/* * Copyright (c) 2020, Itamar S. * Copyright (c) 2022, David Tuin * * SPDX-License-Identifier: BSD-2-Clause */ #include "UnsignedBigInteger.h" #include #include #include #include #include #include #include namespace Crypto { UnsignedBigInteger::UnsignedBigInteger(u8 const* ptr, size_t length) { m_words.resize_and_keep_capacity((length + sizeof(u32) - 1) / sizeof(u32)); size_t in = length, out = 0; while (in >= sizeof(u32)) { in -= sizeof(u32); u32 word = ((u32)ptr[in] << 24) | ((u32)ptr[in + 1] << 16) | ((u32)ptr[in + 2] << 8) | (u32)ptr[in + 3]; m_words[out++] = word; } if (in > 0) { u32 word = 0; for (size_t i = 0; i < in; i++) { word <<= 8; word |= (u32)ptr[i]; } m_words[out++] = word; } } UnsignedBigInteger::UnsignedBigInteger(double value) { // Because this is currently only used for LibJS we VERIFY some preconditions // also these values don't have a clear BigInteger representation. VERIFY(!isnan(value)); VERIFY(!isinf(value)); VERIFY(trunc(value) == value); VERIFY(value >= 0.0); if (value <= NumericLimits::max()) { m_words.append(static_cast(value)); return; } FloatExtractor extractor; extractor.d = value; VERIFY(!extractor.sign); i32 real_exponent = extractor.exponent - extractor.exponent_bias; VERIFY(real_exponent > 0); // Ensure we have enough space, we will need 2^exponent bits, so round up in words auto word_index = (real_exponent + BITS_IN_WORD) / BITS_IN_WORD; m_words.resize_and_keep_capacity(word_index); // Now we just need to put the mantissa with explicit 1 bit at the top at the proper location u64 raw_mantissa = extractor.mantissa | (1ull << extractor.mantissa_bits); VERIFY((raw_mantissa & 0xfff0000000000000) == 0x0010000000000000); // Shift it so the bits we need are at the top raw_mantissa <<= 64 - extractor.mantissa_bits - 1; // The initial bit needs to be exactly aligned with exponent, this is 1-indexed auto top_word_bit_offset = real_exponent % BITS_IN_WORD + 1; auto top_word_bits_from_mantissa = raw_mantissa >> (64 - top_word_bit_offset); VERIFY(top_word_bits_from_mantissa <= NumericLimits::max()); m_words[word_index - 1] = top_word_bits_from_mantissa; --word_index; // Shift used bits away raw_mantissa <<= top_word_bit_offset; i32 bits_in_mantissa = extractor.mantissa_bits + 1 - top_word_bit_offset; // Now just put everything at the top of the next words constexpr auto to_word_shift = 64 - BITS_IN_WORD; while (word_index > 0 && bits_in_mantissa > 0) { VERIFY((raw_mantissa >> to_word_shift) <= NumericLimits::max()); m_words[word_index - 1] = raw_mantissa >> to_word_shift; raw_mantissa <<= to_word_shift; bits_in_mantissa -= BITS_IN_WORD; --word_index; } VERIFY(m_words.size() > word_index); VERIFY((m_words.size() - word_index) <= 3); // No bits left, otherwise we would have to round VERIFY(raw_mantissa == 0); } UnsignedBigInteger UnsignedBigInteger::create_invalid() { UnsignedBigInteger invalid(0); invalid.invalidate(); return invalid; } size_t UnsignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const { size_t word_count = trimmed_length(); size_t out = 0; if (word_count > 0) { ssize_t leading_zeros = -1; if (remove_leading_zeros) { UnsignedBigInteger::Word word = m_words[word_count - 1]; for (size_t i = 0; i < sizeof(u32); i++) { u8 byte = (u8)(word >> ((sizeof(u32) - i - 1) * 8)); data[out++] = byte; if (leading_zeros < 0 && byte != 0) leading_zeros = (int)i; } } for (size_t i = word_count - (remove_leading_zeros ? 1 : 0); i > 0; i--) { auto word = m_words[i - 1]; data[out++] = (u8)(word >> 24); data[out++] = (u8)(word >> 16); data[out++] = (u8)(word >> 8); data[out++] = (u8)word; } if (leading_zeros > 0) out -= leading_zeros; } return out; } UnsignedBigInteger UnsignedBigInteger::from_base(u16 N, StringView str) { VERIFY(N <= 36); UnsignedBigInteger result; UnsignedBigInteger base { N }; for (auto& c : str) { if (c == '_') continue; result = result.multiplied_by(base).plus(parse_ascii_base36_digit(c)); } return result; } DeprecatedString UnsignedBigInteger::to_base(u16 N) const { VERIFY(N <= 36); if (*this == UnsignedBigInteger { 0 }) return "0"; StringBuilder builder; UnsignedBigInteger temp(*this); UnsignedBigInteger quotient; UnsignedBigInteger remainder; while (temp != UnsignedBigInteger { 0 }) { UnsignedBigIntegerAlgorithms::divide_u16_without_allocation(temp, N, quotient, remainder); VERIFY(remainder.words()[0] < N); builder.append(to_ascii_base36_digit(remainder.words()[0])); temp.set_to(quotient); } return builder.to_string().reverse(); } u64 UnsignedBigInteger::to_u64() const { static_assert(sizeof(Word) == 4); if (!length()) return 0; u64 value = m_words[0]; if (length() > 1) value |= static_cast(m_words[1]) << 32; return value; } double UnsignedBigInteger::to_double(UnsignedBigInteger::RoundingMode rounding_mode) const { VERIFY(!is_invalid()); auto highest_bit = one_based_index_of_highest_set_bit(); if (highest_bit == 0) return 0; --highest_bit; using Extractor = FloatExtractor; // Simple case if less than 2^53 since those number are all exactly representable in doubles if (highest_bit < Extractor::mantissa_bits + 1) return static_cast(to_u64()); // If it uses too many bit to represent in a double return infinity if (highest_bit > Extractor::exponent_bias) return __builtin_huge_val(); // Otherwise we have to take the top 53 bits, use those as the mantissa, // and the amount of bits as the exponent. Note that the mantissa has an implicit top bit of 1 // so we have to ignore the very top bit. // Since we extract at most 53 bits it will take at most 3 words static_assert(BITS_IN_WORD * 3 >= (Extractor::mantissa_bits + 1)); constexpr auto bits_in_u64 = 64; static_assert(bits_in_u64 > Extractor::mantissa_bits + 1); auto bits_to_read = min(static_cast(Extractor::mantissa_bits), highest_bit); auto last_word_index = trimmed_length(); VERIFY(last_word_index > 0); // Note that highest bit is 0-indexed at this point. auto highest_bit_index_in_top_word = highest_bit % BITS_IN_WORD; // Shift initial word until highest bit is just beyond top of u64. u64 mantissa = m_words[last_word_index - 1]; if (highest_bit_index_in_top_word != 0) mantissa <<= (bits_in_u64 - highest_bit_index_in_top_word); else mantissa = 0; auto bits_written = highest_bit_index_in_top_word; --last_word_index; Optional dropped_bits_for_rounding; u8 bits_dropped_from_final_word = 0; if (bits_written < bits_to_read && last_word_index > 0) { // Second word can always just cleanly be shifted up to the final bit of the first word // since the first has at most BIT_IN_WORD - 1, 31 u64 next_word = m_words[last_word_index - 1]; VERIFY((mantissa & (next_word << (bits_in_u64 - bits_written - BITS_IN_WORD))) == 0); mantissa |= next_word << (bits_in_u64 - bits_written - BITS_IN_WORD); bits_written += BITS_IN_WORD; --last_word_index; if (bits_written > bits_to_read) { bits_dropped_from_final_word = bits_written - bits_to_read; dropped_bits_for_rounding = m_words[last_word_index] & ((1 << bits_dropped_from_final_word) - 1); } else if (bits_written < bits_to_read && last_word_index > 0) { // The final word has to be shifted down first to discard any excess bits. u64 final_word = m_words[last_word_index - 1]; --last_word_index; auto bits_to_write = bits_to_read - bits_written; bits_dropped_from_final_word = BITS_IN_WORD - bits_to_write; dropped_bits_for_rounding = final_word & ((1 << bits_dropped_from_final_word) - 1u); final_word >>= bits_dropped_from_final_word; // Then move the bits right up to the lowest bits of the second word VERIFY((mantissa & (final_word << (bits_in_u64 - bits_written - bits_to_write))) == 0); mantissa |= final_word << (bits_in_u64 - bits_written - bits_to_write); } } // Now the mantissa should be complete so shift it down mantissa >>= bits_in_u64 - Extractor::mantissa_bits; if (rounding_mode == RoundingMode::IEEERoundAndTiesToEvenMantissa) { bool round_up = false; if (bits_dropped_from_final_word == 0) { if (last_word_index > 0) { Word next_word = m_words[last_word_index - 1]; last_word_index--; if ((next_word & 0x80000000) != 0) { // next top bit set check for any other bits if ((next_word ^ 0x80000000) != 0) { round_up = true; } else { while (last_word_index > 0) { if (m_words[last_word_index - 1] != 0) { round_up = true; break; } } // All other bits are 0 which is a tie thus round to even exponent // Since we are halfway, if exponent ends with 1 we round up, if 0 we round down round_up = (mantissa & 1) != 0; } } else { round_up = false; } } else { // If there are no words left the rest is implicitly 0 so just round down round_up = false; } } else { VERIFY(dropped_bits_for_rounding.has_value()); VERIFY(bits_dropped_from_final_word >= 1); // In this case the top bit comes form the dropped bits auto top_bit_extractor = 1u << (bits_dropped_from_final_word - 1u); if ((*dropped_bits_for_rounding & top_bit_extractor) != 0) { // Possible tie again, if any other bit is set we round up if ((*dropped_bits_for_rounding ^ top_bit_extractor) != 0) { round_up = true; } else { while (last_word_index > 0) { if (m_words[last_word_index - 1] != 0) { round_up = true; break; } } round_up = (mantissa & 1) != 0; } } else { round_up = false; } } if (round_up) { ++mantissa; if ((mantissa & (1ull << Extractor::mantissa_bits)) != 0) { // we overflowed the mantissa mantissa = 0; highest_bit++; // In which case it is possible we have to round to infinity if (highest_bit > Extractor::exponent_bias) return __builtin_huge_val(); } } } else { VERIFY(rounding_mode == RoundingMode::RoundTowardZero); } Extractor extractor; extractor.exponent = highest_bit + extractor.exponent_bias; VERIFY((mantissa & 0xfff0000000000000) == 0); extractor.mantissa = mantissa; return extractor.d; } void UnsignedBigInteger::set_to_0() { m_words.clear_with_capacity(); m_is_invalid = false; m_cached_trimmed_length = {}; m_cached_hash = 0; } void UnsignedBigInteger::set_to(UnsignedBigInteger::Word other) { m_is_invalid = false; m_words.resize_and_keep_capacity(1); m_words[0] = other; m_cached_trimmed_length = {}; m_cached_hash = 0; } void UnsignedBigInteger::set_to(UnsignedBigInteger const& other) { m_is_invalid = other.m_is_invalid; m_words.resize_and_keep_capacity(other.m_words.size()); __builtin_memcpy(m_words.data(), other.m_words.data(), other.m_words.size() * sizeof(u32)); m_cached_trimmed_length = {}; m_cached_hash = 0; } bool UnsignedBigInteger::is_zero() const { for (size_t i = 0; i < length(); ++i) { if (m_words[i] != 0) return false; } return true; } size_t UnsignedBigInteger::trimmed_length() const { if (!m_cached_trimmed_length.has_value()) { size_t num_leading_zeroes = 0; for (int i = length() - 1; i >= 0; --i, ++num_leading_zeroes) { if (m_words[i] != 0) break; } m_cached_trimmed_length = length() - num_leading_zeroes; } return m_cached_trimmed_length.value(); } void UnsignedBigInteger::clamp_to_trimmed_length() { auto length = trimmed_length(); if (m_words.size() > length) m_words.resize(length); } void UnsignedBigInteger::resize_with_leading_zeros(size_t new_length) { size_t old_length = length(); if (old_length < new_length) { m_words.resize_and_keep_capacity(new_length); __builtin_memset(&m_words.data()[old_length], 0, (new_length - old_length) * sizeof(u32)); } } size_t UnsignedBigInteger::one_based_index_of_highest_set_bit() const { size_t number_of_words = trimmed_length(); size_t index = 0; if (number_of_words > 0) { index += (number_of_words - 1) * BITS_IN_WORD; index += BITS_IN_WORD - count_leading_zeroes(m_words[number_of_words - 1]); } return index; } FLATTEN UnsignedBigInteger UnsignedBigInteger::plus(UnsignedBigInteger const& other) const { UnsignedBigInteger result; UnsignedBigIntegerAlgorithms::add_without_allocation(*this, other, result); return result; } FLATTEN UnsignedBigInteger UnsignedBigInteger::minus(UnsignedBigInteger const& other) const { UnsignedBigInteger result; UnsignedBigIntegerAlgorithms::subtract_without_allocation(*this, other, result); return result; } FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_or(UnsignedBigInteger const& other) const { UnsignedBigInteger result; UnsignedBigIntegerAlgorithms::bitwise_or_without_allocation(*this, other, result); return result; } FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_and(UnsignedBigInteger const& other) const { UnsignedBigInteger result; UnsignedBigIntegerAlgorithms::bitwise_and_without_allocation(*this, other, result); return result; } FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_xor(UnsignedBigInteger const& other) const { UnsignedBigInteger result; UnsignedBigIntegerAlgorithms::bitwise_xor_without_allocation(*this, other, result); return result; } FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_not_fill_to_one_based_index(size_t size) const { UnsignedBigInteger result; UnsignedBigIntegerAlgorithms::bitwise_not_fill_to_one_based_index_without_allocation(*this, size, result); return result; } FLATTEN UnsignedBigInteger UnsignedBigInteger::shift_left(size_t num_bits) const { UnsignedBigInteger output; UnsignedBigInteger temp_result; UnsignedBigInteger temp_plus; UnsignedBigIntegerAlgorithms::shift_left_without_allocation(*this, num_bits, temp_result, temp_plus, output); return output; } FLATTEN UnsignedBigInteger UnsignedBigInteger::multiplied_by(UnsignedBigInteger const& other) const { UnsignedBigInteger result; UnsignedBigInteger temp_shift_result; UnsignedBigInteger temp_shift_plus; UnsignedBigInteger temp_shift; UnsignedBigIntegerAlgorithms::multiply_without_allocation(*this, other, temp_shift_result, temp_shift_plus, temp_shift, result); return result; } FLATTEN UnsignedDivisionResult UnsignedBigInteger::divided_by(UnsignedBigInteger const& divisor) const { UnsignedBigInteger quotient; UnsignedBigInteger remainder; // If we actually have a u16-compatible divisor, short-circuit to the // less computationally-intensive "divide_u16_without_allocation" method. if (divisor.trimmed_length() == 1 && divisor.m_words[0] < (1 << 16)) { UnsignedBigIntegerAlgorithms::divide_u16_without_allocation(*this, divisor.m_words[0], quotient, remainder); return UnsignedDivisionResult { quotient, remainder }; } UnsignedBigInteger temp_shift_result; UnsignedBigInteger temp_shift_plus; UnsignedBigInteger temp_shift; UnsignedBigInteger temp_minus; UnsignedBigIntegerAlgorithms::divide_without_allocation(*this, divisor, temp_shift_result, temp_shift_plus, temp_shift, temp_minus, quotient, remainder); return UnsignedDivisionResult { quotient, remainder }; } u32 UnsignedBigInteger::hash() const { if (m_cached_hash != 0) return m_cached_hash; return m_cached_hash = string_hash((char const*)m_words.data(), sizeof(Word) * m_words.size()); } void UnsignedBigInteger::set_bit_inplace(size_t bit_index) { const size_t word_index = bit_index / UnsignedBigInteger::BITS_IN_WORD; const size_t inner_word_index = bit_index % UnsignedBigInteger::BITS_IN_WORD; m_words.ensure_capacity(word_index + 1); for (size_t i = length(); i <= word_index; ++i) { m_words.unchecked_append(0); } m_words[word_index] |= (1 << inner_word_index); m_cached_trimmed_length = {}; m_cached_hash = 0; } bool UnsignedBigInteger::operator==(UnsignedBigInteger const& other) const { if (is_invalid() != other.is_invalid()) return false; auto length = trimmed_length(); if (length != other.trimmed_length()) return false; return !__builtin_memcmp(m_words.data(), other.words().data(), length * (BITS_IN_WORD / 8)); } bool UnsignedBigInteger::operator!=(UnsignedBigInteger const& other) const { return !(*this == other); } bool UnsignedBigInteger::operator<(UnsignedBigInteger const& other) const { auto length = trimmed_length(); auto other_length = other.trimmed_length(); if (length < other_length) { return true; } if (length > other_length) { return false; } if (length == 0) { return false; } for (int i = length - 1; i >= 0; --i) { if (m_words[i] == other.m_words[i]) continue; return m_words[i] < other.m_words[i]; } return false; } bool UnsignedBigInteger::operator>(UnsignedBigInteger const& other) const { return *this != other && !(*this < other); } bool UnsignedBigInteger::operator>=(UnsignedBigInteger const& other) const { return *this > other || *this == other; } UnsignedBigInteger::CompareResult UnsignedBigInteger::compare_to_double(double value) const { VERIFY(!isnan(value)); if (isinf(value)) { bool is_positive_infinity = __builtin_isinf_sign(value) > 0; return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt; } bool value_is_negative = value < 0; if (value_is_negative) return CompareResult::DoubleLessThanBigInt; // Value is zero. if (value == 0.0) { VERIFY(!value_is_negative); // Either we are also zero or value is certainly less than us. return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt; } // If value is not zero but we are, value must be greater. if (is_zero()) return CompareResult::DoubleGreaterThanBigInt; FloatExtractor extractor; extractor.d = value; // Value cannot be negative at this point. VERIFY(extractor.sign == 0); // Exponent cannot be all set, as then we must be NaN or infinity. VERIFY(extractor.exponent != (1 << extractor.exponent_bits) - 1); i32 real_exponent = extractor.exponent - extractor.exponent_bias; if (real_exponent < 0) { // value is less than 1, and we cannot be zero so value must be less. return CompareResult::DoubleLessThanBigInt; } u64 bigint_bits_needed = one_based_index_of_highest_set_bit(); VERIFY(bigint_bits_needed > 0); // Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need // `exponent - bias + 1` bit to represent doubles value, // for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get // `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000). u32 double_bits_needed = real_exponent + 1; // If we need more bits to represent us, we must be of greater value. if (bigint_bits_needed > double_bits_needed) return CompareResult::DoubleLessThanBigInt; // If we need less bits to represent us, we must be of less value. if (bigint_bits_needed < double_bits_needed) return CompareResult::DoubleGreaterThanBigInt; u64 mantissa_bits = extractor.mantissa; // We add the bit which represents the 1. of the double value calculation. constexpr u64 mantissa_extended_bit = 1ull << extractor.mantissa_bits; mantissa_bits |= mantissa_extended_bit; // Now we shift value to the left virtually, with `exponent - bias` steps // we then pretend both it and the big int are extended with virtual zeros. auto next_bigint_word = (BITS_IN_WORD - 1 + bigint_bits_needed) / BITS_IN_WORD; VERIFY(next_bigint_word == trimmed_length()); auto msb_in_top_word_index = (bigint_bits_needed - 1) % BITS_IN_WORD; VERIFY(msb_in_top_word_index == (BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1)); // We will keep the bits which are still valid in the mantissa at the top of mantissa bits. mantissa_bits <<= 64 - (extractor.mantissa_bits + 1); auto bits_left_in_mantissa = static_cast(extractor.mantissa_bits) + 1; auto get_next_value_bits = [&](size_t num_bits) -> Word { VERIFY(num_bits < 63); VERIFY(bits_left_in_mantissa > 0); if (num_bits > bits_left_in_mantissa) num_bits = bits_left_in_mantissa; bits_left_in_mantissa -= num_bits; u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits)); // Now shift the bits down to put the most significant bit on the num_bits position // this means the rest will be "virtual" zeros. extracted_bits >>= 32; // Now shift away the used bits and fit the result into a Word. mantissa_bits <<= num_bits; VERIFY(extracted_bits <= NumericLimits::max()); return static_cast(extracted_bits); }; auto bits_in_next_bigint_word = msb_in_top_word_index + 1; while (next_bigint_word > 0 && bits_left_in_mantissa > 0) { Word bigint_word = words()[next_bigint_word - 1]; Word double_word = get_next_value_bits(bits_in_next_bigint_word); // For the first bit we have to align it with the top bit of bigint // and for all the other cases bits_in_next_bigint_word is 32 so this does nothing. double_word >>= 32 - bits_in_next_bigint_word; if (bigint_word < double_word) return CompareResult::DoubleGreaterThanBigInt; if (bigint_word > double_word) return CompareResult::DoubleLessThanBigInt; --next_bigint_word; bits_in_next_bigint_word = BITS_IN_WORD; } // If there are still bits left in bigint than any non zero bit means it has greater value. if (next_bigint_word > 0) { VERIFY(bits_left_in_mantissa == 0); while (next_bigint_word > 0) { if (words()[next_bigint_word - 1] != 0) return CompareResult::DoubleLessThanBigInt; --next_bigint_word; } } else if (bits_left_in_mantissa > 0) { VERIFY(next_bigint_word == 0); // Similarly if there are still any bits set in the mantissa it has greater value. if (mantissa_bits != 0) return CompareResult::DoubleGreaterThanBigInt; } // Otherwise if both don't have bits left or the rest of the bits are zero they are equal. return CompareResult::DoubleEqualsBigInt; } } ErrorOr AK::Formatter::format(FormatBuilder& fmtbuilder, Crypto::UnsignedBigInteger const& value) { if (value.is_invalid()) return fmtbuilder.put_string("invalid"sv); StringBuilder builder; for (int i = value.length() - 1; i >= 0; --i) TRY(builder.try_appendff("{}|", value.words()[i])); return Formatter::format(fmtbuilder, builder.string_view()); }