u, value); } void Curve25519::modular_multiply_single(u32* state, u32 const* first, u32 second) { // Compute R = (A * B) mod p u64 temp = 0; u32 output[WORDS]; for (auto i = 0; i < WORDS; i++) { temp += (u64)first[i] * second; output[i] = temp & 0xFFFFFFFF; temp >>= 32; } // Reduce bit 256 (2^256 = 38 mod p) temp *= 38; // Reduce bit 255 (2^255 = 19 mod p) temp += (output[7] >> 31) * 19; // Mask the most significant bit output[7] &= 0x7FFFFFFF; // Fast modular reduction for (auto i = 0; i < WORDS; i++) { temp += output[i]; output[i] = temp & 0xFFFFFFFF; temp >>= 32; } modular_reduce(state, output); } }